Prodotto amalgamato

Siano $j_1: F \to G_1$ and $j_2: F \to G_2$, omomorfismi di gruppo. Si consideri il prodotto libero $G_1 \star G_2$ e si aggiungano le relazioni $\varphi(w)\psi(w)^{-1} = 1$ per ogni $w \in F$. Ossia, si consideri il più piccolo sottogruppo normale N di $G_1 \star G_2$ che contenga $\{\varphi(w)\psi(w)^{-1} \mid w \in F\}$.

Il prodotto amalgamato di G_1 e G_2 rispetto a j_1 e j_2 è il gruppo:

 $G_1 \sqcup_F G_2 = (G_1 \star G_2)/N$ ottenuto come gruppo quoziente del prodotto libero $G_1 \star G_2$ rispetto al minimo sottogruppo normale N generato da $j_1(w)j_2(w)^{-1}$, $w \in F$

Teorema di Van Kampen

Teorema. Sia X sia uno spazio topologico unione di due sottospazi aperti connessi per archi. X_1, X_2 . Supponiamo inoltre che $X_0 = X_1 \cap X_2$ sia connesso per archi. Sia $* \in X_0$ e i_k : $(X_0, *) \to (X_k, *)$ le rispettive inclusioni.

Se j_k : $\pi_1(X_0, *) \to \pi_1(X_k, *)$ sono gli omomorfismi indotti dalle inclusioni i_k per k = 1, 2.

Allora X è connesso per archi e il morfismo

$$\pi_1(X_1,*) \sqcup_{\pi_1(X_0,*)} \pi_1(X_2,*) \to \pi_1(X,*)$$
,

è un isomorfismo ossia il gruppo fondamentale di X è il prodotto amalgamato dei gruppi fondamentali $\pi_1(X_1,*)$ e $\pi_1(X_2,*)$ rispetto a j_1,j_2

Se si conoscono le presentazioni dei gruppi $\pi_1(X_1, *)$, $\pi_1(X_2, *)$, $\pi_1(X_0, *)$ Si può descrivere $\pi_1(X_1, *) \sqcup_{\pi_1(X_0, *)} \pi_1(X_2, *)$ attraverso la sua presentazione. Ossia se

```
\begin{split} &\pi_1(X_1,*) = \langle u_1, \cdots, u_k \mid \alpha_1, \cdots, \alpha_l \rangle \\ &\pi_1(X_2,*) = \langle v_1, \cdots, v_m \mid \beta_1, \cdots, \beta_n \rangle \\ &\pi_1(X_0*) = \langle w_1, \cdots, w_p \mid \gamma_1, \cdots, \gamma_q \rangle \\ &\text{allora il gruppo } &\pi_1(X_1,*) \sqcup_{\pi_1(X_0,*)} \pi_1(X_2,*) \\ &\text{ha la seguente presentazione:} \\ &\langle u_1, \cdots, u_k, v_1, \cdots, v_m \mid \alpha_1, \cdots, \alpha_l, \beta_1, \cdots, \beta_n, j_1(w_1) j_2(w_1)^{-1}, \cdots, j_1(w_p) j_2(w_p)^{-1} \rangle \end{split}
```

Esempio

Calcolo del gruppo fondamentale delle superfici compatte.

Sfera S^2 .

Nella sfera S^2 siano N e S due punti antipodali (polo nord e sud). Consideriamo i sottoinsiemi aperti $X_1 = S^2 \setminus \{N\}$ e $B = S^2 \setminus \{S\}$. $X_1 \cap X_2$ è connesso per archi.

 X_1 e X_2 sono entrambi omeomorfi a \mathbb{R}^2 e quindi con gruppo fondamentale banale. Di conseguenza anche il gruppo fondamentale di S^2 è banale.

Data una superficie S diversa dalla sfera, essa si rappresenta attraverso il poligono fondamentale standard. Scegliamo come X_1 , un disco al centro del poligono e come X_2 il complemento in S del punto centrale di X_1 .

Allora l'intersezione X_0 di X_1 e X_2 è una corona circolare che ha come retratto di deformazione forte la ciconferenza S^1 .

Quindi
$$\pi_1(X_0) = \pi_1(X_1 \cap X_2) \cong \pi_1(S^1) \cong \mathbb{Z}$$
, e $\pi_1(X_1) \cong \pi_1(D^2) = 1$.

Così il morfismo $j_1:\pi_1(X_0)\to\pi_1(X_1)$ indotto dall'inclusione di X_0 in X_1 manda i generatori di $\mathbb Z$ nell'elemento banale.

Tuttavia, il morfismo $j_2:\pi_1(X_0)\to\pi_1(X_2)$ indotto dall'inclusione di X_0 in X_2 non è banale. Per questo, occorre calcolare $\pi_1(X_2)$. Questo calcolo diventa facile considerando che il bordo etichettato del poligono che rappresenta S è un retratto forte per deformazione di X_2 (che è S meno un punto).

Nel caso che S sia orientabile di genere n il bordo del poligono è del seguente

 $a_1b_1a_1^{-1}b_1^{-1}a_2b_2a_2^{-1}b_2^{-1}\dots a_nb_na_n^{-1}b_n^{-1}$. Questo spazio è noto come somma wedge di 2n circonferenze o come bouquet di 2n circonferenze e ha come gruppo fondamentale il gruppo libero su 2n generatori. Quindi:

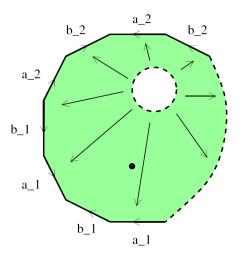
 $\pi_1(X_2) = \langle a_1, b_1, \cdots, a_n, b_n \mid \emptyset \rangle$

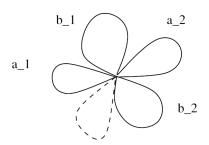
e se 1 è un generatore di $\pi_1(X_1 \cap X_2)$ $\beta(1) = a_1b_1a_1^{-1}b_1^{-1}a_2b_2a_2^{-1}b_2^{-1}\cdot\dots\cdot a_nb_na_n^{-1}b_n^{-1}$. Ora possiamo applicare il teorma di Van Kampen. i generatori di $\pi_1(S)$ sono $\{a_1, b_1, \dots, a_n, b_n\}$ e c'è esattamente una relazione:

 $a_1b_1a_1^{-1}b_1^{-1}a_2b_2a_2^{-1}b_2^{-1}\cdots a_nb_na_n^{-1}b_n^{-1} = 1.$

Quindi

$$\pi_1(S) = \langle a_1, b_1, \cdots, a_n, b_n | a_1 b_1 a_1^{-1} b_1^{-1} \cdots a_n b_n a_n^{-1} b_n^{-1} \rangle.$$





Se S è non orientabile di genere n si ragiona in modo analogo e si ottiene:

$$\pi_1(S) = \langle a_1, \dots, a_n | a_1^2 a_2^2 \cdots a_n^2 \rangle.$$

Passando ai gruppi di omologia H_1 , si devono abelianizzare i gruppi fondamentali. Allora:

$$\pi_1(S^2) = H_1(S^2) \cong \mathbb{Z}$$

Se S è orientabile di genere n, la relazione $a_1b_1a_1^{-1}b_1^{-1}\cdots a_nb_na_n^{-1}b_n^{-1}$ è un prodotto di commutatori, quindi l'abelianizzazione di $\pi_1(S)$ li riduce all'identità del gruppo; pertanto $H_1(S)$ risulta il gruppo libero abeliano con 2n generatori. $H_1(S) = \langle a_1, \dots, a_n | \emptyset \rangle \cong \mathbb{Z}^{2n}$

Se S è non orientabile di genere n abbiamo la presentazione abeliana:

$$H_1(S) = \langle a_1, \dots, a_n | a_1^2 a_2^2 \cdots a_n^2 \rangle = \langle a_1, \dots, a_n | (a_1 a_2 \cdots a_n)^2 \rangle.$$

Operiamo le seguenti trasformazioni di Tietze

$$z = a_1 a_2 \cdots a_n$$

$$H_1(S) = \langle a_1, a_2, \dots, a_n, z | (a_1 a_2 \cdots a_n)^2; z \cdot (a_1)^{-1} \cdot (a_2)^{-1} \cdots (a_n)^{-1} \rangle = \langle a_1, a_2, \dots, a_n, z | z^2; z \cdot (a_1)^{-1} \cdot (a_2)^{-1} \cdots (a_n)^{-1} \rangle.$$

ora si può togliere un generatore ad esempio a_1 . Otteniamo quindi il prodotto del gruppo libero con n-1 generatori con \mathbb{Z}_2 $H_1(S) = \langle a_2 \dots, a_n, z | z^2 \rangle \cong \mathbb{Z}^{n-1} \oplus \mathbb{Z}_2$

$$H_1(S) = \langle a_2 \dots, a_n, z | z^2 \rangle \cong \mathbb{Z}^{n-1} \oplus \mathbb{Z}_2$$