
CHAPTER 1

Definition and Short Time Existence

1.1. Notations and Preliminaries

In this section we introduce some basic notations and facts about Riemannian manifolds and
their submanifolds, a good reference is [49].

In all the book the convention of summing over the repeated indices will be adopted.

The main objects we will consider are n–dimensional, complete hypersurfaces immersed in
Rn+1, that is, pairs (M,ϕ) whereM is an n–dimensional, smooth manifold with empty boundary
and ϕ : M → Rn+1 is a smooth immersion (the rank of the differential dϕ is equal to n everywhere
on M ).

The manifoldM gets in a natural way a metric tensor g turning it into a Riemannian manifold
(M, g) by pulling back the standard scalar product of Rn+1 with the immersion map ϕ.

Taking local coordinates around p ∈ M , we have local bases of TpM and T ∗pM , respectively

given by vectors
{

∂
∂xi

}
and 1–forms {dxj}.

We will denote the vectors on M by X = Xi, which means X = Xi ∂
∂xi

, the 1–forms by
ω = ωj , that is, ω = ωjdxj and a general mixed tensor by T = T i1...ikj1...jl

, where the indices refer to
the local basis.

Sometimes we will consider tensors along M viewing it as a submanifold of Rn+1 via the
map ϕ, in such case we will use the Greek indices to denote the components of the tensors in
the canonical basis {eα} of Rn+1, for instance, given a vector field X along M , not necessarily
tangent, we will have X = Xαeα.

The metric g of M extended to tensors is given by

g(T, S) = gi1s1 . . . gikskg
j1z1 . . . gjlzlT i1...ikj1...jl

Ss1...skz1...zl
,

where gij is the matrix of the coefficients of g in local coordinates and gij is its inverse matrix.
Clearly, the norm of a tensor is then

|T | =
√
g(T, T ) .

The scalar product of Rn+1 will be denoted by 〈· | ·〉. As the metric g is obtained by pulling it
back via ϕ, we have

gij = g

(
∂

∂xi
,
∂

∂xj

)
= (dϕ∗〈· | ·〉)

(
∂

∂xi
,
∂

∂xj

)
=

〈
∂ϕ

∂xi

∣∣∣∣ ∂ϕ∂xj
〉
.

The canonical measure induced by the metric g is given in a coordinate chart by µ =
√
GLn

where G = det(gij) and Ln is the standard Lebesgue measure on Rn.
The induced covariant derivative on (M, g) of a vector field X and of a 1–form ω are respec-

tively given by

∇jXi =
∂Xi

∂xj
+ ΓijkX

k , ∇jωi =
∂ωi
∂xj
− Γkjiωk ,

where the Christoffel symbols Γijk are expressed by the formula,

Γijk =
1

2
gil
(
∂

∂xj
gkl +

∂

∂xk
gjl −

∂

∂xl
gjk

)
.

9



10 1. DEFINITION AND SHORT TIME EXISTENCE

The covariant derivative ∇T of a general tensor T = T i1...ikj1...jl
will be denoted by ∇sT i1...ikj1...jl

=

(∇T )i1...iksj1...jl
(we recall that such extension of the covariant derivative is uniquely defined on the

full tensor algebra by imposing the Leibniz rule and the commutativity with any metric contrac-
tion).
∇mT will stand for the m–th iterated covariant derivative of T .

The gradient∇f of a function and the divergence divX of a vector field at a point p ∈M are
defined respectively by

g(∇f(p), v) = dfp(v) ∀v ∈ TpM
and

divX = tr∇X = ∇iXi =
∂

∂xi
Xi + ΓiikX

k .

The (rough) Laplacian ∆T of a tensor T is given by

∆T = gij∇i∇jT .
If X is a smooth vector field with compact support on M , as ∂M = ∅ the following divergence
theorem holds ∫

M

divX dµ = 0 ,

which clearly implies, in particular, ∫
M

∆f dµ = 0

for every smooth function f : M → R with compact support.
Since ϕ is locally an embedding in Rn+1, at every point p ∈ M we can define up to a sign a

unit normal vector ν(p). Locally, we can always choose ν in order that it is smooth.
If the hypersurface M is compact and embedded, that is, the map ϕ is one–to-one, the inside of M
is easily defined and we will consider ν to be the inner pointing unit normal vector at every point
of M . In this case the vector field ν : M → Rn+1 is globally smooth.

The second fundamental form A = hij of M is the symmetric 2–form defined as follows,

hij =

〈
ν

∣∣∣∣ ∂2ϕ

∂xi∂xj

〉
and the mean curvature H is the trace of A, that is H = gijhij . Despite its name, H is the sum of the
eigenvalues of the second fundamental form, not their average mean (some few authors actually
define H/n as the mean curvature).

REMARK 1.1.1. Notice that since the unit normal ν is defined up to a sign, the same is true
for A and H. Instead, the vector valued second fundamental form hijν, which is a 2–form with values
in Rn+1, and the mean curvature vector Hν are uniquely defined.
With our choice of ν as the inner pointing unit normal, the sphere Sn ⊂ Rn+1 has a positive
definite second fundamental form and positive mean curvature and the same holds for every
strictly convex hypersurface of Rn+1.

We advise the reader that in all the book, by a little abuse of terminology, we will say that a hypersurface
is convex when its second fundamental form is nonnegative definite, strictly convex when it is positive
definite. If the hypersurface is embedded, convexity in such sense is equivalent to the usual definition that
the hypersurface bounds a convex subset of the Euclidean space.

The linear map Wp : TpM → TpM given by Wp(v) = hij(p)v
j ∂
∂xi

is called the Weingarten
operator and its eigenvalues λ1 ≤ · · · ≤ λn the principal curvatures at the point p ∈M . It is easy to
see that H = λ1 + · · ·+ λn and |A|2 = λ2

1 + · · ·+ λ2
n.

EXERCISE 1.1.2. Show that if the hypersurface M ⊂ Rn+1 is locally the graph of a function
f : Rn → R, that is, ϕ(x) = (x, f(x)), we have

gij = δij + fifj , ν = − (∇f,−1)√
1 + |∇f |2
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hij =
Hessijf√
1 + |∇f |2

H =
∆f√

1 + |∇f |2
− Hessf(∇f,∇f)

(
√

1 + |∇f |2)3
= div

(
∇f√

1 + |∇f |2

)
where fi = ∂if and Hessf is the Hessian of the function f .

EXERCISE 1.1.3. Show that if the hypersurface M ⊂ Rn+1 is locally the zero set of a smooth
function f : Rn+1 → R, with∇f 6= 0 on such level set, we have

H =
∆f

|∇f |
− Hessf(∇f,∇f)

|∇f |3
= div

(
∇f
|∇f |

)
.

The following Gauss–Weingarten relations will be fundamental,

∂2ϕ

∂xi∂xj
= Γkij

∂ϕ

∂xk
+ hijν ,

∂ν

∂xj
= −hjlgls

∂ϕ

∂xs
. (1.1.1)

Actually, they express the fact that ∇M = ∇Rn+1 − Aν. We recall that considering M locally as a
regular submanifold of Rn+1, we have∇MX Y = (∇Rn+1

X Ỹ )M where the sign M denotes the projec-
tion on the tangent space to M and Ỹ is a local extension of the field Y in a local neighborhood
Ω ⊂ Rn+1 of ϕ(M).
Notice that, by these relations, it follows

∆ϕ = gij∇2
ijϕ = gij

(
∂2ϕ

∂xi∂xj
− Γkij

∂ϕ

∂xk

)
= gijhijν = Hν . (1.1.2)

By straightforward computations, we can see that the Riemann tensor, the Ricci tensor and
the scalar curvature can be expressed by means of the second fundamental form as follows,

Rijkl = g
(
∇2
ji

∂

∂xk
−∇2

ij

∂

∂xk
,
∂

∂xl

)
= hikhjl − hilhjk ,

Ricij = gklRikjl = Hhij − hilglkhkj ,

R = gijRicij = gijgklRikjl = H2 − |A|2 .

Hence, the formulas for the interchange of covariant derivatives, which involve the Riemann
tensor, become

∇i∇jXs −∇j∇iXs = Rijklg
ksX l = (hikhjl − hilhjk) gksX l ,

∇i∇jωk −∇j∇iωk = Rijklg
lsωs = (hikhjl − hilhjk) glsωs .

The symmetry properties of the covariant derivative of A are given by the following Codazzi
equations,

∇ihjk = ∇jhik = ∇khij (1.1.3)
which imply the following Simons’ identity (see [106]),

∆hij = ∇i∇jH + Hhilg
lshsj − |A|2hij . (1.1.4)

We will write T ∗ S, following Hamilton [55], to denote a tensor formed by a sum of terms
each one of them obtained by contracting some indices of the pair T , S with the metric gij and/or
its inverse gij .
A very useful property of such ∗–product is that

|T ∗ S| ≤ C |T | |S|
where the constant C depends only on the algebraic “structure” of T ∗ S.

Sometimes we will need the n–dimensional Hausdorff measure in Rn+1, we will denote it by
Hn.

We advise the reader that in all the computations the constants could vary between different formulas
and from a line to another.
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1.2. First Variation of the Area Functional

Given an immersion ϕ : M → Rn+1 of a smooth hypersurface in Rn+1, we consider the Area
functional

Area(ϕ) =

∫
M

dµ

where µ is the canonical measure associated to the metric g induced by the immersion.
In this section we are going to analyze the first variation of such functional which is nothing

else than the volume of the hypersurface.
We consider a smooth one parameter family of immersions ϕt : M → Rn+1, with t ∈ (−ε, ε)

and ϕ0 = ϕ, such that, outside of a compact set K ⊂ M , we have ϕt(p) = ϕ(p) for every t ∈
(−ε, ε).
Defining the field X = ∂ϕt

∂t

∣∣∣
t=0

along M (as a submanifold of Rn+1) we see that X is zero outside

K, we call such field the infinitesimal generator of the variation ϕt.
We compute

∂

∂t
gij

∣∣∣∣
t=0

=
∂

∂t

〈
∂ϕt
∂xi

∣∣∣∣ ∂ϕt∂xj

〉∣∣∣∣
t=0

=

〈
∂X

∂xi

∣∣∣∣ ∂ϕ∂xj
〉

+

〈
∂X

∂xj

∣∣∣∣ ∂ϕ∂xi
〉

=
∂

∂xi

〈
X

∣∣∣∣ ∂ϕ∂xj
〉

+
∂

∂xj

〈
X

∣∣∣∣ ∂ϕ∂xi
〉
− 2

〈
X

∣∣∣∣ ∂2ϕ

∂xi∂xj

〉
=

∂

∂xi

〈
XM

∣∣∣∣ ∂ϕ∂xj
〉

+
∂

∂xj

〈
XM

∣∣∣∣ ∂ϕ∂xi
〉
− 2Γkij

〈
XM

∣∣∣∣ ∂ϕ∂xk
〉
− 2hij〈X | ν〉 ,

where XM is the tangent component of the field X and we used the Gauss–Weingarten rela-
tions (1.1.1) in the last step.
Letting ω be the 1–form defined by ω(Y ) = g(dϕ∗(XM ), Y ), this formula can be rewritten as

∂

∂t
gij

∣∣∣∣
t=0

=
∂ωj
∂xi

+
∂ωi
∂xj
− 2Γkijωk − 2hij〈X | ν〉 = ∇iωj +∇jωi − 2hij〈X | ν〉 .

Hence, using the formula ∂t detA(t) = detA(t)Trace[A−1(t)∂tA(t)], we get

∂

∂t

√
det(gij)

∣∣∣∣
t=0

=

√
det(gij) g

ij ∂
∂tgij

∣∣
t=0

2

=

√
det(gij) g

ij
(
∇iωj +∇jωi − 2hij〈X | ν〉

)
2

=
√

det(gij)
(
div dϕ∗(XM )−H〈X | ν〉

)
.

If the Area of the immersion ϕ is finite, the same holds for all the maps ϕt, as they are compact
deformations of ϕ. Assuming that the compact K is contained in a single coordinate chart, we
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have

∂

∂t
Area(ϕt)

∣∣∣∣
t=0

=
∂

∂t

∫
K

dµt

∣∣∣∣
t=0

=
∂

∂t

∫
K

√
det(gij) dLn

∣∣∣∣
t=0

=

∫
K

∂

∂t

√
det(gij)

∣∣∣∣
t=0

dLn

=

∫
K

(
div dϕ∗(XM )−H〈X | ν〉

)√
det(gij) dLn

=

∫
M

(
div dϕ∗(XM )−H〈X | ν〉

)
dµ

= −
∫
M

H〈X | ν〉 dµ

where we used the fact that X is zero outside K and in the last step we applied the divergence
theorem. Notice that all the integrals are well defined because we are actually integrating only
on the compact set K.
In the case that K is contained in several charts, the same conclusion follows from a standard
argument using a partition of unity.

PROPOSITION 1.2.1. The first variation of the Area functional depends only on the normal compo-
nent of the infinitesimal generator X = ∂ϕt

∂t

∣∣∣
t=0

of the variation ϕt, precisely

∂

∂t
Area(ϕt)

∣∣∣∣
t=0

= −
∫
M

H〈X | ν〉 dµ .

Clearly, such dependence is linear.

Given any immersion ϕ : M → Rn+1 and any vector field X with compact support along M ,
we can always construct a variation with infinitesimal generator X as ϕt(p) = ϕ(p) + tX(p). It is
easy to see that for |t| small the map ϕt is still a smooth immersion.
Hence, as the hypersurfaces which are critical points of the Area functional must satisfy∫

M

H〈X | ν〉 dµ = 0

for every field X with compact support, they must have H = 0 everywhere, that is, zero mean
curvature (and conversely). This is the well known definition of the so called minimal surfaces.

As the quantity −Hν can be interpreted as the gradient of the Area functional (be careful
here, the measure µ is varying with the immersion, we are not computing the gradient with
respect to some fixed L2–structure on the space of immersions of M in Rn+1), we can consider
the motion of a hypersurface by minus this gradient, that is, the mean curvature flow. So, one looks
for hypersurfaces moving with velocity Hν at every point. This means choosing, among all the
velocity functions with fixed L2(µ)–norm equal to

(∫
M

H2 dµ
)1/2, the one such that the Area of

hypersurface decreases most rapidly.
This idea is quite natural and arises often in studying the dynamics of models of physical sit-

uations where the energy is given by the “Area” of the interfaces between the phases of a system.
Moreover, as the Area functional is the simplest (in terms of derivatives of the parametrization)
geometric functional, that is, invariant by isometries of Rn+1 and diffeomorphisms ofM , the mo-
tion by mean curvature is the simplest variational geometric flow for immersed hypersurfaces.
Other geometric functionals (for instance, depending on the next simpler geometric invariant,
the curvature) generally produce a first variation of order higher than two in the derivatives of
the parametrization and a relative higher order PDE’s system.
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One can consider second order flows where the velocity of the motion is related to different func-
tions of the curvature, like the Gauss flow of surfaces, for instance, where the velocity is given
by Gν (G is the Gauss curvature of M , that is, G = det A) or more complicated flows, but these
evolutions are usually not variational, they do not arise as “gradients” (in the above sense) of
geometric functionals (see Section 1.6).

1.3. The Mean Curvature Flow

DEFINITION 1.3.1. Let ϕ0 : M → Rn+1 be a smooth immersion of an n–dimensional man-
ifold. The mean curvature flow of ϕ0 is a family of smooth immersions ϕt : M → Rn+1 for
t ∈ [0, T ) such that setting ϕ(p, t) = ϕt(p) the map ϕ : M × [0, T )→ Rn+1 is a smooth solution of
the following system of PDE’s {

∂
∂tϕ(p, t) = H(p, t)ν(p, t)

ϕ(p, 0) = ϕ0(p)
(1.3.1)

where H(p, t) and ν(p, t) are respectively the mean curvature and the unit normal of the hyper-
surface ϕt at the point p ∈M .

REMARK 1.3.2. Notice that even if the unit normal vector is defined up to a sign, the field
H(p, t)ν(p, t) is independent of such choice.

Using equation (1.1.2), this system can be rewritten in the appealing form
∂ϕ

∂t
= ∆ϕ

but, despite its formal analogy with the heat equation, actually, it is a second order, quasilinear and
degenerate, parabolic system, as the Laplacian is the one associated to the evolving hypersurfaces
at time t,

∆ϕ(p, t) = ∆g(p,t)ϕ(p, t) = gij(p, t)∇g(p,t)i ∇g(p,t)j ϕ(p, t)

and its coefficients as second order partial differential operator depend on the first derivatives of
ϕ. Moreover, this operator is degenerate, as its symbol (the symbol of the linearized operator)
admits zero eigenvalues due to the invariance of the Laplacian by diffeomorphisms, see [48] for
details.

Like the Area functional, the flow is obviously invariant by rotations and translations, or
more generally under any isometry of Rn+1. Moreover, if ϕ(p, t) is a mean curvature flow and
Ψ : M → M is a diffeomorphism, then the reparametrization ϕ̃(p, t) = ϕ(Ψ(p), t) is still a mean
curvature flow. This last property can be reread as “the flow is invariant under reparametriza-
tion”, suggesting that the important objects in the flow are actually the subsets Mt = ϕ(M, t) of
Rn+1.

The problem also satisfies the following parabolic invariance under rescaling (consequence
of the property Area(λϕ) = λnArea(ϕ), for any n–dimensional immersion), if ϕ(p, t) is a mean
curvature flow of ϕ0 and λ > 0, then ϕ̃(p, t) = λϕ(p, λ−2t) is a mean curvature flow of the initial
hypersurface λϕ0.

During the flow the Area of the hypersurfaces (which is the natural energy of the problem) is
nonincreasing, indeed, by the same computation for the first variation of such functional in the
previous section, we have

∂

∂t
Area(ϕt) =

∂

∂t

∫
M

dµt = −
∫
M

H2 dµt .

This clearly implies the estimate ∫ Tmax

0

∫
M

H2 dµt ≤ Area(ϕ0)

in the maximal time interval [0, Tmax) of smooth existence of the flow.

EXERCISE 1.3.3. By means of this last inequality, try to get an estimate from above for the
maximal time of smooth existence Tmax for closed curves in R2 and compact surfaces in R3.


