
CHAPTER 4

Type II Singularities

We assume now that we are in the type II singularity case, that is,

lim sup
t→T

max
p∈M
|A(p, t)|

√
T − t = +∞

for the mean curvature flow of a compact hypersurface ϕ : M × [0, T ) → Rn+1 in its maximal
interval of existence.

A good question is actually whether type II singularities there exist.
An example is given by a closed, symmetric, self–intersecting curve with the shape of a symmet-
ric “eight” figure in the plane, which has zero rotation number. Pushing a little the analysis of the
previous chapter and keeping into account the symmetries of the curve, if the curve develops a
type I singularity, we can produce a nonflat blow up limit which is homothetic and nonflat. Then
such a limit must be a circle or one of Abresch–Langer curves. In both cases, the limit would be
a compact closed curve and by the smooth convergence, the rotation number would still be zero.
Hence, the circle has to be excluded and the contradiction is given by the fact that there are no
Abresch–Langer curves with zero rotation number. Hence, type I singularities do not describe all
the possible ones.
Another example is given by a cardioid–like curve in the plane with a very small loop, hence
high curvature: one can right guess that at some time the loop shrinks while the rest of the curve
remains smooth and a cusp develops. Such a singularity is of type II, since if we have a Type I
singularity we would get an Abresch–Langer curve as a blow up limit and this implies, as these
latter are compact, that the entire curve has vanished in a single point (see the analysis in [15]
and also [14, 16]).
As we will see in Theorem 4.5.5 that embedded curves do not develop type II singularities, one
could reasonably conjecture that also for embedded hypersurfaces (at least in low dimension) all
the singularities are of type I. Unfortunately, this is not true even if the dimension is only two,
indeed, the following example excludes such a good behavior.

EXAMPLE (The Degenerate Neckpinch). For a given λ > 0, let us set

φλ(x) =
√

(1− x2)(x2 + λ), −1 ≤ x ≤ 1.

For any n ≥ 2, let Mλ be the n–dimensional hypersurface in Rn+1 obtained by rotation of the
graph of φλ in R2. The hypersurface Mλ looks like a dumbbell, where the parameter λ measures
the width of the central part. Then, it is possible to prove the following properties (see [4]):

(1) if λ is large enough, the hypersurface Mλ
t eventually becomes convex and shrinks to a

point in finite time;
(2) if λ is small enough, Mλ

t exhibits a neckpinch singularity as in the case of the standard
neckpinch (see Section 1.4);

(3) there exists at least one intermediate value of λ > 0 such that Mλ
t shrinks to a point

in finite time, has positive mean curvature up to the singular time, but never becomes
convex. The maximum of the curvature is attained at the two points where the surface
meets the axis of rotation;

(4) in this latter case the singularity is of type II, otherwise the blow up at the singular
time would give a sphere (for all p ∈ M we would have p̂ = O ∈ Rn+1 hence, by
estimate (3.2.2), any limit hypersurface is bounded). This is impossible as it would imply
that the surface would have been convex at some time.
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72 4. TYPE II SINGULARITIES

The flowing hypersurface at point (3) is called the degenerate neckpinch and was first conjectured
by Hamilton for the Ricci flow [61, Section 3]. Intuitively speaking, it is a limiting case of the
neckpinch where the cylinder in the middle and the two spheres on the sides shrink at the same
time. One can also build the example in an asymmetric way, with only one of the two spheres
shrinking simultaneously with the neck, while the other one remains nonsingular.
A sharp analysis of the singular behavior for a class of rotationally symmetric surfaces exhibiting
a degenerate neckpinch has been done by Angenent and Velázquez in [19].
Another interesting example of singularity formation (a family of evolving tori, proposed by
De Giorgi) was carefully studied by Soner and Souganidis in [110, Proposition 3] (see also the
numerical analysis performed by Paolini and Verdi in [101, Section 7.5]).

4.1. Hamilton’s Blow Up

In order to deal with the blow up around type II singularities we need a new set of estimates
which are actually independent of the type II hypothesis and scaling invariant (see [3] and [104]).

PROPOSITION 4.1.1. Let ϕ : M × [0, T ) → Rn+1 be the mean curvature flow of a compact hyper-
surface such that supp∈M |A(p, 0)| ≤ Λ < +∞. Then, there exists a time τ = τ(Λ) > 0 and constants
Cm = Cm(Λ), for every m ∈ N such that |∇mA(p, t)|2 ≤ Cm/tm for every p ∈M and t ∈ (0, τ).

PROOF. We prove the claim by induction. By the evolution equation for |A|2,

∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4 ≤ ∆|A|2 + 2|A|4

we get
∂

∂t
|A|2max ≤ 2|A|4max ,

hence, there exists a time τ = τ(Λ) > 0 and a constant C0 = C0(Λ) such that |A(p, t)|2 ≤ C0 for
every p ∈M and t ∈ [0, τ). This is the case m = 0.
Recalling equation (2.3.5), setting f =

∑m
k=0 |∇kA|2λktk for some positive constants λ0, . . . , λm

and assuming the inductive hypothesis |∇kA(p, t)|2 ≤ Ck(Λ)/tk for any k ∈ {0, . . . ,m−1}, p ∈M
and t ∈ (0, τ), we compute

∂

∂t
f =

∂

∂t

m∑
k=0

|∇kA|2λktk

=

m∑
k=1

|∇kA|2kλktk−1

+

m∑
k=0

λkt
k
(

∆|∇kA|2 − 2|∇k+1A|2 +
∑

p+q+r=k | p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA
)

≤∆f +

m∑
k=1

|∇kA|2(kλk − 2λk−1)tk−1 − 2|∇m+1A|2λmtm

+

m∑
k=0

λkt
kC(k)

∑
p+q+r=k | p,q,r∈N

|∇pA||∇qA||∇rA||∇kA|

≤∆f +

m∑
k=1

|∇kA|2(kλk − 2λk−1)tk−1 +

m−1∑
k=0

λkC(k)
∑

p+q+r=k | p,q,r∈N

CpCqCrCk

+ λmt
m/2C(m)

( ∑
p+q+r=m | p,q,r<m

CpCqCr

)
|∇mA| + λmt

mC(m)|A|2|∇mA|2

≤∆f +

m∑
k=1

|∇kA|2(kλk − 2λk−1)tk−1 + Cλmt
m|∇mA|2 +D


