ASYMPTOTIC BEHAVIOR FOR SINGULARITIES 291

and the theorem follows immediately in view of the uniform estimates in
Proposition 2.3.

Suppose the initial hypersurface Mj satisfies the equation Hy = (Fy, v).
Then the homothetic deformation

F(p,t) = (2(T —1))'*F(p,0)
satisfies
<1F( t))l = —«l—H -v=-Hv
di V) S oy T oY
So up to a tangential deformation the mean curvature flow is realized by
homotheties for these initial surfaces.
Then Theorem 3.5 states that singularities of the mean curvature flow
satisfying the growth rate estimate (2) are asymptotically selfsimilar.
Natural open questions are concerned with the uniqueness of the limit
in Proposition 3.4 and the number of solutions to equation (6). In the last
two sections we address these questions in some special cases.

4. Surfaces of positive mean curvature

If the mean curvature H is positive on the initial hypersurface Mj, it
will stay positive on M, as long as a solution of (1) exists (see [7, Corollary
3.5(1)]). Thus it is natural to try to classify solutions of the selfsimilarity
condition (6) in this special case. In case n = 1 it was shown by Abresch
and Langer in [1] that there is a 2-parameter family of closed immersed
curves in R? of positive geodesic curvature which are selfsimilar solutions
of (1). We prove that in higher dimensions the sphere is the only compact
hypersurface of positive mean curvature moving under selfsimilarities.

4.1 Theorem. If M", n > 2, is compact with nonnegative mean curva-
ture H and satisfies the equation H = (x,v), then M" is a sphere of radius
vn.

Proof. We differentiate the equation H = (x,v) in an orthonormal
frame e;,e;,--- ,e, on M" and obtain

(7 ViH = (x,e)hy;,
(8) V,’VjH = h,’j - Hh,'/h[j + (X, e,)V,h,j.

Here we used again H = (x,r) and the Codazzi equation. Contracting
now (8) with g;; and h;; respectively we derive

(9) AH = H — H|A)? + (x,¢;)V,H,
(10) hij ViV H = AP — Hi(A®) + (x,e)V,hy; - hyj.
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Simons' identity states that (see e.g. [7, Lemma 2.1])
(1) AJAP? = 2h;V,V;H + 2|V AP + 2H tr(4%) — 2]4]%.
So we derive from (10) that

AlA] = 2|VAP + 2|4 = 2|A|* + 2(x, &)V hi; by

Now notice that in view of (9) and the maximum principle, H satisfies the
strict inequality H > 0. We are then ready to compute

112 AP 24P 4 614>
a(E) = A8 APy S apviar+ S o

From (9) and (11) we obtain
|4 2 1
a(5F) = Hermap + L epvapae
~ H|A]X(x, &)V, H — 2HV ;| A]*V;H + 3|A|2|VH]).
The right-hand side thus equals

R
2 2
77l Vil =V ki HPP 4 7 {2|A|2|VH|2 - HV|A]*V;H

1
+§H2(x, eV |A)* — |42 (x, e;)HV;H}

since

bV iH = VihiHE = |ARIVHP + |VARH? - HY,HY |4
Now notice that

(4B _ 1 2]4)2
Vi (m = Vil - %V:’H,
such that finally

4P\ _ 2
A(Wl‘ = gl ViH =V by HP?

2 |4]2 AP
| EViHVi(ﬁ) +(x,€;)V; <|11_|2> .
Stnce M s compact, the

; maximum princip] impli 2= qH?
with a fixed constant o and alos principle then implies that |A|* = a
(13)

(12)

hi; v H - VihiiHE =0 on M7,

We split the tensor 4 v
i ViH-V,h. .1
parts and obtain from (13) 1hijH int

e

0 its symmetric and antisymmetric
and Codazzi’s equation

by S iH ~ by P2 = o,
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At a given point of M" we now rotate ey, --- ,e, such thate; = VH/|VH]|
points in the direction of the gradient of the mean curvature; then

n
0 = i H ~ b0 HP = AV HP (142 = S )
i=1
Thus at each point of M" we have either [VH|2 =0 or [4]> =Y h#. If
|[VH|? = 0 it follows immediately that M" is a sphere and we are done.
So suppose there is a point in M where |4[* = Y7 h?,. Since

n n
|42 =h}, +2) hE+ > Y,
i=1 ij#1
this is only possible if A;; = 0 unless i = j = 1. Then we have [A]* = H?
at this point and therefore everywhere on M. Now we integrate (9) and
obtain after integration by parts

/H3du= Hdu+/ (x, e\, H dy
M M M

= [ Hdu-n Hdu+/ (x,v)H*dpu.
M M M
Since (x,v) = H, we derive (n—1) [,, Hdp =0, which is a contradiction
for n > 2. This completes the proof of Theorem 4.1.

Remarks. (i) The assumption H > 0 seems to be necessary: The author
was told by M. Grayson that there is numerical evidence for the existence
of an imbedded torus in R3 satisfying (6). (ii) In the noncompact case wce
expect for n = 2 cylinders to be the only imbedded surfaces satisfying (6)
(see also §5).

5. The rotationally symmetric shrinking neck

In this section we consider a two-dimensional rotationally symmetri'c
hypersurface M, with positive mean curvature. We prove that in this
case all singularities satisfy the natural blow-up estimate (2) and behave
asymptotically like cylinders. The rotationally symmetric case was first
studied by R. Hamilton (oral communication), who observed Lemmas 5.1
and 5.2 of this section.

Let yo: [a, ] — R be a smooth positive function on the bounded interval
[a, b] with y}(a) = y(b) = 0, and consider the 2-dimension.al hypersurface
M, in R3 gencrated by rotating graph y around the x,-axis. To computc



