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4.5. Embedded Closed Curves in the Plane

In the special case of the evolution of an embedded closed curve in the plane, it is possible to
exclude at all the type II singularities. This, together with the case of convex, compact, hypersur-
faces (as we have seen in the proof of Theorem 3.4.9) are the only known cases in which this can
be done in general.

By Theorem 4.4.6 and embeddedness, any blow up limit must a unit multiplicity grim reaper.
We apply now a very geometric argument by Huisken in [71] in order to exclude also such pos-
sibility (see also [64] for another similar quantity).

Given the smooth flow γt of an initial embedded closed curve in some interval [0, T ), we
know that the curve stays embedded during the flow so we can see every γt as a subset of R2.
At every time t ∈ [0, T ), for every pair of points p and q in γt we define dt(p, q) to be the geodesic
distance in γt of p and q, |p− q| the standard distance in R2 and Lt the length of γt.
We consider the function Φt : γt × γt → R defined as

Φt(p, q) =

{
π|p−q|
Lt

/ sin πdt(p,q)
Lt

if p 6= q,
1 if p = q ,

which is a perturbation of the quotient between the extrinsic and the intrinsic distance of a pair
of points on γt.
Since γt is smooth and embedded for every time, the function Φt is well defined and positive.
Moreover, it is easy to check that even if dt is notC1 at the pairs of points such that dt(p, q) = Lt/2,
the function Φt is C2 in the open set {p 6= q} ⊂ γt × γt and continuous on γt × γt.
By compactness, the following minimum there exists,

E(t) = min
p,q∈γt

Φt(p, q) .

We call this quantity Huisken’s embeddedness ratio.
Since the evolution is smooth it is easy to see that the function E : [0, T )→ R is continuous.

REMARK 4.5.1. The quantity E can be defined also for nonembedded closed curves, but in
such case E = 0, indeed its positivity is equivalent to embeddedness.

LEMMA 4.5.2 (Huisken [71]). The function E(t) is monotone increasing in every time interval
where E(t) < 1.

PROOF. We start differentiating in time Φt(p, q),

d

dt
Φt(p, q) =

π

Lt

〈p− q | k(p)ν(p)− k(q)ν(q)〉
|p− q|

/
sin

πdt(p, q)

Lt

+

(
π|p− q|
L2
t

∫
γt

k2 ds

)/
sin

πdt(p, q)

Lt

− π2|p− q|
L2
t

cos
πdt(p, q)

Lt

(
dt(p, q)

Lt

∫
γt

k2 ds−
∫ p

q

k2 ds

)/
sin2 πdt(p, q)

Lt

=

[
〈p− q | k(p)ν(p)− k(q)ν(q)〉

|p− q|2
+

1

Lt

∫
γt

k2 ds

− π

Lt
cot

πdt(p, q)

Lt

(
dt(p, q)

Lt

∫
γt

k2 ds−
∫ p

q

k2 ds

)]
Φt(p, q)

=

[
〈p− q | k(p)ν(p)− k(q)ν(q)〉

|p− q|2
+

1

Lt

(
1− πdt(p, q)

Lt
cot

πdt(p, q)

Lt

)∫
γt

k2 ds

+
π

Lt
cot

πdt(p, q)

Lt

∫ p

q

k2 ds

]
Φt(p, q)

where s is the arclength and k the curvature of γt. It is easy to see that being the function E
the minimum of a family of uniformly locally Lipschitz functions, it is also locally Lipschitz,
hence differentiable almost everywhere. Then, to prove the statement it is enough to show that
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dE(t)
dt > 0 for every time t such that this derivative exists. We will do that as usual, by Hamilton’s

trick (Lemma 2.1.3).
Let (p, q) be a minimizing pair at a differentiability time t and suppose that E(t) < 1. By the very
definition of Φt, it must be p 6= q.
We set α = πdt(p, q)/Lt and notice that α cotα < 1 as α ∈ (0, π/2]. Moreover,

∫
γt
k2 ds ≥(∫

γt
k ds

)2

/Lt ≥ 4π2/Lt. Then, we have

d

dt
E(t) ≥

[
〈p− q | k(p)ν(p)− k(q)ν(q)〉

|p− q|2
+

4π2

L2
t

(1− α cotα) +
π

Lt
cotα

∫ p

q

k2 ds

]
E(t)

that is,

d

dt
logE(t) ≥ 〈p− q | k(p)ν(p)− k(q)ν(q)〉

|p− q|2
+

4π2

L2
t

(1− α cotα) +
π

Lt
cotα

∫ p

q

k2 ds , (4.5.1)

for any minimizing pair (p, q).
Assume that the curve is parametrized counterclockwise by arclength and that p and q are like in
Figure 1.

β(q)

p

γt

qβ(p)

FIGURE 1.

We set p(s) = γt(s1 + s) with p = γt(s1), then, by minimality we have

0 =
d

ds
Φt(p(s), q)

∣∣∣∣
s=0

=
π

Lt

〈p− q | τ(p)〉
|p− q| sin πdt(p,q)

Lt

− π|p− q|
Lt sin2 πdt(p,q)

Lt

·
π cos πdt(p,q)Lt

Lt

where we denoted by τ(p) the oriented unit tangent vector to γt at p.
By this equality we get

cosβ(p) =
〈p− q | τ(p)〉
|p− q|

=
π|p− q|

Lt sin πdt(p,q)
Lt

cos
πdt(p, q)

Lt
= E(t) cosα

where β(p) ∈ [0, π/2] is the angle between the vectors p− q and τ(p).
Repeating this argument for the point q we get

cosβ(q) = −E(t) cosα

where, as before, β(q) is the angle between q − p and τ(q), see Figure 1. Clearly, it follows that
β(p) + β(q) = π.
Notice that if one of the intersections of the segment [p, q] with the curve is tangential, we would
have E(t) cosα = 1 which is impossible as we assumed that E(t) < 1. Moreover, by the relation
cosβ(p) = E(t) cosα < cosα it follows that β(p) > α.
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We look now at the second variation of Φt at the same minimizing pair of points (p, q). With
the same notation, if p = γt(s1) and q = γt(s2) we set p(s) = γt(s1 + s) and q(s) = γt(s2 − s).
After a straightforward computation, one gets

0 ≤ d2

ds2
Φt(p(s), q(s))

∣∣∣∣
s=0

=
π

Lt

(
〈p− q | k(p)ν(p)− k(q)ν(q)〉

|p− q|
+

4π2|p− q|
L2
t

)/
sin

πdt(p, q)

Lt

=

[
〈p− q | k(p)ν(p)− k(q)ν(q)〉

|p− q|2
+

4π2

L2
t

]
E(t) .

Hence, getting back to inequality (4.5.1) we have

d

dt
logE(t) ≥ 〈p− q | k(p)ν(p)− k(q)ν(q)〉

|p− q|2
+

4π2

L2
t

(1− α cotα) +
π

Lt
cotα

∫ p

q

k2 ds

≥ − 4π2

L2
t

α cotα+
π

Lt
cotα

∫ p

q

k2 ds

=
π cotα

Lt

(∫ p

q

k2 ds− 4π

Lt
α

)
,

so it remains to show that this last expression is positive. As∫ q

p

k2 ds ≥
(∫ q

p

k ds

)2

/dt(p, q)

and noticing that
∫ q
p
k ds is the angle between the tangent vectors τ(p) and τ(q) we have

(∫ q
p
k ds

)2

=

4β(p)2 < 4α2, as we concluded before.
Thus,

d

dt
logE(t) ≥ π cotα

Lt

(∫ p

q

k2 ds− 4π

Lt
α

)
>
π cotα

Lt

(
4α2

dt(p, q)
− 4π

Lt
α

)
= 0

recalling that α = πdt(p, q)/Lt. �

REMARK 4.5.3. By its definition and this lemma, the function E is always nondecreasing.
Actually, to be more precise, by means of a simple geometric argument it can be proved that if
E(t) = 1 the curve γt must be a circle. Hence, in any other case E is strictly increasing in time.

An immediate consequence is that for every initial embedded, closed curve in R2, there exists
a positive constant C depending on the initial curve such that on all [0, T ) we have E(t) ≥ C.
The same conclusion holds for any rescaling of such curves as the function E is scaling invariant
by construction.

REMARK 4.5.4. This lemma also provide an alternative proof of the fact that an initial em-
bedded, closed curve stays embedded. Indeed, it cannot develop a self–intersection during its
curvature flow, otherwise E would get zero.

We can then exclude type II singularities in the curvature flow of embedded closed curves.
Any blow up limit flow γ∞ is given (up to rigid motions) by a grim reaper, that is, the translating
graph Γ of the function y = − log cosx in the interval (−π/2, π/2). Assuming that γ∞0 = Γ,
we consider the following four points p1 = (−x1,− log cosx1), q1 = (x1,− log cosx1), p2 =
(−x2,− log cosx2) and q2 = (x2,− log cosx2) belonging to Γ, for 0 < x1 < x2 < π/2 such that
− log cosx2 > π/2− 3 log cosx1.
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As the rescaled curves γk0 converge locally in C1 to Γ, for any ε > 0 such that x2 + ε < π/2
and k is large enough the curve γk0 will be C1–close to Γ in the open rectangleRε = (−x2−ε, x2 +
ε)×(−ε,− log cosx2 +ε), hence there will be a pair of points (p, q) ∈ γk0 arbitrarily close to (p1, q1)
and another pair (p̃, q̃) ∈ γk0 arbitrarily close to (p2, q2). As k →∞, the geodesic distance dγk0 (p, q)

on the closed curve γk0 between p and q is definitely given by the length of the part of the curve
which is close to the vertex of Γ, indeed, this latter is smaller than π− 2 log cosx1, when k is large
enough, instead the other part of the curve has a length which is at least the sum of the Euclidean
distances |p̃ − p| + |q̃ − q| which is definitely larger than 2(log cosx1 − log cosx2) and this last
quantity is larger than π − 4 log cosx1, by construction.

Hence, when k is large enough, the Huisken’s embeddedness ratio for the rescaled curve γk0
is not larger than

π|p− q|
L

/
sin

πdγk0 (p, q)

L
≤ π(π + 2ε)

L

/
sin

πdγk0 (p, q)

L

≤ π(π + 2ε)

L

/ 2dγk0 (p, q)

L

=
π(π + 2ε)

2dγk0 (p, q)

≤ π2

dγk0 (p, q)
,

where L is the total length of the curve γk0 and we used the inequality sinx ≥ 2x/π holding for
every x ∈ [0, π/2].
Finally, again by the C1–convergence of γk0 to Γ in Rε, we can also assume that dγk0 (p, q) is larger
than − log cosx1.

Now we consider a sequence of pairs xi1 < xi2 as above such that xi1 → π/2, then we have a
sequence of rescaled curves γki0 such that the associated Huisken’s embeddedness ratio tends to
zero, as d

γ
ki
0

(p, q)→ +∞when i→∞.
This is in contradiction with the fact that the function E is scaling invariant and uniformly
bounded from below by some positive constant C for all the curves of the flow.
As this argument does not change if we apply to Γ any rigid motion, in presence of a type II
singularity in the embedded case, we would have a contradiction with the conclusion of Theo-
rem 4.4.6.

THEOREM 4.5.5. Type II singularities cannot develop during the curvature flow of an embedded,
closed curve in R2.

Collecting together Theorem 3.5.1 about type I singularities and this last proposition, we
obtain Theorem 3.4.8 by Gage and Hamilton and the following theorem due to Grayson [52],
whose original proof is more geometric and direct, showing that the intervals of negative cur-
vature vanish in finite time before any singularity. We underline that the success of the line of
proof we followed is due to the bound from below on Huisken’s embeddedness ratio implied by
Lemma 4.5.2.
Modifying a little such quantity, Andrews and Bryan [12] were even able to give a simple and
direct proof without passing through the classification of singularities.

THEOREM 4.5.6 (Grayson’s Theorem). Let γt be the curvature flow of a closed, embedded, smooth
curve in the plane, in the maximal interval of smooth existence [0, T ).
Then, there exists a time τ < T such that γτ is convex.
As a consequence, the result of Gage and Hamilton 3.4.8 applies and subsequently the curve shrinks
smoothly to a point as t→ T .

REMARK 4.5.7. This result, extended by Grayson to curves moving inside general surfaces,
allowed him to have a proof of the three geodesics theorem on the sphere [54] (first outlined by
Lusternik and Schnirelman in [91]).
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We add a final remark in this case of embedded closed curves.
Letting A(t) be the area enclosed by γt which moves by curvature, we have

d

dt
A(t) = −

∫
γt

k ds = −2π ,

hence, as the evolution is smooth till the curve shrinks to a point at time T > 0 and clearly A(t)
goes to zero, we have A(0) = 2πT . That is, the maximal time of existence is exactly equal to the
initially enclosed area divided by 2π.

4.5.1. An Alternative Proof of Grayson’s Theorem. Ideas and techniques are related to the
unpublished work of Ilmanen [80].

In the special case of embedded curves in the plane, one can avoid the use of Hamilton’s Har-
nack inequality in order to deal with type II singularities. By means of Huisken’s monotonicity
formula we can produce a homothetic blow up limit also in the type II case.

As underlined in Remark 3.2.23, White’s Theorem 3.2.22 holds in general, without assuming
any blow up rate on the curvature, hence at a singularity time T > 0 we have that Σ > 1 (recall
Definition 3.2.3). Moreover, the estimates in Lemma 3.2.7 are also independent of the type I
hypothesis.
Then, rescaling the curves around the moving points xt like in Remark 3.3.9, we have

σ(0)− Σ =

∫ +∞

− 1
2 log T

∫
γr

e−
|y|2
2

∣∣∣k̃ + 〈y | ν̃〉
∣∣∣2 ds dr < +∞ .

Clearly, since we are not assuming the type I hypothesis, the curvatures k̃ of the rescaled curves
γ̃r are not bounded, but by this formula it follows that for every family of disjoint intervals
(ai, bi) ⊂ [− 1

2 log T,+∞) such that
∑
i∈N(bi − ai) = +∞ we can find a sequence ri ∈ (ai, bi) such

that ri ↗ +∞,

lim
i→∞

1√
2π

∫
γ̃ri

e−
|y|2
2

∣∣∣k̃ + 〈y | ν̃〉
∣∣∣2 ds = 0

and

lim
i→∞

1√
2π

∫
γ̃ri

e−
|y|2
2 ds = lim

i→∞
σ(t(ri)) = Σ . (4.5.2)

By the estimate (3.2.7) on the local length, it follows that the sequence of curves γ̃ri has curvatures
locally equibounded in L2. Hence, we can extract a subsequence which converges inC1

loc
to a limit

curve γ̃∞. Such limit curve satisfies k̃+〈x | ν̃〉 = 0, as the integral
∫
γ̃
e−
|y|2
2

∣∣∣k̃ + 〈y | ν̃〉
∣∣∣2 ds is lower

semicontinuous under C1
loc

–convergence. Moreover, by a bootstrap argument γ̃∞ is smooth.
By the energy argument in the proof of Proposition 3.4.1 and the length estimate in Lemma 3.2.7,
this limit curve is either a line (with possible integer multiplicity) or it is bounded, hence closed
and the convergence is actually in C1. As the initial curve was embedded, the Huisken’s em-
beddedness ratio E is uniformly bounded from below on the sequence of rescaled curves, this
implies that also γ̃∞ is embedded. Indeed, if it has self–intersections or multiplicities the quantity
E must approach zero, in the case of a closed limit curve because of the C1–convergence, in the
case that the limit curve is a line by means of the same argument used to exclude the grim reaper
in the proof of Theorem 4.5.5.
Hence, by the classification theorem 3.4.1 we conclude that there are only two possibilities for
γ̃∞, either a line through the origin of R2 or the unit circle, both with unit multiplicity.
Since the second point of Lemma 3.2.7 implies that

lim
i→∞

1√
2π

∫
γ̃ri

e−
|y|2
2 ds =

1√
2π

∫
γ̃∞

e−
|y|2
2 ds ,

and the first limit is equal to Σ > 1 by equation (4.5.2), we conclude that γ̃∞ is the unit circle.
Moreover, the curvatures of the converging sequence of curves are equibounded in L2 (not only
locally).
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Fixing i ∈ N and letting ρ = r − ri < 1, as r = − 1
2 log 2(T − t), recalling the formulas in

Remark 2.3.2 we compute the evolution of the following quantity,

d

dr

∫
γ̃r

(k̃2 + ρk̃2
s) ds = 2(T − t) d

dt

∫
γt

√
2(T − t) k2 ds+

∫
γ̃r

k̃2
s ds

+ 2(T − t)ρ d
dt

∫
γt

(
√

2(T − t))3 k2
s ds

= −
√

2(T − t)
∫
γt

k2 ds+ (
√

2(T − t))3

∫
γt

(2kkss + k4) ds

+

∫
γ̃r

k̃2
s ds− 3(

√
2(T − t))

3
ρ

∫
γt

k2
s ds

+ (
√

2(T − t))
5
ρ

∫
γt

(2ksksss + 7k2k2
s) ds

=

∫
γ̃r

[
−k̃2 + 2k̃k̃ss + k̃4 + k̃2

s − 3ρk̃2
s + 2ρk̃sk̃sss + 7ρk̃2k̃2

s

]
ds ,

where we used the formula ∂tks = ∂s∂tk + k2ks = ksss + 4k2ks.
By integration by parts and Peter–Paul inequality, we have∫

γ̃r

k̃2k̃2
s ds =

1

3

∫
γ̃r

∂s(k̃
3)k̃s ds = −1

3

∫
γ̃r

k̃3k̃ss ds ≤
1

6

∫
γ̃r

k̃6 + k̃2
ss ds

and
d

dr

∫
γ̃r

(k̃2 + ρk̃2
s) ds ≤

∫
γ̃r

[
−k̃2

s + k̃4 − k̃2 − 3ρk̃2
s − 2ρk̃2

ss + 7ρ(k̃6 + k̃2
ss)/6

]
ds

≤
∫
γ̃r

(−k̃2
s + k̃4 + 3ρk̃6) ds .

Now, the following interpolation inequalities for any closed curve in the plane of length L (see
Aubin [20, page 93])

‖k̃‖4L4 ≤ C‖k̃s‖L2‖k̃‖3L2 +
C

L
‖k̃‖4L2 and ‖k̃‖6L6 ≤ C‖k̃s‖2L2‖k̃‖4L2 +

C

L2
‖k̃‖6L2

imply, by means of Young inequality,∫
γ̃r

k̃4 ds ≤ 1

2

∫
γ̃r

k̃2
s ds+

1

2

(∫
γ̃r

k̃2 ds
)3

+
(∫

γ̃r

k̃2 ds
)3

+
C

L3(γ̃r)

and

3ρ

∫
γ̃r

k̃6 ds ≤
(
ρ

∫
γ̃r

k̃2
s ds

)3

+ 2
(∫

γ̃r

k̃2 ds
)3

+
C

L2(γ̃r)

(∫
γ̃r

k̃2 ds
)3

.

Hence, as we know that L(γ̃r) ≥
∫
γ̃r
e−
|y|2
2 ds ≥

√
2π and ρ < 1, we conclude

d

dr

∫
γ̃r

(k̃2 + ρk̃2
s) ds ≤

∫
γ̃r

(−k̃2
s + k̃2

s/2) ds+ C
(∫

γ̃r

k̃2 ds
)3

+ C

+
(
ρ

∫
γ̃r

k̃2
s ds

)3

+ C
(∫

γ̃r

k̃2 ds
)3

≤C
(∫

γ̃r

k̃2 ds
)3

+
(
ρ

∫
γ̃r

k̃2
s ds

)3

+ C

≤C
(∫

γ̃r

(k̃2 + ρk̃2
s) ds

)3

+ C ,

for a constant C independent of r ≥ ri and i ∈ N.
Integrating this differential inequality for the quantity Qi(r) =

∫
γ̃r

(k̃2 + (r − ri)k̃
2
s) ds in the

interval [ri, ri + 2δ] it is easy to see that if δ > 0 is small enough, we have Qi(r) ≤ C(δ,Qi(ri)) =
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C
(
δ,
∫
γ̃ri

k̃2 ds
)

= C(δ), for every r ∈ [ri, ri + 2δ], as the curves γ̃ri have uniformly bounded

curvature in L2. Hence, if r ∈ [ri + δ, ri + 2δ] we have the estimates∫
γ̃r

(k̃2 + δk̃2
s) ds ≤

∫
γ̃r

(k̃2 + (r − ri)k̃2
s) ds ≤ C(δ)

which imply ∫
γ̃r

k̃2
s ds ≤

C(δ)

δ
,

for every r ∈ [ri + δ, ri + 2δ] and a constant C(δ) independent of i ∈ N.
We can now find as before a sequence of values qi ∈ [ri + δ, ri + 2δ] such that

lim
i→∞

1√
2π

∫
γ̃qi

e−
|y|2
2

∣∣∣k̃ + 〈y | ν̃〉
∣∣∣2 ds = 0 .

and

lim
i→∞

1√
2π

∫
γ̃qi

e−
|y|2
2 ds = lim

i→∞
σ(t(qi)) = Σ > 1 .

As this new sequence of rescaled curves γ̃qi also satisfies the length estimate (3.2.7) and has k̃ and
k̃s uniformly bounded in L2, we can extract a subsequence (not relabeled) that converges in C2

to a limit curve which is again the unit circle.
Then, definitely the curves γ̃qi have positive curvature, hence they are convex. This means that
the same holds for γt at some time t ∈ [0, T ), which is Grayson’s result.

REMARK 4.5.8. Pushing a little forward this analysis, one can actually prove along the same
lines also the C∞–convergence of the full sequence of the rescaled curves to the unit circle, as
proved by Gage and Hamilton in [47, 48, 49].

REMARK 4.5.9. Actually, the C1
loc

–convergence to a line in the case Σ = 1 allows the pos-
sibility to avoid the application of White’s theorem. Indeed, the boundedness of the curvature
around every x0 ∈ S then follows also by the interior estimates of Ecker and Huisken.

We remark that the interesting point of this line in proving Grayson’s theorem is the fact
that we did not distinguish between type I and type II singularities. Indeed, the curvature of the
rescaled curves could be unbounded, but the control in L2

loc
implies the C1

loc
–convergence which

is sufficient to obtain the smoothness of the limit curve. In higher dimension the uniform control
of the mean curvature in L2

loc
is not strong enough to give the C1

loc
–convergence of a subsequence

of rescaled hypersurfaces, hence, this “unitary” line of analysis is difficult to be pursued in order
to get smooth homothetic blow up limits also for type II singularities.
It is anyway possible to produce a “homothetic” blow up limit introducing weak definitions of
hypersurfaces (varifolds, currents, see [80]), the difficulty is then to show the regularity and the
embeddedness of such limit.
Some very interesting unpublished results in this direction were obtained by Ilmanen in dimen-
sion two [80] (which is, in some sense, the critical case), in particular, assuming the embeddedness
and the mean convexity of the surfaces, it can be shown that the convergence and the blow up
limits are smooth.

All this discussion underlines the variational nature of the arguments (in particular, the
monotonicity formula) in the analysis of type I singularities, against the nonvariational point
of view (substantially based on the maximum principle) in dealing with type II ones.

4.6. An Example of Singularity Analysis

We give an example how the results of this and previous chapter can be used to fully under-
stand the singularity formation in some cases (following a suggestion of Or Hershkovits).
We consider a torus of rotation in R3 such that H > 0, obtained rotating around the z axis a small
circle in the xz plane with center on the x axis quite far from the origin. One clearly expects that
the torus collapses on a circle.


