1. In \(\mathbb{R}[x] \), quali dei seguenti insiemi è formato da vettori linearemente indipendenti?
 \[\begin{align*}
 &a \quad 1, x, x^2, (x + 1)^2; \quad b \quad 1 + x, (1 + x)^2, (1 + x)^3; \quad c \quad (1 + x)^2, (1 - x)^2, x; \quad d \quad x, 1 + x, 1, x^2. \\
 & \end{align*} \]

2. Quale delle seguenti equazioni definisce un sottospazio vettoriale di \(\mathbb{R}^2 \)?
 \[\begin{align*}
 &a \quad x^2 + y^2 = 1; \quad b \quad x^2 + y^2 < 1; \quad c \quad x^2 = 0; \quad d \quad xy = 0. \\
 & \end{align*} \]

3. La segnatura della forma bilineare di \(\mathbb{R}^3 \) definita da \(b((x, y, z), (x', y', z')) = x x' + y y' + z z' \) è:
 \[\begin{align*}
 &a \quad (1, 1, 1); \quad b \quad (0, 1, 1); \quad c \quad (1, 1, -1); \quad d \quad (0, 2, 1). \\
 & \end{align*} \]

4. La forma quadratica della forma bilineare associata alla matrice \(\begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \) è:
 \[\begin{align*}
 &a \quad x^2 + 2xy + 3y^2; \quad b \quad x^2 + y^2 + 2xy + yx; \quad c \quad x^2 + 3xy + 3y^2; \quad d \quad 3xy + 3y^2. \\
 & \end{align*} \]

5. Quale delle seguenti è un'isometria di \(\mathbb{R}^3 \)?
 \[\begin{align*}
 &a \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}; \quad b \quad \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \quad c \quad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \quad d \quad \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}. \\
 & \end{align*} \]

6. Sia \(V \) uno spazio vettoriale su un campo \(\mathbb{K} \). Quale affermazione è necessariamente vera?
 \[\begin{align*}
 &a \quad \text{V ha una base}; \quad b \quad \text{dim}(V) < \infty; \quad c \quad V \text{ è infinito}; \quad d \quad V \text{ ha un numero finito di vettori}. \\
 & \end{align*} \]

7. Sia \(X = \{(x, y) \in \mathbb{R}^2 \text{ tali che } xy = 0 \} \). Lo \(\text{Span} \) di \(X \) è:
 \[\begin{align*}
 &a \quad \mathbb{R}^2; \quad b \quad \{x = 0\}; \quad c \quad \text{nessuna delle altre}; \quad d \quad \{y = 0\}. \\
 & \end{align*} \]

8. Quali delle seguenti matrici è diagonalizzabile su \(\mathbb{R} \)?
 \[\begin{align*}
 &a \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \quad b \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \quad c \quad \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; \quad d \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}. \\
 & \end{align*} \]

9. Il piano di \(\mathbb{R}^3 \) passante per la retta \(r = \text{span}((1, 1, 1)) \) ed il punto \(p = (1, 0, 0) \) è:
 \[\begin{align*}
 &a \quad \{x - y = 1 \} \cap \{y - z = 1\}; \quad b \quad \{x = y \} \cap \{y = z\}; \quad c \quad y - z = 1; \quad d \quad y = z. \\
 & \end{align*} \]

10. Quali delle seguenti matrici commuta con \(A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \)?
 \[\begin{align*}
 &a \quad \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; \quad b \quad A^2; \quad c \quad \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}; \quad d \quad \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}. \\
 & \end{align*} \]

11. L’ortogonale a \(X = \{(x, y, z) \in \mathbb{R}^3 \text{ tali che } x + y = 0 \text{ e } z = 0 \} \) rispetto al prod. scal. standard è:
 \[\begin{align*}
 &a \quad \{2x = y \} \cap \{z = 0\}; \quad b \quad \{y = x\}; \quad c \quad \{x = -y\}; \quad d \quad \text{span}((0, 0, 1)). \\
 & \end{align*} \]

12. Il polinomio caratteristico di \(f(x, y, z) = (x + y + z, x + y + z, x + y + z) \) è:
 \[\begin{align*}
 &a \quad \lambda (3 - \lambda)^2; \quad b \quad \lambda^2 (\sqrt{3} - \lambda); \quad c \quad \lambda^2 (1 - \lambda); \quad d \quad \lambda^2 (3 - \lambda). \\
 & \end{align*} \]

13. Quali dei seguenti vettori sono affinenmente indipendenti tra loro? \[a \quad (1, 0), (0, 0), (0, 1); \]
 \[b \quad (1, 0), (0, 0), (-1, 0); \quad c \quad (1, 0), (0, 1), (0, 0), (1, 1); \quad d \quad (2, 0), (0, 2), (1, 1). \]

14. Quali delle seguenti formule definisce un’applicazione lineare \(\mathbb{R}^3 \rightarrow \mathbb{R}^3 \)? \[f(x, y, z) = \]
 \[a \quad (x + y)^2 - (x - y)^2 + z - 4xy; \quad b \quad 2x + 4xy; \quad c \quad 2x + 1; \quad d \quad x^2 + y + x. \]

15. Quante soluzioni ha in \(\mathbb{R}^3 \) il sistema \(AX = 0 \) con \(A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 2 \end{pmatrix} \)?
 \[a \quad 0; \quad b \quad 1; \quad c \quad \text{infinito}; \quad d \quad 2. \]
Risposte esatte

6. ♦ 13. ♣

1. b
2. c
3. d
4. d
5. b
6. a
7. a
8. a
9. d
10. b
11. b
12. d
13. a
14. a
15. c
Pro-memoria delle risposte fornite (da non consegnare)

1. a b c d
2. a b c d
3. a b c d
4. a b c d
5. a b c d
6. a b c d
7. a b c d
8. a b c d
9. a b c d
10. a b c d
11. a b c d
12. a b c d
13. a b c d
14. a b c d
15. a b c d