CHAPTER 3

Monotonicity Formula and Type I Singularities

In all this chapter ¢ : M x [0,T) — R"*! is the mean curvature flow of an n-dimensional,
compact hypersurface in the maximal interval of smooth existence [0, T').

As before we will use the notation ¢y = ¢( -, ) and H" will be the n—dimensional Hausdorff
measure in R counting multiplicities.

3.1. The Monotonicity Formula for Mean Curvature Flow

We show the fundamental monotonicity formula for mean curvature flow, discovered by
Huisken in [40] and then generalized by Hamilton in [37, 38].

LEMMA 3.1.1. Let f : R"™! x I — R be a smooth function. By a little abuse of notation, we denote

by [y fdpe the integral [\, f((p,t),t) dpse(p)-
Then the following formula holds

G | g [ 10) di

PROOF. Straightforward computation. O
If u, = —AR" "' is a solution of the backward heat equation in R"*!, we have
d
— udp, = / (uy — H2u + H(Vu|v)) du, (3.1.1)
dt Ju M

= — / (ARnHu + H?u — H(Vu |v)) dys .
M

LEMMA 3.1.2. If ¢ : M — R"! is a smooth isometric immersion of an n—dimensional Riemannian
manifold (M, g), for every smooth function u defined in a neighborhood of 1 (M) we have,

Ag(u()) = (A u)(v) = (V2,u)($) + Hlv| (Vu)()) ,
where (V2,u) (¢ (p)) is the second derivative of u in the normal direction v(p) € R™*1 at the point 1 (p).
PROOEF. Let p € M and choose normal coordinates at p. Set u = u o ¢, then
Ay =V (uo)
ou oY~
=V <a_ya Ox; >
_ Pu ot du 9Py
 OyaOys Om; Oxy  Oys Ox?
 OPu oW s Ou
a 0yaOyg Ox; Ox; Yo
= (AR ) () = (V2,u)(¥) + H(v| (Vu)(¥)) ,

where we used the Gauss—Weingarten relations (1.1.1). O
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46 3. MONOTONICITY FORMULA AND TYPE I SINGULARITIES

It follows that, substituting ARy in formula (3.1.1) and using the previous lemma, if the
function u is positive we get

d
_/ wdpy = 7/ (Do (ulpe)) + V20 + H2u — 2H(Vu | 1) de
dt Jar M

- / (V2,u+ H?u — 2H(Vu | v)) duy
JMm

2 1,12
,/ ud,ut-|-/ <M V,Q,l,u) dpy
M M

u
where V+u denotes the projection on the normal space to M of the gradient of u.
Then, assuming that u : R**! x [0,7) — R is a positive smooth solution of the backward heat

equation u; = ~ AR, for some T > 0, the following formula easily follows,

% [ Var(T —t) /M U dp,t] = — An(t —t) /M [H — (Viogu| 1/>\2’u, dpig (3.1.2)
_ m/M(VEV“ _ |V2u|2 . " Y

T—1)

H_ (Vu|v)
u

in the time interval [0, min{r, T'}).
As we can see, the right hand side consists of a nonpositive quantity and a term which is non-
B ‘VLU‘Q

ositive if Yot
p : -

+ Q(Tl_ 5 = Vi, logu+ ﬁ is nonnegative.
Setting v(z, s) = u(z,7—s), the function v : R"*! x (0, 7] — Ris a positive solution of the standard
forward heat equation in all R"*! and setting t = 7 —s we have V3 logu+ 57— = V3, log v+ 5.
This last expression is exactly the Li-Yau-Hamilton 2-form VZlogv + ¢/(2s) for positive solu-
tions of the heat equation on a compact manifold (N, g), evaluated on v ® v (see [37]).
In the paper [37] (see also [59]) Hamilton generalized the Li-Yau differential Harnack inequality
in [56] (concerning the nonnegativity of Alogv + % ) showing that, under the assumptions
that (V, g) has parallel Ricci tensor (VRic = 0) and nonnegative sectional curvatures, the 2—
form V2logv + g/(2s) is nonnegative definite (Hamilton’s matrix Li-Yau—Harnack inequality).
In particular, in R"™! equipped with the canonical flat metric such hypotheses clearly hold and
Vi logu + gy = (V2 logv + g&." (25))(1/ ® v) > 0. Hence, assuming the boundedness
in space of v (equivalently of u), the monotonicity formula implies that \/47 (7 —t) [,, wdp, is
nonincreasing in time. We resume this discussion in the following theorem by Hamilton [37, 38].
THEOREM 3.1.3 (Huisken’s Monotonicity Formula — Hamilton’s Extension in R"*!). Assume

that for some T > 0 we have a positive smooth solution of the backward heat equation v, = —AF" My in
R™1 x [0, 7), bounded in space for every fixed t € [0, 7), then

%[\/47T(T*t)/MUd,Ut] < f\/47r(7'7t)/M H— (Viogu|v)|2udy

in the time interval [0, min{r, T'}).

REMARK 3.1.4. In the original paper of Hamilton the compactness of the ambient space is
required (the proof is based on the maximum principle), in order to extend his result to R"*! we
assumed the boundedness in space of u, see Appendix ?? for details.

Choosing in particular a backward heat kernel of R™*! thatis,

lo —wq |
e Ar—t

Ar(T — t)](nt1)/2

U,(l‘,t) = pzo,T(‘Tvt) = [

in formula (3.1.2), we get the standard Huisken’s monotonicity formula, as the Li-Yau-Hamilton
_ ‘ \v4 €1 u ‘ 2
u

expression V2 u + ﬁ is identically zero in this case.
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THEOREM 3.1.5 (Huisken’s Monotonicity Formula). For every zop € R™"*! and 7 > 0 we have
(see [40])

|lz—xq|? |z—zq|?

d e 4Atr—0 d e Ar—t)
dt /M 47 (T — t)|n/2 = /M [4m (T — t)|n/2

in the time interval [0, min{r, T}).
_ \1—19\2

Hence, the integral [, ﬁ

(& — 0| v) [

H 2(r —1t)

d,LLt

du is nonincreasing during the flow in [0, min{r, T'}).

EXERCISE 3.1.6. Show that for every zo € R"*1, 7 > 0 and a smooth function v : M x [0,T) —
R, we have

|z—x \2 |z—= \2 2
d ) ) (x — x| V)
L vdu = — H d
dt / an(r — o2 " / et o2 [ 2y |
z—zqg|?
e Ayv)d
+ A{ [47T(T o t)}n/Q (vt - g(t)v) :u’t )
in the time interval [0, min{r, T'}).
In particular if v : M x [0,T) — R is a smooth solution of v; = Ay,
|z—x \2 lz—=z ‘2 2
d e A1) e A1) (x —zo|v)
o vdu = H d
dt /N [ (r — o2 " /N rtr—op2 |- ey | U

in [0, min{r,T'}).

3.2. Type I Singularities and the Rescaling Procedure
In the previous chapter we showed that the curvature must blow up at the maximal time T
with the following lower bound
1

max |A(p,t 3
max [A(p, )| T

DEFINITION 3.2.1. Let 7T be the maximal time of existence of a mean curvature flow. If there
exists a constant C' > 1 such that we have the upper bound

C
20T —t)’
we say that the flow is developing at time T a type I singularity.
If such a constant does not exist, that is,

lim sup max |A(p, t)|VT — t = +00
t—T PEM

A
max |A(p, ?)]

we say that we have a type II singularity.

In this chapter we deal exclusively with type I singularities and the monotonicity formula
will be the main tool for the analysis. The next chapter will be devoted to type II singularities.
From now on, we assume that there exists some constant Cy > 1 such that

1 C
< max |A(p,t)| < 0

—< —_— (3.2.1)
2(T —t)  peM 2(T —t)

forevery t € [0,T).
Letpe Mand 0 <t < s < T, then

Gsap, ’
d H(p,£)|d d Co/n(T —
t £/|p|§/ ¢ < Co/n(T 1)

which implies that the sequence of functions ¢( -,t) converges as t — T' to some function ¢ :
M — R™1. Moreover, as the constant Cj is independent of p € M, such convergence is uniform

lo(p,s) —p(p, )| =
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and the limit function ¢ is continuous. Finally, passing to the limit in the above inequality, we
get

le(p,t) — or(p)| < Co/n(T —1). (3.2.2)

In all the chapter we will denote ¢r(p) by p.

DEFINITION 3.2.2. Let S be the set of points z € R"! such that there exists a sequence of
pairs (p;, t;) € M x [0,T) with ¢t; /T and ¢(p;,t;) — .
We call S the set of reachable points.

We have seen in Proposition 2.2.6 that S is compact and that 2 € S if and only if, for every
t € [0,T) the closed ball of radius 1/2n(T" — ¢) and center z intersects ¢(M, t). We show now that
S={p|pe M}.
Clearly {p|p € M} C S,suppose that z € S and ¢(p;, t;) — z, then, by inequality (3.2.2) we have
lo(pi,ti) — Di| < Con/n(T —t;), hence, p; — x asi — oo. As theset {p|p € M} is closed it follows
that it must contain the point x.

We define now a tool which will be fundamental in the sequel.

DEFINITION 3.2.3. For every p € M, we define the heat density function

0(p, 1) e
= / COEDIEN
and the limit heat density function as
O(p) = lim O(p.?).
As M is compact, we can also define the following maximal heat density

2
lz—zq|

(1) _e Yy (3.23)
EA .- ¥ ,/M [ (T — )2 M -~

and its limit ¥ = lim;_, 7 o (¢).

Clearly, (p,t) < o(t), forevery p € M and ¢t € [0,T) and ©(p) < X for every p € M.

The function © is well defined as the limit exists finite since 6(p, t) is monotone nonincreasing in
t and positive. Moreover, the functions 6( -, ) are all continuous and monotonically converging
to ©, hence this latter is upper semicontinuous and nonnegative.

The function o : [0,1") — Ris also positive and monotone nonincreasing, being the maximum
of a family of nonincreasing smooth functions, hence the limit ¥ is well defined and finite. More-
over, such family is uniformly locally Lipschitz (look at the right hand side of the monotonicity
formula), hence also o is locally Lipschitz, then by Hamilton’s trick 2.1.3, at every differentiability
timet € [0,T) of o we have

_le—ay|?

» e Z(Tl—tt)
ot =~ / dn(T )2

where z; € R"*! is any point where the maximum defining o (t) is attained, that is,

2

k2 LA (3.2.4)

Ut 5T

_lz—wy|?
(T —t)

olt) = /M gy -

REMARK 3.2.4. Notice that we did not define o(¢) as the maximum of (-, t)

lz—p>
e 4T-10)

—d
pedt Joy [ (T — )]z

which is taken among p € M. Clearly, this latter can be smaller than o (¢).
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We rescale now the moving hypersurfaces around p = lim;_,7 ¢(p, t), following Huisken [40],
- ©(q,t(s)) —p 1
2(q,8) = ———t— s=s5(t)=—=log(T —t
Flas) = S (t) = 5 log(I'~ )

and we compute the evolution equation for ¢(qg, s) in the time interval {7; log T, +oo> ,

- (3) w(%—=)
Op(g,t) | »lg;t) =D

ot 2T —t)
=V2(T' —t)H(q, t)v(q,t) + ¢(q, 5)
=H(q, $)7(q,8) + &(q, 9),

—2(T—1)

where H is the mean curvature of the rescaled hypersurfaces &, = ¢( -, s).

As [A] = 2(T —1)|A| < Cy < 400, all the hypersurfaces ¢, have equibounded curvatures,

moreover,

\P(pv t(S)) — ﬁ
2(T - t(s))

< Cor/2n(T —t(s))
V2AT - Us))

lp(p, s)| = = Cov/n

which implies that at every time s € [—% log T, +oo) the open ball of radius Cpv/2n centered at

the origin of R"! intersects the hypersurface ¢( -, s). More precisely, the point @(p, s) belongs to

the interior of such ball.
Then, we rescale also the monotonicity formula in order to get information on these hyper-
surfaces. In the following jis = [Q(Ifw will be the canonical measure associated to the rescaled

hypersurface ¢, which, by means of equation (2.3.1), satisfies

d ~ov~
%,U/s = (n - HQ),U/S )

S (%) 5wt

as

Ht i 1 0
=N —_—
R —0)72) TR — et ot
1
= NS — —H2
e p@—ppAT
=nfis — ﬁQﬁs .
PROPOSITION 3.2.5 (Rescaled Monotonicity Formula). We have
d [ _w? Ll | ~|? ~
— e” 2 dpg = — e 2 ’H + (y]| I/>’ dps <0 (3.2.5)
ds M M

which integrated becomes

i i 52 Cwi? |~ ~ 2 -
e 2 dis, — e 2 dpis, = e 2 ‘H+<y|u>’ dpigds.
M M s JIM
In particular,

e | 1% - Wi
e 2 ’H+<y|u>‘ dis ds < e 2 di_11,,7 <C < +00,
—LlogT J M M :

for a uniform constant C' = C(Area(ipy), T') independent of s € {—é logT, +oo> and p € M.
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z—p

PROOF. Keeping in mind that y = o) and s = —log(T — t) we have,

d Mk ds\ ' d Mk
— 2 di, = | — — -~ 2 dp
ds MF s (dt> dt /MP o

o —p|>
d e AT-1)
=27 —t)— | —————d
@0 |, wr— o
_lzp? . 2
e 1D (v —p|v)
= —2(T—t H d
T=0 [ e B+ |
Lu|? H (y|v) -

S

=—-2(T—-1 / e 2 +
( ) M V2(T —t)  2(T —t)
Y 2~ o~ 2 ~
:f/ 6_%‘H+<y|u>‘ diis .
M
The other two statements trivially follow. O

As a first consequence, we work out an upper estimate on the volume of the rescaled hyper-
surfaces in the balls of R" 1.
Fix a radius R > 0, if Bg = Br(0) C R™*!, then we have

H(B(M, 5) \ By) = /M i () R (3.26)

R2_|y|?

< / xma@)e™ " dii,
M

2 w2
SeR/Q/ e 2 diis
M
2 o
SeR /2/ € 2 d:u’—%logT
M

SéeRz/Q

where the constant C' is independent of R and s.

REMARK 3.2.6. As

|z —p|>
W C e At Area(pg)
™ s = ], oy o < Ty

we can choose the constant C to be independent also of p € M.

Another consequence is the following key technical lemma which is necessary in order to
take the limits of integrals of functions on the sequences of rescaled hypersurfaces.

LEMMA 3.2.7 (Stone [71]). The following estimates hold.
(1) There is a uniform constant C' = C(n, Area(yo),T) such that, for any p € M and for all
se [—%bgT, +oo>,
6_|y‘ d/’js S C.

M
(2) For any € > 0 there is a uniform radius R = R(e,n, Area(yo),T') such that, for any p € M

and for all s € [f% log T, +oo>,

/ W2 gpn <
J5.(M)\Br(0)

that is, the family of measures e W2 gy L G (M) is tight (see [19]).
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PROOF. By the rescaled monotonicity formula (3.2.5) we have that, for any p € M and for all
s € —% logT,—i—oo),

/ef|y|2/2dﬁ5§/ e WGy
M M 2

According to Remark 3.2.6, the right hand integral may be estimated by a constant depending
only on T and Area(pg), noton p € M. Hence, we have the following estimates for all p € M and

forall s € [7; log T, +oo),
/ e Wan" < ¢y (3.2.7)
@s(M)NBp41(0)
and

/ e Wan™ < ¢, (3.2.8)
@s(M)NBay,42(0)

where C; and C; are constants depending only on n, T' and Area(yyo).
Then, we compute for any p and s,

d - / ~ 1 ~ ~
—lyl — 2 —lyl
e dpns = n—H* — y|Hv + e dig
ds Jur ! M{ |.7/|<j| y)} !

< [ fn - Byl e
J M

< / {n+1- |y|}e_|y| djis
M

<(n+1) / e~ Wlapn - / elhapn
J@s(M)NBrn41(0) J@s(M)\B2n+2(0)

But then, by inequality (3.2.7) we see that we must have either

4/
— | el*lap, <0
dS M ¢ 1u’5 ’
or

/ eilyl dﬁn S Cl .
@s(M)\B2n+2(0)

Hence, in view of inequality (3.2.8), it follows that either

d

ds Me s )

or
/ e Wi, < ¢y + O,
M

which implies

/ 6_|y| d/js < maX{(Cl + CQ),/ e_ly‘ d/jfé logT} =C4
M M

for any p and s.
The proof of part (1) of the lemma follows by noticing that the integral quantity on the right hand
side can clearly be estimated by a constant depending on T and Area(yg) but notonp € M.

Letnow againp € M and s € [f é log T, +oo) arbitrary. Now subdivide @, (M) into “annular
pieces” {MF} > by setting
M? = @,(M) N B, (0),
and foreach k > 1,
MY = {y € 3o(M) 2" < |y < 2}
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Then, by part (1) of the lemma H(MF) < C5e" for each k, independently of the choice of p
and s. Hence in turn, for each k¥ we have

/ e lul?/2 AH™ < 036—%(2’“*1)28(2’“) _ 036(216_22k73)
J MF

again independently of the choice of p and s.
For any € > 0 we can find a kg = ko(e, n, Area(yo), T') such that

o
Z C36(2k,_22k'—3) S 57
k=ko

then, if R = R(e,n, Area(yy), T) is simply taken to be equal to 20—, we have

oo (oo}
/ e /2 g = 5 /~ PR G < 3 Gy < ¢
Ps(M)\Br(0) k=ko Y M¥ k=ko

and we are done also with part (2) of the lemma. |

COROLLARY 3.2.8. If a sequence of rescaled hypersurfaces s, locally smoothly converges (up to

reparametrization) to some limit hypersurface M, we have
/ e Wanr <
Moc
and
. _lv® W2~
lim e” 2 dug, = e 2 dH",
1—=00 J pr Moc

where the constant C' is the same of the previous lemma.

PROOF. Actually, it is only sufficient to show that the measures H" L @(M, s;) associated to
the hypersurfaces weakly*—converge to the measure #" L M. Indeed, for every R > 0 we have,

/ e~V gH™ < lim inf e W™ <liminf [ e Wap, <C
MosoNBg(0) =00 J5(M,s;)NBR(0) i—oo Jar

by the first part of the lemma above. Sending R to +oo, the first inequality follows.
The second statement is an easy consequence of the estimates in the second part of the lemma. [

Now we want to estimate the covariant derivatives of the rescaled hypersurfaces.

PROPOSITION 3.2.9 (Huisken [40]). For every k € N there exists a constant C}, depending only on
k, n, Co (the constant in formula (3.2.1)) and the initial hypersurface such that |V*Alg < Cy, for every

pE Mands e [fé 1ogT,+oo).
PROOF. By Proposition 2.3.5 we have for the original flow,
%W’“AP = A|VFAP2 — 2|VFHIA2 + > VPA % VIA + V'A x VFA |
p+g+r==k|p,q,r€EN
hence, with a straightforward computation, noticing that ﬁkm% = |VFAIZ[2(T — t)]"! we get
0 =p~ o R ~
52 VIAZ < =20k + DIVEA[ + A[VEAJF - 2/VF 1A
+Ck) Do [VPARIVIAG VAL VAL
p+q+r=k|p,q,reN

As |1~X|§ is bounded by the constant Cj, supposing by induction that for i« = 0,...,k — 1 we

have uniform bounds on ﬁ’ma with constants C; = C;(n, Cy, ¢g), we can conclude by means of
Peter—Paul inequality

5o o
S-[VFAZ < A|VFARZ + By VFAZ - 2/VF AL + Dy
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for some constants By, and Dy depending only on n, k, Cy and the initial hypersurface.
Then,

%qmg+ Bi|VF1A22) < A[VFALZ + By VFALZ - 2]VFHAR
+ Bkﬁﬁk*lm% + BkBk—1|6k71K|’?y
— 2By,|V¥A|Z + Dy, + By Dy
< A(VFAR + By [VFA]Z) - B VFAL
+ ByBj—1|V* 'A|2 + Dy + Br Dy
< A(VFAR + By[VF1AR) — By|VFA|2
+ BBy, 1C}_, + Dy + ByDy 4
<A(VFAR + By |VF1AR2)
— Bi(|[V*AR + By [VFAR)
+ By By-1Ci_, + Dy + By Dy—1 + BC7_,

where we used the inductive hypothesis |VF *11§|§ < Ck-1.

By the maximum principle, the function [V*A|2+ By, |[V*~ ' A[2 is then uniformly bounded in space
and time by a constant C? depending on n, k, Cj and the initial hypersurface, hence |VE FA|§ < Cy.
By the inductive hypothesis, the thesis of the proposition follows. O

We are now ready to study the convergence of the rescaled hypersurfaces as s — 4-o0.

PROPOSITION 3.2.10. For every point p € M and every sequence of times s; — oo there exists a
subsequence (not relabeled) of times such that the hypersurfaces ¢s,, rescaled around p, locally smoothly

converge (up to reparametrization) to some nonempty, smooth, complete limit hypersurface M., such that
H+ (y|v) = 0 for every y € M.

Any limit hypersurface satisfies H"(My, N Bg) < Cg for every ball of radius R in R" "1 and for every
k € N there are constants C, such that W’“mg < Cy.

Moreover, if the initial hypersurface was embedded, M., is embedded.

PROOF. We give a sketch of the proof, following Huisken [40].
By estimate (3.2.6) there is a uniform upper bound on H"(@(M,s) N Bgr) for each R, indepen-
dent of s. Moreover, by the uniform control on the norm of the second fundamental form of
the rescaled hypersurfaces in Proposition 3.2.9, there is a number ry > 0 such that, for each

s € [—% log T, +oo) and each ¢ € M, if US  is the connected component of & ' (B,,(£s(q))) in
M containing ¢, then ¢,(U? ) can be written as a graph of a smooth function f over a subset of

70,9
the ball of radius 7y in the tangent hyperplane to ¢5(M) C R"*! at the point ¢ (q).
The estimates of Proposition 3.2.9 then imply that all the derivatives of such function f up to the
order o € N are bounded by constants C,, independent of s.
Following now the method in [53] we can see that, for each R > 0, a subsequence of the hy-
persurfaces (M, s) N Br(0) must converge smoothly to a limit hypersurface in Br(0). Then,
the existence of a smooth, complete limit hypersurface M, follows from a diagonal argument,
letting R — +o00. Recalling the fact that every rescaled hypersurface intersects the ball of radius
CoVv/2n centered at the origin of R"*1, this limit cannot be empty. The estimates on the volume
and derivatives of the curvature follow from the analogous properties for the converging se-
quence.
The fact that M, satisfies H + (y|7) = 01is a consequence of the rescaled monotonicity formula
— we will see that in the next lecture — the same for the fact that if the initial hypersurface was
embedded, M@Q is embedded.

O



