Mathematical Methods - 15 December 2023 - Graph Theory
UniBo matriculation number:
(no name, please)
Let $G$ be the graph drawn here:

1) (1 pt.) Adjacency matrix:

|  |  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{A}$ |  |  |  |  |  |  |
| $\mathbf{A}$ | 0 | 1 | 1 | 0 | 1 | 0 |
| $\mathbf{B}$ | 1 | 0 | 1 | 0 | 1 | 0 |
| $\mathbf{C}$ | 1 | 1 | 0 | 0 | 0 | 0 |
| $\mathbf{D}$ | 0 | 0 | 0 | 0 | 1 | 1 |
| $\mathbf{E}$ | 1 | 1 | 0 | 1 | 0 | 1 |
| $\mathbf{F}$ | 0 | 0 | 0 | 1 | 1 | 0 |

2) (1 pt.) Incidence matrix:

|  | $\mathbf{a}$ | $\mathbf{b}$ | $\mathbf{c}$ | $\mathbf{d}$ | $\mathbf{e}$ | $\mathbf{f}$ | $\mathbf{g}$ | $\mathbf{h}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{A}$ | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| $\mathbf{B}$ | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| $\mathbf{C}$ | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| D | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| $\mathbf{E}$ | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 |
| F | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |

3) (1 pt.) Minimum degree $\delta=2$ Maximum degree $\Delta=\mathbf{4}$
4) (1 pt.) Connectivity $\kappa=1$ Edge-connectivity $\kappa^{\prime}=\mathbf{2}$
5) (1 pt.) Is G bipartite? Why? (If answer is "yes", list the two vertex sets of the bipartition)

No: It has odd cycles.
6) (1 pt.) Does G have an Euler tour? Why? (If answer is "yes", write the edge sequence of one)

No: It has vertices with odd degree.
7) (l pt.) Does G have an Euler trail with distinct origin and terminus? Why? (If answer is "yes", write the edge sequence of one)
Yes: it has exactly two vertices with odd degree. abcgefdh
8) (1 pt.) Does G have a Hamilton path? (If answer is "yes", write the vertex sequence of one) Yes. BCAEFD
9) (1 pt.) List the edge set of a maximum matching. Is it a perfect matching?
bfg. Yes.
Now the vertices represent towns and the edge weights represent distances. 10) (2 pts.) Use Dijkstra's algorithm to find minimal routes from A to all other vertices.

11) (2 pts.) Use Kruskal's algorithm to find a spanning tree with minimum total weight (an optimal connector of the towns).

12) (3 pts.) Use the recursive formula to compute $\tau$ (\# of spanning trees) of this graph (passages not shown here, but in test you are supposed to show them): 3

13) (4 pts.) Use logic operations to find all minimal coverings and all maximal independent sets of this graph.
$(\mathrm{A}+\mathrm{BCE})(\mathrm{B}+\mathrm{AC})(\mathrm{C}+\mathrm{AB})(\mathrm{D}+\mathrm{E})(\mathrm{E}+\mathrm{AD})=$
$=(\mathrm{AB}+\mathrm{AAC}+\mathrm{BCEB}+\mathrm{BCEAC})()=(\mathrm{AB}+\mathrm{AC}+\mathrm{BCE})(\mathrm{C}+\mathrm{AB})()=$
$=(A B C+A B A B+A C C+A C A B+B C E C+B C E A B)()=$
$=(A B+A C+B C E)(D+E)()=$
$=(A B D+A B E+A C D+A C E+B C E D+B C E E)()=$
$=(\mathrm{ABD}+\mathrm{ABE}+\mathrm{ACD}+\mathrm{ACE}+\mathrm{BCE})(\mathrm{E}+\mathrm{AD})=$

$=\mathrm{ABDE}+\mathrm{ABDAD}+\mathrm{ABEE}+\mathrm{ABEAD}+\mathrm{ACDE}+\mathrm{ACDAD}+\mathrm{ACEE}+\mathrm{ACEAD}+\mathrm{BCEE}+\mathrm{BCEAD}=$
$=A B D+A B E+A C D+A C E+B C E$

Minimal coverings : \{A,B,D\}, \{A,B,E\}, \{A,C,D\}, \{A,C,E\}, \{B,C,E \}
Maximal independent sets : $\{C, E\},\{C, D\},\{B, E\},\{B, D\},\{A, D\}$
14) (4 pts.) Compute the chromatic polynomial of this graph (passages not shown here, but in test you are supposed to show them).
$k^{6}-6 k^{5}+14 k^{4}-16 k^{3}+9 k^{2}-2 k$


