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Abstract

How can we leverage topological persistence to inject knowledge in machine
learning algorithms, and in particular apply persistence-based pipelines to classifi-
cation tasks, such as Music Information Retrieval? We propose a strategy based
on persistent homology, and more specifically persistence images, to tackle the
problem of music genre classification. We test our pipelines on GTZAN—a widely
used, publicly available dataset—showing that persistence images improve a simple
machine learning algorithm’s classification performance. Thereafter, we introduce a
complementary approach to persistent images for vectorizing persistence diagrams.
The algorithm ranks the points of a persistence diagram, allowing us to consider only
its n most relevant elements. This approach is complementary to persistent images:
it generates lighter fingerprints and depends on fewer hyperparamenters. We focus
mostly on the conceptual implications of the theories and methods mentioned above,
rather than compare performance with state-of-the-art methods.



iii

Contents

1 Introduction 1

2 Preliminary notions 2
2.1 Music genres classification . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Suggested solution . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Mel-Frequency Cepstral Coefficients . . . . . . . . . . . . . . . . . . 5
2.3 Introduction to Persistent Topology . . . . . . . . . . . . . . . . . . 7

2.3.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Persistence Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 A Persistence-Image-based approach for Music Information Re-
trieval 13
3.1 The GTZAN dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 PIs computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Classification and cross-validation . . . . . . . . . . . . . . . . . . . . 16
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 A cardinality reduction algorithm for persistence diagrams 20
4.1 Cornerpoints selection . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Ziggurat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Cornerpoints selection in the Ziggurat’s persistence diagram . 23
4.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 A possible extension of the elderly rule . . . . . . . . . . . . . . . . . 30

Conclusions and future work 34

Bibliography 35



1

Chapter 1

Introduction

Topological persistence and persistent homology rapidly became a valuable tool
in numerous applications, see [Fer17]. Indeed, persistent homology allows the user to
extract specific features from data points tx1, . . . , xnu under the form of a continuous
function f : xi Ñ R. On the other hand of the data-analysis spectrum, machine
learning allows for free modelling of a dataset, given a task: the algorithm learns
optimal parameters to solve a certain task (typically minimizing an error function)
given an initial set of data points.

We review state-of-the-art methods and investigate original ways to merge these
two approaches, aiming to maintain the control granted by topological persistence
and flexibility of machine learning methods.

As a reference application, we consider the music genres classification task: an
open problem currently investigated by the Music Information Retrieval (MIR)
community, see [Dow03]. In our setting, music genres classification is a particularly
relevant problem: on one hand, specific features need to be extracted from audio data,
however time-frequency analysis is prone to noise, thus topological persistence can be
leveraged to forget noisy components of such features. On the other hand, machine
learning tools—ranging from simple regressions to deep neural networks—proved to
be highly effective on audio-classification tasks.

In chapter 2, we introduce the music genres classification problem and the needed
mathematical tools from signal analysis and topological persistence. In chapter 3
we shall compute persistence diagrams on audio features and transform them into
persistent images to tackle the music genres classification problem selecting a standard
machine learning (ML) algorithm. We shall compare the performance of such
persistence-based pipeline with the naive application of the selected ML algorithm.
Finally, in chapter 4, we will propose a cardinality reduction algorithm for persistence
diagrams. We did not test this latest algorithm on the music genres classification
task. However, as discussed in the conclusions of this work, we believe our solution
could be complementary to persistent images and suitable for injecting knowledge
in standard machine learning pipelines.

The Python package developed to validate the methods described in this work is
available at https://github.com/luca9433/codicetesi.

https://github.com/luca9433/_codice_tesi_
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Chapter 2

Preliminary notions

In this chapter, we introduce the preliminary notions concerning both the applied
and theoretical sides of this work. We start by presenting an overview of the music
genres classification problem. Then, we will give a more mathematically detailed
description of the feature we want to extract from musical audio, and discuss the
theoretical aspects which we will apply to select certain interesting topological
properties of the extracted information.

2.1 Music genres classification
We can introduce the problem of music genres classification by citing the in-

troduction to the article [TC02], where, twenty years ago, George Tzanetakis and
Perry Cook, considering the ever-wider availability of music on the Web since then,
emphasized the consequent increasing importance of structuring and organizing it:

“Musical genres are labels created and used by humans for categorizing and
describing the vast universe of music. Musical genres have no strict definitions and
boundaries as they arise through a complex interaction between the public, marketing,
historical, and cultural factors. This observation has led some researchers to suggest
the definition of a new genre classification scheme purely for the purposes of music
information retrieval. However, even with current musical genres, it is clear that the
members of a particular genre share certain characteristics typically related to the
instrumentation, rhythmic structure, and pitch content of the music. Automatically
extracting music information is gaining importance as a way to structure and organize
the increasingly large numbers of music files available digitally on the Web. It is
very likely that in the near future all recorded music in human history will be
available on the Web. Automatic music analysis will be one of the services that
music content distribution vendors will use to attract customers. Another indication
of the increasing importance of digital music distribution is the legal attention that
companies like Napster have recently received. Genre hierarchies, typically created
manually by human experts, are currently one of the ways used to structure music
content on the Web. Automatic musical genre classification can potentially automate
this process and provide an important component for a complete music information
retrieval system for audio signals. In addition, it provides a framework for developing



2.1 Music genres classification 3

and evaluating features for describing musical content. Such features can be used for
similarity retrieval, classification, segmentation, and audio thumbnailing and form
the foundation of most proposed audio analysis techniques for music. ”

The basis of any type of automatic audio analysis system is the extraction of
feature vectors. Feature extraction is the process of computing a compact numerical
representation that can be used to characterize a segment of audio. The design
of descriptive features for a specific application is the main challenge in building
pattern recognition systems. Once the features are extracted, standard machine
learning techniques which are independent of the specific application area can be
used.

2.1.1 State of the art

A large number of different feature sets have been proposed to represent audio
signals. Typically, they are based on some form of time-frequency representation. Mel-
frequency cepstral coefficients (MFCCs) are a set of perceptually motivated features
that have been widely used in speech recognition, which automatic classification of
audio has also a long history originating from, and are based on the fast Fourier
transform (FFT). After taking the log-amplitude of the magnitude spectrum, the
FFT bins are grouped and smoothed according to the perceptually motivated Mel-
frequency scaling. Finally, a discrete cosine transform is performed to decorrelate
the resulting feature vectors.

MFCCs provide a compact representation of the spectral envelope, such that
most of the signal energy is concentrated in the first coefficients.

Audio classification techniques that include non-speech signals have also been
proposed. Most of these systems target the classification of broadcast news and
video in broad categories like music, speech, and environmental sounds. For example,
[Rob+19] presents an analysis of a multiclass classification problem to identify
queenless states by monitoring bee sound in two possible cases: a strong and healthy
colony that looses its queen and a reduced population queenless colony. Extracting
features by MFCCs and using a Lasso Logistic model for feature selection and
regularization, the authors show that is possible to detect the queenless state in
both cases: queenless or healthy colonies can generate slightly different patterns and
the data clusters of the same condition tend to be close.

More in general, the features used in this kind of works are statistics (mean,
variance, autocorrelation) over the whole sound file of short-time features such
as pitch, amplitude, brightness, and bandwidth. However, these do not directly
attempt to model musical signals and therefore they are not suitable for the automatic
classification of musical genres. For example, for this aim, we also need information
on the rhythmic structure of music.

Research in the areas of automatic beat detection and multiple pitch analysis
can provide ideas for the development of novel features specifically targeted to the
analysis of music signals. In [Sch98], Scheirer describes a real-time beat tracking
system for audio signals with music. In this system, a filterbank is coupled with a
network of comb filters that track the signal periodicities to provide an estimate of
the main beat and its strength.
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In much more recent times, Castellon, Donahue, and Liang demonstrate in
[CDL21] that language models pre-trained on codified (discretely-encoded) music
audio learn representations that are useful for downstream music information retrieval
(MIR) tasks. Specifically, they explore representations from a music generation
system containing a language model trained on codified audio from 1M songs. To
determine if this system’s representations contain useful information for MIR, they
use them as input features to train shallow models on several MIR tasks. Relative
to representations from conventional MIR models which are pre-trained on tagging,
they find that using representations from their system as input features yields 30%
stronger performance on average across four MIR tasks: tagging, genre classification,
key detection, and emotion recognition. In particular, tagging involves determining
which tags from a fixed set of tags apply to a particular song. Categories of
tags include the genre (e.g., jazz), instrumentation (e.g., violin), emotions (e.g.,
happy), and characteristics (e.g., fast); genre classification involves assigning the
most appropriate genre from a fixed list for a given song. They report accuracy
on the GTZAN dataset [TC02], which contains 30-second clips from ten distinct
genres. They note that this task has a high degree of overlap with tagging, as tagging
datasets typically have several genres within their tag vocabulary. In fact, seven of
ten genres in GTZAN are present in the tag list of the tagging dataset they use.

Getting closer to our particular point of view on the classification problem, we
can find enlightening examples of applications of topological tools to classification
problems in music in Mattia Bergomi’s works: already in his Ph.D. thesis [Ber15],
and later in [BBD16], he proposes a strategy to describe some music features as a
polyhedral surface obtained by a simplicial interpretation of the Tonnetz, a graph
largely used in computational musicology to describe the harmonic relationships of
notes in equal tuning. In particular, he uses persistent homology in order to describe
the persistent properties of music encoded in that model. The task of automatic
music style classification is addressed by computing the hierarchical clustering of
the topological fingerprints associated with some collections of compositions.

2.1.2 Suggested solution

Carrying out the task of processing extracted data, as in our case, from audio
tracks, there are conceptually two possible ways to follow: the first one is to classify
and predict. In our case this approach has certainly, as we will see, a solid theoretical
basis which we will see confirmed by the results, but it presupposes the use of very
heavy objects (such as persistence diagrams and persistence images) which often
involve many parameters and, from a computational point of view, they can require
a lot of memory.

The second one is to operate a cardinality reduction selecting point from persis-
tence diagrams based on certain appropriate criterions. This certainly involves a
loss of information but it can have a gain in classification: if the selection criterion is
good enough, you can aim as much as possible to eliminate noisy data, leaving only
the signal. Object such as persistence diagrams, obtained from certain filtrations
of the extracted feature, such as MFCCs, can undergo a cardinality reduction and
then be compared with each other.



2.2 Mel-Frequency Cepstral Coefficients 5

2.2 Mel-Frequency Cepstral Coefficients
Mel-Frequency Cepstral Coefficients (MFCCs) are short-term spectral-based

features, widely used in automatic speech and speaker recognition. They were
introduced in [DM80] in the 1980s, and have been state-of-the-art ever since. There
are also several examples of authors who have tried to apply them in the musical
field, e.g. Beth Logan, in [Log00], investigates the appropriateness of using the
Mel-frequency scale to model the musical spectra and the Discrete Cosine Transform
(DCT) to decorrelate the Mel-spectral vectors. DCT is the most common linear,
invertible function RN Ñ RN (i.e. invertible N ˆ N matrix) that provides for
spatial compression, capable of detecting changes in the information on an area
and the contiguous one of a digital image, neglecting repetitions; the function that
supports temporal compression is instead entrusted to a special "motion vector",
which identifies the dynamic components while leaving out the static ones.

We assume that an audio signal is, on short time scales, statistically stationary.
This is why we frame the signal 20-40ms frames. Shorter frames would not yield
reliable spectral estimates. Longer signals would change too much throughout the
frame.

The next step is to calculate the power spectrum of each frame. The power
spectrum of a time series describes the distribution of power into frequency compo-
nents composing that signal. According to Fourier analysis, any physical signal can
be decomposed into a number of discrete frequencies, or a spectrum of frequencies
over a continuous range. The statistical average of a certain signal or sort of signal
(including noise) as analyzed in terms of its frequency content, is called its spectrum.
When the energy of the signal is concentrated around a finite time interval, especially
if its total energy is finite, one may compute the energy spectral density. More
commonly used is the power spectral density (or simply power spectrum), which
applies to signals existing over all time, or over a time period large enough (especially
in relation to the duration of measurement) that it could as well have been over an
infinite time interval. This step is motivated by the human cochlea (an organ in the
ear) which vibrates at different spots depending on the frequency of the incoming
sounds. Depending on the location in the cochlea that vibrates 1, different nerves
fire informing the brain that certain frequencies are present. MFCCs perform a
similar task, identifying which frequencies are present in the frame.

Let s be a signal in time-domain and tsjujPJ a windowing of s. The discrete
Fourier transform (DFT) is:

DFT psjq “
N
ÿ

n“1
sjhe

´i 2πkn
N 1 ď k ď K,

where h is an N samples long analysis window (e.g. hamming window), n ranges
over the number of samples and K is the length of the DFT. The periodogram
estimate of the power spectrum Pj for the frame sj is defined taking the absolute
value of the complex DFT and squaring the result:

Pj “
1
N
|DFT psjq|

2

1The reader can refer to [ABM12] for anatomic details.
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The periodogram spectral estimate still contains a lot of information not required
for MIR. In particular, the cochlea cannot discern the difference between two closely
spaced frequencies, especially when they are high. For this reason, we take clumps
of periodogram bins and sum them up to get an idea of how much energy exists
in various frequency regions. This is performed by the Mel filterbank: the first
filter is very narrow and indicates how much energy exists near 0 Hertz. As the
frequencies get higher, filters get wider, thus less sensitive to small variations. We
are only interested in roughly estimating how much energy is carried by the signal
per frequency band. The tool that one can use to space filterbanks exactly and figure
out how wide to make them is the Mel scale. It relates the perceived frequency, or
pitch, of a pure tone to its actual measured frequency. Humans are much better at
discerning small changes in pitch at low frequencies than they are at high frequencies.
Incorporating this scale makes our features match more closely what humans hear.
The formula for converting from frequency to Mel scale is:

Mpfq “ 1125 lnp1` f{700q

To go from Mels back to frequency:

M´1pmq “ 700pem{1125 ´ 1q.

We then take the logarithm of filterbank energies. This step is also motivated by
human perception: if we mean loudness as the acoustic and psychoacoustic quality
associated with the strength of a sound, determined by the pressure that the sound
wave exerts on the eardrum, we do not hear it on a linear scale. Generally, to double
the perceived volume of a sound we need to put 8 times as much energy into it. This
means that large variations in energy may not sound as huge if the sound is loud
to begin with. This compression operation makes our features match more closely
what humans hear.

The final step is to compute the DCT of the log filterbank energies. It is defined,
in one dimension, for an N samples long sequence txnun“0,...,N´1, as the linear,
invertible function X : RN Ñ RN given by 2:

Xu “ rDCT ptxnuqsu “
N´1
ÿ

n“0
xn cos

„

πp2n` 1qu
2N



, for u “ 0, . . . , N ´ 1.

This step is performed because filterbanks are overlapping, so filterbank energies
are correlated with each other. The DCT decorrelates them, but notice that only
some of the 26 DCT coefficients are kept because the higher DCT coefficients
represent fast changes in the filterbank energies and it turns out that these fast
changes degrade MIR performance, so we get a small improvement by dropping them.
The resulting features are called Mel-Frequency Cepstral Coefficients (MFCCs).

Therefore, we can think of MFCCs as something analogous to Fourier coefficients
with respect to a Fourier basis. In analogy with the Fourier transform, MFCCs
transform a signal expressed as a function of a variable in the time-domain into a
quantity expressed as a function of a variable in the frequency-domain. Thus we
can represent them in time-frequency coordinates. For further details on calculating

2See [Kha03] for more details.
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MFCCs, the reader can consult [Lav20], from which we borrowed heavily for this
section. In [Log00], the steps of calculation of MFCCs are discussed, seeking to
determine if the process is suitable for creating features to model music. In the next
section, we will introduce the tools that will allow us to specify in what sense we
want to do that.

2.3 Introduction to Persistent Topology
We largely borrow this section from [Fer17].

If one aims to analyze and classify images of rigid objects, linear algebra and geometry
satisfy almost all needs. However, the rigidity of geometry could be an obstacle
when studying, for instance, natural images. Even harder is to apply geometry-based
analysis to biomedical data or, as in our case, to feature extracted from audio tracks.
Topology seems to be better suited to our needs, due to its flexibility: in many cases,
it is possible to find a homeomorphism between two objects, which superimposes one
to the other, whereas no invertible matrix will ever be able to do that. Algebraic
topology is helpful to discover when objects are not homeomorphic, associating
invariants to topological spaces, which are not homeomorphic if corresponding
invariants are not identical. But topology also has a limit: if geometry is too rigid,
topology is too free. A middle ground between the two approaches is persistent
topology, which yields topological descriptors preserving some selected geometric
features through filtering functions. A filtering function, i.e. a real-valued continuous
function on a topological space, represents the point of view according to which we
want to compare two objects. The idea behind persistent topology is to associate
the concept of shape not only with a topological space, but with a pair topological
space, filtering function: to compare two objects X and Y , persistent homology does
not analyze X and Y simply as they are as topological spaces, but considers the two
pairs pX, fq and pY, gq, where f and g can be adapted from time to time in order to
capture certain interesting features of the topological spaces.

2.3.1 Basic notions

Now, we define the principal concepts in persistent topology, which we shall use
in the remainder of this work.

Definition 2.3.1. Let X and Y be topological spaces and ϕ : XÑY a function; ϕ
is said to be a homeomorphism from X to Y if it is continous, invertible and its
inverse is also continous. If ϕ exists with these characteristics we say that X and Y
are homeomorphic.

For each non-negative integer k, the k-th homology group HkpXq of a topological
space X is a powerful homeomorphism invariant. 3

Definition 2.3.2. For each k non-negative integer, rank HkpXq is called the k-th
Betti number of the topological space X. We denote it with βkpXq.

3The reader can refer to [Rot13] or to any introductory text to algebraic topology for a valid
theoretical introduction to homology.
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Intuitively, β0pXq counts the number of path-connected components of X, β1pXq
counts its 1-dimensional holes (independent 1-cycles), β2pXq counts its 2-dimensional
holes (independent 2-cycles).

Definition 2.3.3. Let X be a topological space. A filtering function on X is a
continous function f : X Ñ R.

Definition 2.3.4. Let us consider the pair pX, fq, where X is a topological space
and f : X Ñ R is a filtering function. The sublevel set relative to a given l P R is
the set Xl “ tx P X|fpxq ď lu.

From now on, we will indicate with k a non-negative integer and with pX, fq the
pair topological space, filtering function.

Definition 2.3.5. For all u, v P R, u ă v, the inclusion function iu,v : Xu Ñ Xv is
continous and induces, at each degree k, a group homomorphism iu,v˚ : HkpXuq Ñ

HkpXvq. k-Persistent Betti number (k-PBN) functions assign to a pair pu, vq the
number rankpIm iu,v˚ q, which we also are going to indicate with βu,vk pX, fq, namely
the number of k-homology classes of HkpXuq which “survive” in HkpXvq

4.

According to this notation, u and v represent the levels of “birth” and “death”
of a generator, respectively. pu, vq is a point in the plane which we call a cornerpoint.
If a generator never dies and w is the level of its “birth”, we are going to represent it
with a vertical line at the abscissa w, which we call a cornerline (or, often, cornerpoint
at infinity). The persistence of a cornerpoint pu, vq is v ´ u and a cornerline is a
cornerpoint with an infinite persistence.

Definition 2.3.6. A persistence module is given by:

• a closed, discrete and lower-bounded subset of real numbers:

T “ tu0 ă u1 ă u2 ă . . . u Ă R.

• a sequence of abelian group homomorphisms:

0 p´1
ÝÝÑ P pu0q

p0
ÝÑ P pu1q

p1
ÝÑ P pu2q

p2
ÝÑ . . . .

According to the sense of the definition above, the sequence of group homomorphisms
iu,v˚ in Definition 2.3.5 defines a persistence module, with T “ t¨ ¨ ¨ ă u ă v ă . . . u.

Definition 2.3.7. The k-th persistence diagram DkpX, fq consists of cornerpoints
and cornerlines which characterize the k-PBN function.

More precisely, we have to consider cornerpoints and cornelines with their
multiplicity. For this purpose, we are going to introduce the following notation.

∆` “ tpu, vq P R2|u ă vu, ∆ “ tpu, vq P R2|u “ vu, ∆̄` “ ∆` Y∆
4A classical reference for these concepts is, for instance, [EH10]
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Definition 2.3.8. The multiplicity µkpu, vq of a cornerpoint pu, vq P ∆` is the finite
and non-negative number defined by the following limit:

lim
εÑ0`

βu`ε,v´εk pX, fq ´ βu´ε,v´εk pX, fq ´ βu`ε,v`εk pX, fq ` βu´ε,v`εk pX, fq.

Remark 2.3.1. We are considering all cornerpoints laying in the square with center
pu, vq and side 2ε, counting how many cornerpoints are in that square when ε tends to
0 (in the expression we are subtracting two times βu´ε,v`εk pX, fq from βu`ε,v´εk pX, fq
with the second and the third term; so we have to add again it one time, and this
explains the presence of the fourth term in the expression).

We can analogously define the multiplicity of a cornerline.

Let us now give another definition of a persistence diagram.

Definition 2.3.9. The k-th persistence diagram DkpX, fq is the union of the set of
all points pu, vq P ∆` such that µkpu, vq ą 0, considered with their multiplicities, and
points in ∆, considered with infinite multiplicity. Points of a persistence diagram
belonging to ∆` are often called proper points.

Definition 2.3.10. Given the pairs pX, fq and pY, gq such that the respective per-
sistence diagrams DkpX, fq and DkpY, gq have a finite number of points pu, vq P ∆`

whose multiplicity µkpu, vq is greater than 0, match the cornerpoints of DkpX, fq
either with cornerpoints of DkpY, gq or with their own projections on the “diagonal”
∆; the weight of this matching is the upper bound of the L8-distances of matching
points. The matching distance (or Bottleneck distance) of DkpX, fq and DkpY, gq is
the lower bound of such weights among all possible such matchings.

Using mathematical formalism, the Bottleneck distance can be defined as follows:

dBpDkpX, fq,DkpY, gqq “ inf
σ

sup
PPDkpX,fq

d̂pP, σpP qq

with σ moving among all possible bijections between DkpX, fq and DkpY, gq, and
where, given pu, vq P DkpX, fq and pu1, v1q P DkpY, gq,

d̂ppu, vq, pu1, v1qq “ min
"

maxt|u´ u1|, |v ´ v1|u,max
"

v ´ u

2 ,
v1 ´ u1

2

**

Definition 2.3.11. Given two pairs pX, fq, pY, gq, with X and Y homeomorphic,
the weight of a given homeomorphism ϕ : X Ñ Y is supxPX |gpφpxqq ´ fpxq|. The
natural pseudo-distance of pX, fq and pY, gq is the lower bound of these weights
among all possible homeomorphisms. If the k-persistence diagrams of the two pairs
are given, their matching distance is a lower bound for the natural pseudo-distance
of the two pairs, and it is the best possible obtainable from the two k-persistence
diagrams.
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Figure 2.1. 0-PBN functions (on the left) e 0-persistence diagrams (on the right) for M
and W .

Example Now, we can try to visualize the concepts we introduce in the previous
section comparing two homeomorphic objects, the letters M and W, seen as topolog-
ical spaces, using “height” as a filtering function, that is, operating a sublevel sets
filtration on the two spaces, which we indicate with the same letters they represent.
If we think of them, for instance, as in fig. 2.1, we can get from each other with a
rigid motion, then they are certainly isomporphic and their Betti numbers are equal
to each other:

βkpMq “ βkpW q “

"

1 if k “ 0
0 if k “ 1

We now want to determine the 0-PBN functions and 0-persistence diagrams for M
e W . So, we focus on the path-connected components of their sublevel sets as the
height varies.
For M , at height l “ 1 two connected components arise and persist for heights l ă 3.
A third one arises at height l “ 2 and merges with the others at height l “ 3, when
only one component persists.
For W , at height l “ 1 two connected components arise, persist for heights 1 ď l ă 2
and merge at height l “ 2, when only one component persists.

Thus, the different 0-PBN functions and 0-persistence diagrams we obtained,
see fig. 2.1, associated with the sublevel sets filtration of M and W , allow one to
distinguish the two objects, which are indistinguishable from a purely topological
point of view.

2.4 Persistence Images
The introduction of persistence images in [Ada+17] is due to the need to solve

the problem which is summarized in the following statements:
“How can we represent a persistence diagram so that:

(i) the output of the representation is a vector in Rn,
(ii) the representation is stable with respect to input noise,
(iii) the representation is efficient to compute,
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(iv) the representation maintains an interpretable connection to the original persis-
tence diagram, and
(v) the representation allows one to adjust the relative importance of points in
different regions of the persistence diagram.”

It is possible to construct a finite-dimensional-vector representation of a persis-
tence diagram called a persistence image (PI). We first map a persistence diagram
B to an integrable function ρB : R2 Ñ R called a persistence surface. The surface
ρB is defined as a weighted sum of probability density functions, typically Gaussian
functions, one centered at each point in B. The idea of persistence surfaces has
already appeared even before the development of persistent homology in [Fer+98] and
[DFL98]. Taking a discretization of a subdomain of ρB defines a grid. A persistence
image, i.e., a matrix of pixel values, can be created by computing the integral of ρB
on each grid box. This PI is “vectorization” of the persistence diagram, and provides
a solution to the problem statement above, as explained in detail in [Ada+17].

Precisely, let B be a persistence diagram in birth-death coordinates. Let T : R2 Ñ
R2 be the linear transformation T pu, vq “ pu, v´uq, and let T pBq be the transformed
set in birth-persistence coordinates, where each point pu, vq P B corresponds to a
point pu, v ´ uq P T pBq.

Let φ : R2 Ñ R be a differentiable probability distribution with mean m “

pmu,mvq P R2. In applications, this distribution is usually chosen to be the nor-
malized symmetric Gaussian φm “ gm with mean m and variance σ2, defined
as

gmpu, vq “
1

2πσ2 e
´
rpu´muq

2`pv´mvq2s
2σ2 .

We fix a non-negative weighting function f : R2 Ñ R that is zero along the
horizontal axis, continuous, and piecewise differentiable. With these ingredients, we
transform the persistence diagram into a scalar function over the plane.

Definition 2.4.1. For B a persistence diagram, the corresponding persistence surface
ρB : R2 Ñ R is the function

ρBpzq “
ÿ

wPT pBq

fpwqφwpzq

The reason for choosing differentiable distributions is we want to “smooth out”
any “jumps” between values assumed on different points of B, blurring the transition
between values around different cornerpoints.

The weighting function f is critical to ensure the transformation from a persis-
tence diagram to a persistence surface is stable: for the proof, we refer the reader
to [Ada+17]. Finally, the surface ρBpzq is reduced to a finite-dimensional vector
by discretizing a relevant subdomain and integrating ρBpzq over each region in the
discretization. In particular, we fix a grid in the plane with n boxes (pixels) and
assign to each the integral of ρB over that region.

Definition 2.4.2. For B a persistence diagram, its persistence image is the collection
of pixels

IpρBqp “

ĳ

p

ρBpu, vq dv du
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When generating a PI, the user makes three choices: the resolution, the dis-
tribution (and its associated parameters), and the weighting function. A strength
of PIs is that they are flexible; a weakness is that these choices are non-canonical.
The interested reader in a more in-depth discussion of these aspects can refer to
[Ada+17].
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Chapter 3

A Persistence-Image-based
approach for Music Information
Retrieval

The GTZAN dataset [TC02] is a widely used dataset for validating music genre
recognition algorithms. We relied on MFCCs (see section 2.2) as audio descriptors.
Then, building on top of the MFCC-based representation, we leveraged Topological
Data Analysis (TDA) and Persistent Homology (PH) to create more robust and
concise descriptors.

In this chapter, we describe how we extracted and analyzed features from
audio tracks of the GTZAN dataset. First we analyzed the extracted information
performing a sublevel sets filtration on MFCCs and compute their 0-persistence
diagrams (PDs). The filtration is performed, as in section 2.3.1, using height as a
filtering function, based on the number of independent 0-cycles of MFCCs’ sublevel
sets, that is, the number of path-connected components. After computing the
PDs, we considered the corresponding PIs, see section 2.4, and applied appropriate
machine learning techniques to learn how to appropriately associate a class (music
genre) to a given PI.

Let us first give an overview of the GTZAN, before describing in detail TDA
computations and machine learning techniques we applied for our classification
purposes.

3.1 The GTZAN dataset
The gtzan8 audio dataset [TC02] contains 1000 tracks of 30-second length. Tracks

are labelled according to ten genres, each containing 100 tracks which are all 22050Hz
Mono 16-bit audio files in .wav format. The genres are blues, classical, country,
disco, hip-hop, jazz, metal, pop, reggae, rock.

The dataset was introduced in 2002 and appears in at least 100 published works.
It is the most-used public dataset in machine listening research for music genre
recognition. Though its use is so widespread, GTZAN has always been missing
metadata identifying its contents, until [Stu12] provided them for the first time.
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In [Stu13] a partial reconstruction of GTZAN’s excerpts is provided. Furthermore,
in the same article, the ways people describe the music or artist of each excerpt are
surveyed, querying the application programming interface provided by last.fm, and
retrieving the tags.

The reader is referred to [Stu13] for a detailed discussion of limits and faults of
GTZAN for MIR, particularly for music genre recognition.

Data folders

• “genres original”. A collection of ten genre folders with 100 audio files each,
all having a length of 30 seconds.

• “images original”. For each audio file, a visual representation of the corre-
sponding Mel spectrogram.

• Two CSV files containing features of the audio files. One file has for each song
mean and variance computed over multiple features that can be extracted from
an audio file. The other file has the same structure, but each song is split into
three-seconds audio files.

3.2 PIs computation
We now describe in detail the steps we performed to extract features from the

GTZAN’s tracks, analyze them with TDA tools, and classify the TDA-based signa-
tures with machine learning methods. See https://github.com/luca9433/codicetesi
for Python code.

Feature extraction The first step concerns the extraction of MFCCs from audio
tracks. We used the Python library Librosa [McF+21], which provides functions
generating MFCCs from an audio signal. For each track we set the sample rate
parameter to the value we read by loading the sampling rate with librosa itself, and
we set to 128 the number of MFCCs to be computed.

Librosa also allows one to visualize the input data. In fig. 3.1 we report a
visualization of MFCCs of a track from the “blues” folder of GTZAN dataset.

Sublevel sets filtrations and 0-PDs Once we obtained MFCCs of all the au-
dio tracks, we performed their sublevel sets filtrations, using the special function
lower_star_img imported from the Python package Ripser [TSB18]. It returns the
0-PDs associated with the filtrations, stored as NumPy arrays with shapes p´, 2q.
The machine interprets as infinity the ordinates of cornerlines or cornerpoints with
very big death-coordinates. Therefore, in each PD it is necessary to replace these
elements with cornerpoints having the same abscissa and ordinate equal to the
maximum finite life `1 of all the cornerpoints in the diagram. So, given a cornerline
- or a cornerpoint having a too much big death-coordinate - with abscissa w, we
replaced it with the point

pw,maxtv : pu, vq is a proper cornerpointu ` 1q.

https://github.com/luca9433/_codice_tesi_
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Figure 3.1. An example of visualization of MFCCs extracted from audio file blues.00000
from the blues folder of GTZAN, recognized as One Bourbon, One Scotch, One Beer by
John Lee Hooker. For better readability, we set to 13 the number of MFCCs.

PIs computation We then wanted to obtain the PIs corresponding to the 0-PDs,
according to section 2.4. We computed them with the function PersistenceImager
imported from the Python package Persim. It provides a fit method, which can be
called on one or more arrays to automatically determine the minimum birth and
persistence ranges needed to capture all persistence pairs. The ranges and resolution
are automatically adjusted to accommodate the specified pixel size. Once we have
0-PDs associated with MFCCs’ filtrations we can fit them and then generate PIs
with the trasform method, which can be called on the fitted diagrams to generate
the corresponding PIs.

PIs visualization Having fitted the 0-PDs before computing the corresponding
PIs, their shapes are likely all the same or very similar to each other. However, we
reshaped them to the shape of a PI with the minimum number of elements in each
dimension of all computed PIs and we obtained PIs with shapes p763, 768q. We can
thus think of PIs as points of a submanifold of R763ˆ768. The UMAP algorithm for
dimension reduction [MHM20] allowed us to visualize their projections on a plane,
see fig. 3.3, to try to guess any regularity in their distribution with respect to how
they are divided per genre. Before performing the projection, we need to flatten the
arrays representing PIs with the .flatten method, that is, creating a copy of each
array collapsed into one row. Then we can fit the flattened arrays with the UMAP
fit method and transform them with the UMAP transform method for dimension
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Figure 3.2. The 0-PD corresponding to the sublevel sets filtration of MFCCs extracted
from the same audio file of fig. 3.1, but setting the number of MFCCs to 128.

reduction.
It is clear that a dimension reduction involves a loss of information, but it is

however possible to establish some trends by observing the obtained image.
For instance, it is possible to notice in the middle upper part a higher concentra-

tion of points corresponding to the rock genre, while metal is particularly present
and concentrated in the right part of the image. On the left side, there is a higher
concentration of the classical genre. The disco genre would seem to prevail in the
upper right.

3.3 Classification and cross-validation
We need to check the validity of our approach for MIR, in particular for music

genre recognition, by trying an automatic classification with a machine learning
pipeline, comparing the accuracy we obtain by applying it first to the starting dataset
and then to the PIs.

For our automatic classification problem we used Support-Vector Machines
(SVMs). SVMs are supervised learning methods used for classification and regression
[Ped+11]. These robust prediction methods based on statistical learning frameworks
were introduced in [BGV92] in the 1990s1

1A good reference for a brief introduction is also [EP99].
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Figure 3.3. UMAP scatter plot of PIs’ projection. Despite a considerable dispersion and
overlapping of colors, it is possible to identify areas where certain colors are significantly
more prevalent and concentrated than others.

The machine learning library [Ped+11] provides classes capable of performing
binary and multi-class classification on a dataset. We used SVC (Support Vector
Classification)2.

To avoid overfitting, it is common practice, when performing a machine learning
experiment, to hold out part of the available data as a test set Xtest, ytest. The
problem remains that the results may depend on a particular random choice for
the pair of sets (train, validation). A solution to this problem is a procedure called
cross-validation (CV). In the basic approach, called k-fold CV, the training set is
split into k smaller sets and the following procedure is followed for each of the k
“folds”3:

• A model is trained using k ´ 1 of the folds as training dataset;

• the resulting model is validated on the remaining part of the dataset (i.e., it is
used as a testing dataset to compute a performance measure such as accuracy).

In particular, we used Stratified k-fold for cross-validation of SVC on our datasets.
We set the number of folds to 5. See fig. 3.4 for a flowchart of the pipeline.

2For the mathemtical formulation the reader can also refer to [Ped+11].
3See [Ped+11] for a more in-depth discussion.
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Figure 3.4. A flowchart showing the flow of the algorithm. In the upper part of the figure,
the extraction of the MFCCs from the audio track and the passage to the corresponding
persistence diagram is schematized. In the central and the lower part, the phases of the
classification and validation process performed respectively on the raw MFCCs and then
on the corresponding persistence images are schematized.

3.4 Results
We report confusion matrices and accuracies we obtained applicating the model

SVC both to MFCCs and then to PIs, with music genres as classes. In a confusion
matrix, the columns correspond to the actual class and the rows to the predicted
class. By definition, the element on row i and column j is the number of cases in
which the classifier classified the “true” class i as class j.

The accuracy is obtained as the number of classes that the classifier correctly
predicts divided by the total number of predictions made. The train accuracy is the
accuracy of a model on examples it was constructed on. The test accuracy is the
accuracy of a model on examples it has not seen yet.

fig. 3.5 contains confusion matrices and bar plots reporting train and test
accuracies for SVC performed on MFCCs and on PIs respectively.

Against an extremely low accuracy (less than 20%) obtained simply performing
the method SVC on MFCCs, the value rises significantly (around 50%) considering
PIs.

The significant improvement obtained in the test accuracy by performing a
standard classifying method as SVC on PIs with respect to MFCCs is in favor of
the validity of our theory: the functor that maps the image (MFCCs), thought as a
topological space, to the persistence modules is necessary to extract information,
which would otherwise be drowned in noise.



3.4 Results 19

(a) A confusion matrix obtained for a training
dataset of MFCCs.

(b) A confusion matrix obtained for a testing
dataset of MFCCs.

(c) A confusion matrix obtained for a training
dataset of PIs.

(d) A confusion matrix obtained for a testing
dataset of PIs.

(e) Accuracy in test and train of SVC
performing on MFCCs.

(f) Accuracy in test and train of SVC per-
forming on PIs.

Figure 3.5. figs. 3.5(a) and 3.5(b) report train and test confusion matrices respectively
for the method SVC performed on MFCCs, using Stratified k-fold as dataset splitting
method. They reveal a very low accuracy score (10 - 15%), which makes any attempt
at classification impossible. By applying the same classification method to persistence
images, however, accuracy scores increase significantly, as can be seen by observing
confusion matrices in figs. 3.5(c) and 3.5(d) (setting to 5 the number of folds, the testing
dataset has about 200 elements - 20 per genre - one fifth of the elements of the entire
dataset), confirming values around 50%. Finally, barplots in figs. 3.5(e) and 3.5(f)
provide an estimate of the central tendency for test and train accuracy of SVC through
the 5 fits in which it is implemented on MFCCs and PIs respectively.
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Chapter 4

A cardinality reduction
algorithm for persistence
diagrams

We are currently working on an alternative tool that we would like to apply to
the MIR classification application described in chapter 3. In this chapter, we shall
describe the algorithm and analyze some preliminary results.

Instead of considering the persistence images corresponding to PDs, we consider
for each diagram D a subdiagram D1 of relevant cornerpoints selected through an
algorithm dubbed Ziggurat, that was firstly introduced in [Gur21]. The essence of
this algorithm is to provide a more compact version of a given persistence diagram
ranking and then selecting the most relevant cornerpoints. Intuitively and on the
computational side, we aim to reduce the number of cornerpoint, this would allows
for taking advantage of the powerful machine learning tools that, as mentioned
in chapter 3, need vector of fixed length as input. On the geometrical side, the
Ziggurat algorithm acts as to restore symmetry lost during noisy data acquisition.

4.1 Cornerpoints selection
Given a pair pX, fq, k-persistent Betti numbers functions (k-PBN) and k-

persistence diagrams (k-PD) have been defined in chapter 2. These mathematical
tools are very useful in applications, because they yield a concise signature that is
representative of the pair pX, fq, i.e. respectful of the data structure X, and the
features the user desires to stress f .

Persistence diagrams are multisets whose elements are cornerlines and corner-
points. We recall that a cornerpoint’s coordinates are the moments of birth and death
of homological classes computed considering the filtration induced by f : X Ñ R.
However, not all cornerpoints have the same relevance: if the starting object is
complex—e.g., of medical nature—part of the cornerpoints could be associated to
noisy features. Experimental evidence suggests that, in most cases, such cornerpoints
are very close to the diagonal, although this is not always the case: it is possible that
the presence of apparently noisy cornerpoints is the result of noisy data acquisition.
For this reason, it is essential to devise algorithms to rank cornerpoints assigning to
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each one a certain degree of relevance, to obtain a hierarchical classification of all
points.

Consider fig. 4.1(a), the filtered object X is represented on the left of the figure
and the corresponding 0-persistence diagram on the right. The persistence diagram is
obtained through the filtering function "height". The elderly rule is used to construct
the diagram, that is, a 0-cycle (path-connected component) dies only when it merges
with an older 0-cycle, i.e. a cycle that was born earlier throughout the filtration.
In the figure, the absolute minimum of X causes a 0-cycle to be born. This first
cycle, being the first to be born, will never die, thus creating, in the figure, the
cornerline with abscissa 0. Continuing along the filtration, the second 0-cycle is
born at height 1 and it dies at 23. In particular, the 0-cycle represented by the
cornerpoint c arises at height 10 and, immediately after, the one represented by
the cornerpoint d is born at height 11. In this area of the starting object, we can
notice a sudden alternation of maximum and minimum peaks, which could be caused
by noisy data acquisition. Analyzing better the trend followed by X, the second
oscillation is negligible compared to the first, at least in terms of amplitude. At
the level of the persistence diagram, this means that the cornerpoint d should be
considered less important than c.

4.2 Ziggurat
Definition 4.2.1. Let D be a persistence diagram with a finite set of cornerpoints.
Let us assume that all points on the diagonal belong to D. To make the definition
simpler, add a cornerpoint at p´8,`8q. Let us define the function legacy η : R2 Ñ R
such that

ηppu, vqq “ maxtu´ v |pu, vq P D,u ď u, v ď vu

Definition 4.2.2. For D a persistence diagram as above and η legacy, Ziggurat is
defined as

ZD “ tpu, v, wq P R3|ηppu; vqq ą ´8, w ď ηppu, vqqu

.

Before giving the selection algorithm based on the Ziggurat’s construction, it is
useful to give a more qualitative explanation of the Ziggurat’s structure. It develops
in the three-dimensional space R3 and it is constructed starting from a persistence
diagram D, which is instead represented in the two-dimensional space R2. See fig. 4.2
for a representation of the Ziggurat. Each cornerpoint of with coordinates pu, vq
has positive persistence p “ v ´ u. To represent the Ziggurat graphically, a prism
is associated to each cornerpoint. The upper base of each prism is defined by the
triangle generated starting from the vertical and horizontal extensions on the bisector
of the first quadrant of each cornerpoint. The upper base of the prisms is positioned
at a height ´p. Every prism has depth extending to ´8. Referring to fig. 4.2,

the cornerpoint with the highest persistence is the one corresponding to the
cornerline of abscissa 2, whose coordinates are p2, 15q: for computational purposes
the height of cornerlines is set to maxcPD vc ´ uc ` 1 where c ranges across all
cornerpoints in D. This cornerpoint has a persistence 15´ 2 “ 13, and therefore the
maximum depth of all prisms is p13` 1q “ 14.
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(a)

(b) (c)

Figure 4.1. The Ziggurat-based ranking and selection procedure. Panel (a) Image credits:
[Gur21]. Initial object (on the left) and the corresponding 0-PD through the filtering
function "height" (right). Panel (b) Image credits: [Gur21]. 0-persistence diagram of
the pair pZD, u´ v ´ wq where D refers to the diagram in fig. 4.1(a). Panel (c) Image
credits: [Gur21]. Selected cornerpoints with Kurlin’s rule from the diagram on the left
side of fig. 4.1(a).
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Figure 4.2. Persistence Diagram D. Image credits: [Gur21].

An additional triangular prism is also added at 0, with the upper base constructed
starting from the bisector of the first quadrant. In figs. 4.3 to 4.5 a construction
of the Ziggurat corresponding to the persistence diagram represented in fig. 4.2,
performed by Davide Gurrieri in [Gur21].

Let D be a persistence diagrams as in the definitions above, and ZD the Ziggurat
associated with D. We can now consider the 0-persistence diagram D obtained by
considering the pair pZD, fZDq, where fZDpu, v, wq “ u´ v ´ w, see Definition 4.2.2.

Figure 4.6 shows the front view of the Ziggurat cut from the plane corresponding
to the level k “ 4 of the filtering function u´ v ´ w.

4.2.1 Cornerpoints selection in the Ziggurat’s persistence diagram

As mentioned previously, the idea behind the cornerpoints selection process in a
persistence diagram D is to use the pair pZD, fZDq, where fZDpu, v, wq “ u´ v ´w,
which, for a given k value, defines an oblique plane u ´ v ´ w “ k. In particular,
for k “ 0, we obtain a plane intersecting all the prisms vertices of the Ziggurat
ZD. The 0-persistence diagram D generated by the pair pZD, fZDq can be used
to obtain a relevance ranking of D’s cornerpoints. As k ą 0, the plane defined
by u ´ v ´ w “ k moves parallel to itself, intersecting the prisms of the Ziggurat.
Initially, the intersection generates n pyramids, each corresponding to one of the n
cornerpoints of D. As k increases, pyramids start to merge with each other. Unlike
the example in fig. 4.1(a), in this filtration pyramids are all born at the same time.
In fact, for k “ 0, we have u´ v ´ w “ 0, hence w “ u´ v, which is the persistence
of the cornerpoint pu, vq changed in sign. Therefore, the plane intersects the prism
associated with the cornerpoint pu, vq at the point with coordinates pu, v, u ´ vq,
corresponding by construction to the vertex of the upper base of the prism lying on
the “vertical” line of pu, vq itself, which is the vertex of the pyramid corresponding to
pu, vq. Therefore, it is not possible to use the elderly rule we introduced previously.
It was therefore decided to consider older pyramids associated with cornerpoints
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Figure 4.3. Figure borrowed from [Gur21]. View from top. In yellow, the prisms
corresponding to cornerpoints with persistence 1, in green persistence those with 2, in
red those with persistence 4, in blue the prism relative to the cornerpoint with the
greatest persistence.

with higher persistence, i.e., the first pyramid to be born is the one with the highest
persistence. Once assigned the order of birth, we proceed according to the classical
algorithm. If two pyramids are associated with cornerpoints having equal persistence,
the pyramid corresponding to the cornerpoint with the highest abscissa is considered
to be older than the other one. Also, by convention, a pyramid dies when it merges
with the plateau at height 0. This allows attributing less relevance to cornerpoints
close to the diagonal, which typically represent noise. To understand better the
concepts exposed above, consider the persistence diagram of fig. 4.1(a) where, for
simplicity, the cornerline is neglected.

figs. 4.7 to 4.10 show the birth and the death of pyramids for different values of k.
For k ą 0 all the pyramids are born. As mentioned above, even if the pyramids are
born at the same time, one is considered older than another based on the persistence
of the corresponding cornerpoints. Thus, the oldest pyramid is consider to be a,
followed by c, d, and b. Then we apply the elderly rule convention. For k “ 2 the
pyramid d dies merging with c. For k “ 7 the pyramid b dies merging with d (and
with the plateau at the same time). In the end, for k “ 10 the pyramid c dies,
merging with the plateau. The oldest pyramid a is considered to be never-dying,
even if it would melt with the plateau for k “ 22. As a result of this operation, we
obtain the D persistence diagram in fig. 4.1(b), which provides the desired relevance
ranking.

Referring to fig. 4.1(a), we obtained that point d had to be considered less
relevant, as it derives from a disturbance of the starting object. Therefore, the result
obtained is coherent with our expectations: point d is at the bottom of the relevance
ranking.
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Figure 4.4. Figure borrowed from [Gur21]. Side view.

4.3 Algorithm
It is necessary to automatize the ranking operation via an algorithm taking

in input the coordinates and other attributes of the cornerpoints, and, for each
persistence diagram, returns the relevance ranking calculated as in section 4.2.1.
The algorithm was designed in Python language. The code is available at:

https://github.com/luca9433/codicetesi{blob{main{Ziggurat.py.

Let D be a persistence diagram consisting of n cornerpoints with coordinates
pxi, yiq, with i “ 1, . . . , n. Consider the Ziggurat ZD.

• When a pyramid generated by a cornerpoint merges with the plateau, it is
considered dead.

• To apply the elderly rule, it is assumed that a cornerpoint is born before than
another one if it has the highest persistence.

• In the case two cornerpoints have the same persistence, the cornerpoint con-
sidered to be older is the one with the highest abscissa.

• By convention, the cornerpoint with the highest persistence never dies (it
becomes a cornerline in the persistence diagram of ZD).

Python language allowed us to treat cornerpoints as objects of a class charac-
terized by different attributes: an id number, coordinates px, yq, the level of the
Ziggurat filtering function when the corresponding pyramid merges with another
one for the first time, and multiplicity are the main ones.

For simplicity, from now on we will say that a cornerpoint merges with another one,
is younger/older than another one, persists or dies, meaning that the corresponding

https://github.com/luca9433/_codice_tesi_/blob/main/Ziggurat.py
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Figure 4.5. Figure borrowed from [Gur21]. Front view.

pyramid merges with another one, is younger/older than another one, persists or
dies respectively.

As seen in section 4.2.1, it is necessary to compute all ki, with i “ 1, . . . n, at
which the pyramids generated by the n cornerpoints with coordinates pxi, yiq die. A
pyramid can die only if it merges with an older pyramid or it merges with the plateau.
Given a generic cornerpoint with coordinates pxi, yiq, to find the corresponding level
ki (the attribute level defined in the function “merging level” in the code) it suffices
to verify if this cornerpoint merges with cornerpoints belonging to the following set:

Ai “ tpx, yq P R2|y ą x` pyi ´ xiq, x ą xi ´ pyi ´ xiq, y ă yi ` pyi ´ xiq,

y ă x` 2pyi ´ xiq, y “ x` pyi ´ xiq, xi ă x ď yiqu

If a cornerpoint does not belong to Ai, it means that it is younger than pxi, yiq,
or it is older and has no time to merge with pxi, yiq because pxi, yiq has already
merged with the plateau.
Comparing pxi, yiq with any other cornerpoint pxh, yhq ‰ pxi, yiq we have:

• If pxh, yhq R Ai, then ki,h “ yi ´ xi
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Figure 4.6. Figure borrowed from [Gur21]. Frontal view of the Ziggurat cutted by the
plane of equation fZD

pu, v, wq “ u´ v ´ w “ 4.

• If pxh, yhq P Ai, then

ki,h “

$

&

%

xi ´ xh if pxh, yhq P Bi
yh ´ yi if pxh, yhq P Ci
xi ´ xh ` yh ´ xi if pxh, yhq P Di

where:

• Bi “ tpx, yq P R2|y ą x` pyi ´ xiq, x ą xi ´ pyi ´ xiq, y ď yiu

• Ci “ tpx, yq P R2|y ě x` pyi ´ xiq, y ă yi ` pyi ´ xiq, x ě xiu

• Di “ tpx, yq P R2|y ą yi, x ă xi, y ă x` 2pyi ´ xiqu

For a given i “ 1, . . . , n, we consider the cornerpoint pxi, yiq. We have a
trapezoidal region Ai “ Bi Y Ci YDi, union of a downside triangle Bi, an upside
triangle Ci and a third middle triangle (case 3 in the code) Di, such that, given
another cornerpoint pxh, yhq P Ai, pxi, yiq merges with pxh, yhq before it merges with
the plateau and we can compute its merging level (the lowest level for which it
merges with another cornerpoint) as follows: we consider the cornerpoint pxi, yiq
and the corresponding set Ai. We calculate ki,h for all h such that pxh, yhq P Ai
and finally we define ki “ minpki,hq. If none pxh, yhq P Ai, we set ki “ yi´ xi (the
cornerpoint pxi, yiq merges with the plateau). The result is the assignment of a level
for each cornerpoint. Each level is an ordinate of the persistence diagram of the
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Figure 4.7. Image credits: [Gur21]. Frontal view of the Ziggurat cutted by the plane of
equation fZD

pu, v, wq “ u´ v ´ w “ 0 (k “ 0).

Ziggurat (the abscissas are all zero). Thus, we can define an order of cornerpoints
based on level and sort them.

A “merges with” attribute is also defined for a given cornerpoint, consisting of the
list of cornerpoints which it is compared with, analysing all the possible disposition
of that cornerpoint with another one. It should be noted that, in a certain sense, we
attribute a “verse” to the “merges with” attribute, since when a cornerpoint merges
with another one, we mean that it is the first one to die being absorbed by the second
one, according to the elderly rule. Then, we obtain, for a given cornerpoint, the
consecutive merging with other older cornerpoints (in the Python code see functions
“merge” and “merging list”) starting from itself up to the oldest one, which merges
with the plateau. The hypothesis based on which we obtain the list of consecutive
mergings consists in assuming that for each cornerpoint we take, from its “merges
with” list, the minimum cornerpoint among those greater than it. We then do the
same with this minimum cornerpoint, and so on, until we arrive at a cornerpoint
whose “merges with” list contains itself only.

Once the relevance ranking of the cornerpoints has been obtained through the
persistence diagram D of the Ziggurat, it is necessary to define which cornerpoints
to select and which ones to consider noise. Therefore, it is necessary to define a rule
that establishes a level (ordinate of D) to consider noise cornerpoints below it. To
this end, the rule set out in article [Kur16] used in [BFT20] turns out to be very
useful. In general, given a persistence diagram, the idea is to define "diagonal gaps",
that are diagonal bands included between two lines parallel to the diagonal, which
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Figure 4.8. Image credits: [Gur21]. Frontal view of the Ziggurat cutted by the plane of
equation fZD

pu, v, wq “ u´ v ´ w “ 2 (k “ 2).

do not contain cornerpoints, but have them on both sides. Later it is established
a diagonal gap hierarchy, using the decreasing width of the bands as a criterion.
The assumption of this procedure is that cornerpoints below the widest diagonal
gap are noisy. In the context of the persistence diagram D of the Ziggurat, the
application of this rule is very simple. All cornerpoints have the same abscissa and
therefore they lie on a single vertical line. The diagonal gaps become simply the
ordinate differences of consecutive cornerpoints. It is therefore possible to carry
out the selection considering the points above the widest gap. Referring to the
persistence diagram in fig. 4.1(b), the largest gap is the one with width 5 between
ordinates 2 and 7. Coherently with the comments made in relation to this example,
points a, c and b are selected, while point d is discarded as noise. The final result of
the selection process made on the diagram on the right side of fig. 4.1(a) is shown
in fig. 4.1(c)

Example Let us consider the persistence diagram represented in fig. 4.12(a) and
consisting of the cornerpoints in table 4.1. If we consider the corresponding Ziggurat
and the selection algorithm described above, we obtain a relevance ranking of its
cornerpoints, which allows us to select a subset of cornerpoints of the original persis-
tence diagram, thus obtaining a new persistence diagram with reduced cardinality.
In fig. 4.12, we color-code the correspondence between cornerpoints in the starting
persistence diagram and cornerpoints in the Ziggurat’s persistence diagram. We
can better see the selection made with Kurlin’s rule by selecting the cornerpoints
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Figure 4.9. Image credits: [Gur21]. Frontal view of the Ziggurat cutted by the plane of
equation fZD

pu, v, wq “ u´ v ´ w “ 7 (k “ 7).

above the widest gap, representing with different colors the points above the gap and
those below. In this case, the selection is particularly interesting, as in the starting
diagram we can recognize clusters, and from each a cornerpoint is selected (we could
also have chosen, for instance, a priori the number of cornerpoints to select, without
invoking Kurlin’s rule). The relevance ranking of the cornerpoints, decreasingly
ordered by level, is reported in table 4.2. Kurlin’s rule in this case selects the first
three cornerpoints.

4.4 A possible extension of the elderly rule
We have just seen how it is possible to obtain a cardinality reduction of a

persistence diagram using the Ziggurat selection algorithm and a selection criterion.
This involves a loss of information but could lead to a gain in classification power
by discarding irrelevant or noisy information. In this regard, one might wonder if
there is an optimal way to select cornerpoints of a persistence diagram and if the
one treated just now comes close to being so. An idea still under development is
that the cardinality reduction can indeed be seen as a recovery of symmetry possibly
lost during the extraction of information. In that context, the selected cornerpoints
would act as sort of symmetry attractors by accumulating the multiplicity of nearby
cornerpoints and thus allowing for symmetry discovery.

Following this latter approach means rethinking the elderly rule, which until now
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Figure 4.10. Image credits: [Gur21]. Frontal view of the Ziggurat cutted by the plane of
equation fZD

pu, v, wq “ u´ v ´ w “ 4 (k “ 4).

took into account only the cornerpoints’ persistence and abscissa. Indeed, we should
also consider the cornerpoints’ multiplicity.

Let D be a persistence diagram. Initially, all cornerpoints of D have cumulative
multiplicity equal to their multiplicity, except for the diagonal, which has infinite
cumulative multiplicity (putting the diagonal to infinity has the intended effect that
all of ZD’s cornerpoints die at finite value). At the merging of two components of
the Ziggurat, corresponding to two cornerpoints of D, the one to be considered older
is:

• the one with the highest cumulative multiplicity;

• if they have equal cumulative multiplicity, the one with the highest persistence;

• if they have equal cumulative multiplicity and persistence, the one with the
highest abscissa.

The cumulative multiplicity of the eldest component is the sum of the cumulative
multiplicities of the merging components.

In a cluster of cornerpoints, this should privilege not necessarily the one with
the highest persistence, but the one in the center of the densest part of the cluster.
While this version of the algorithm better clarifies, in principle, which cornerpoint is
selected, it is also true that the algorithm would seem much more complicated to
manage in this version, due to the fact that the cumulative multiplicities of each
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Figure 4.11. Image credits: [Gur21]. Graphic display of the selection algorithm.

id x y

1 0 6
2 1 6
3 1 7
4 1 22
5 1 24
6 3 24
7 11 25
8 12 24
9 13 23

Table 4.1. Coordinates of corner-
points of persistence diagram displayed
in fig. 4.12(a); id is the identificative
number of a cornerpoint.

id x y level

5 1 24 23
7 11 25 8
3 1 7 6
9 13 23 2
8 12 24 2
6 3 24 2
4 1 22 2
2 1 6 1
1 0 6 1

Table 4.2. Coordinates of cornerpoints in
table 4.1 sorted by level. According to
Kurlin’s rule the first three cornerpoints
are selected.

cornerpoint they would continually update. In the code we tried an implementation
of this second elderly rule, which would seem to have, at most, only local and not
global applicability, based on the fact that by restricting to cornerpoint clusters
sufficiently close to each other, we are able to avoid comparing cornerpoints very
“distant” but having similar level.
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(a)

(b) (c)

(d) (e)

Figure 4.12. In fig. 4.12(a), the persistence diagram whose cornerpoints have coordinates
shown in table 4.1; figs. 4.12(b) and 4.12(c) show the correspondence of cornerpoints in
the corresponding Ziggurat’s persistence diagram with the respective ones in the original
diagram, colored according to cornerpoints’ levels, and provide a relevance ranking for
the original diagram. Finally figs. 4.12(d) and 4.12(e) show the cornerpoints seletion
according to Kurlin’s rule in the Ziggurat persistence’s diagram and the effects of this
selection on the original diagram respectively: cornerpoints “above the gap” are those
selected and we can see that for each “cluster” exactly one cornerpoint is selected.
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Conclusions and future work

We explored the crossroad between topological persistence and machine learning.
Persistence homology allows for concisely representing specific, user-driven features
of the data, as persistence diagrams. However, by their own nature, persistence
diagrams cannot be fed directly to machine learning algorithms, that are highly
efficient in solving relevant task, such as data classification.

First, we considered persistence images, a state-of-the-art transformation that
allows for vectorizing persistence diagrams. We implemented the necessary algo-
rithms to apply this technique to the music genres classification task, and showed
how topologically relevant information translates in a performance improvement
of basic machine learning strategies. While developing this pipeline, we realized
that persistent images require the user to choose additional hyperparameters and
are—being images—computationally heavy to analyze.

For this reason, we introduced a second method to perform persistence diagram
vectorization. This latter method ranks by relevance, and thus allows us to select the
cornerpoints of a persistence diagram. Cornerpoints are ranked through the Ziggurat
algorithm, presented in chapter 4. Intuitively, given a collection of persistence
diagrams, this algorithms yields the n most relevant cornerpoint per diagram,
allowing us to create a lightweight, vectorizable representation of each diagram. We
tested the Ziggurat-based ranking and selection pipeline on several toy examples
showing how this method is able to indeed detect representative cornerpoints that
well summarize the content of the original persistence diagram.

In a forthcoming paper, we shall validate this approach on the music genres
classification task, both in the version described in chapter 4, and with an original
elderly rule which more explicitly associates the process of cardinality reduction
with a recovery of symmetry lost during the extraction of information, in the wake
of what has been said in section 4.4.

The Python package developed to validate the methods described in this work is
available at https : {{github.com{luca9433{codicetesi.

https://github.com/luca9433/_codice_tesi_
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