Geometria 2, 1 febbraio 2019

Esercizio 1. Per ogni $n \in \mathbb{Z}$ Sia C_n il semicerchio chiuso del semipiano superiore di \mathbb{R}^2 passante per (1,0), $(2^n,0)$ e ortogonale all'asse orizzontale.

- (1) Si dica se $X = \bigcup_{n>0} C_n$ è connesso.
- (2) Si dica se $Y = \bigcup_{n < 0} C_n$ è localmente connesso.
- (3) Si dica se \bar{X} è connesso per archi.
- (4) Si dica se \bar{Y} è connesso per archi.
- (5) Si dica se \bar{Y} è localmente connesso.
- (6) Si dica se $(\bar{X})^c$ è connesso.
- (7) Si dica se $(\bar{Y})^c$ è localmente connesso.

Soluzione.

- (1) Si. Ogni C_n è un arco, quindi connesso per archi. Ogni C_n contiene (0,1) quindi $\bigcup_n C_n$ è unione di connessi non disgiunti, ergo connesso.
- (2) Si. Se $(1,0) \neq p \in C_n$ esiste r > 0 tale che $B(p,r) \cap Y = B(p,r) \cap C_n$, che è localmente connesso quindi p possiede un sistema fondamentale di intorni connessi. Se p = (1,0) allora per 0 < r la palla $b(p,r) \cap Y$, è l'unione di $C_n \cap b(p,r)$ che sono archi che partono da p e lo contengono, quindi $b(p,r) \cap Y$ è connesso. In conclusione, ogni $p \in Y$ ha un sistema fondamentale di intorni connessi per archi.
- (3) Si. $\bar{X} = X \cup \{x = 1\}$ e i punti di \bar{X} si connettono tra loro tramite archi che passano per (1,0). Per vedere che \bar{X} è proprio quello, basta scrivere le equazioni del cerchio C_n , che ha centro in $((1+2^n)/2,0)$ e raggio $|1-2^n|/2$. In formule $(X \cup \{x = 1\})^c = \bigcup_n \{\sqrt{(\frac{2^{n-1}-1}{2})^2 (x \frac{1+2^{n-1}}{2})^2} < y < \sqrt{(\frac{2^n-1}{2})^2 (x \frac{1+2^n}{2})^2}\} \cup \{y < 0\} \cup \{x < 1\}$ è unione di aperti, quindi $X \cup \{x = 1\}$ è chiuso e dunque contiene \bar{X} . Per ogni c > 0 la retta y = c interseca C_n per n sufficientemente grande, quindi ogni punto di x = 1 è limite di una successione $x_n \in C_n$, ergo $X \cup \{x = 1\} \subseteq \bar{X}$.
- (4) Si. Identificando \mathbb{R}^2 con \mathbb{C} l'inversione $z \mapsto 1/z$ manda X in Y. Se ne deduce che la chiusura di $Y \in Y \cup \{(x-1/2)^2 + y^2 = 1/4, y \ge 0\}$, che è unione di connessi contenenti (1,0) e quindi è connesso.
- (5) No. I punti del tipo p = (1, t) con t > 0 non hanno intorni connessi in $\bar{X} \cap B(p, t/3)$. Quindi \bar{X} non è localmente connesso. Ragionando con l'inversione si deduce che neanche \bar{Y} è localmente connesso. (Oppure, si mostra a mano che gli intorni piccoli dei punti $(x 1/2)^2 + y^2 = 1/4$ non sono connessi.)
- (6) Si. Ogni punto di \bar{X}^c con x > 1 si connette a un punto dell'asse orizzontale con un cerchio che sta tra un C_n e un C_{n+1} . Tale punto si connette a (0, -1) con un arco nel semipiano inferiore. I punti con x < 1 si connettono all'asse orizzontale con un segmento verticale. Quinci \bar{X}^c è connesso per archi e dunque connesso.
- (7) Si, in quanto aperto di un localmente connesso (\mathbb{R}^2).

Esercizio 2. Sia $X = \mathbb{R}^2 \setminus \{(0,0)\}$. Si consideri l'azione di \mathbb{Z} su X data da $n(x,y) = (2^n x, 2^{-n} y)$.

- (1) Si dica se X/\mathbb{Z} è compatto.
- (2) Si dica se X/\mathbb{Z} è T_2 .
- (3) Si dica se X/\mathbb{Z} è a base numerabile.
- (4) Si dica se X/\mathbb{Z} è a localmente numerabile.

- (5) Si dica se X/\mathbb{Z} è localmente compatto.
- (6) Si dica se X/\mathbb{Z} è connesso.
- (7) Si dica se X/\mathbb{Z} è localmente connesso.
- (8) Si dica se i punti di X/\mathbb{Z} son chiusi.

Soluzione.

- (1) No. La funzione $f: X \to \mathbb{R}$ definita da f(x,y) = xy è costante sulle orbite, dunque passa al quoziente $[f]: X/\mathbb{Z} \to \mathbb{R}$. L'immagine di f è \mathbb{R} (perché r = f(1,r)) che non è compatto. Quindi X/\mathbb{Z} non può essere compatto.
- (2) No. I punti [(0,1)] e [(1,0)] non hanno intorni disgiunti. Ogni intorno saturo di (1,0) deve contenere un rettangolino $(1-r,1+r)\times(-r,r)$ e la sua orbita, che contiene $(\frac{1-r}{2^n},\frac{1+r}{2^n})\times(-2^nr,2^nr)$. Esso interseca ogni intorno di (0,1) per n sufficientemente grande.
- (3) Si. X è a base numerabile in quanto \mathbb{R}^2 lo è e i quozienti per azioni di gruppi preservano questa caratteristica.
- (4) Si. Perché base numerabile implica localmente numerabile.
- (5) Si. Perché X è localmente compatto e i quozienti per azioni di gruppi preservano questa caratteristica.
- (6) Si. Perché X è connesso e i quozienti di connessi son connessi.
- (7) Si. Perché X è localmente connesso e i quozienti di localmente connessi son localmente connessi.
- (8) Si. Perché le orbite son chiuse in X. Infatti se $xy=c\neq 0$, l'orbita di (x,y) è una successione di punti sull'arco di iperbole xy=c ed è quindi un chiuso di \mathbb{R}^2 , quindi un chiuso di X. Se x=0 l'orbita di (0,y) è la successione $(0,2^ny)$ che si accumula in zero, ma siccome l'origine è stata tolta, l'orbita di (0,y), che non è chiusa in \mathbb{R}^2 , risulta essere l'intersezione di $\overline{\{(0,2^ny)\}}$ con X e quindi è un chiuso di X. Stesso ragionamento se y=0.

Esercizio 3. Sia X uno spazio T_2 e localmente connesso per archi. Sia $x \in X$ e siano $V \subseteq U$ intorni aperti e connessi di x. Dimostrare che il numero di componenti connesse per archi di $U \setminus \{x\}$ è minore o uguale al numero di quelle di $V \setminus \{x\}$.

Soluzione. Si noti che $V \setminus \{x\}$ e $U \setminus \{x\}$ sono aperti perché X è T_2 . Quindi sono localmente connessi per archi perché X lo è. Le loro componenti connesse sono dunque aperte e chiuse (in $V \setminus \{x\}$ e $U \setminus \{x\}$ rispettivamente). Sia f la funzione che associa ad ogni componente connessa C di $V \setminus \{x\}$ la componente connessa di C in $U \setminus \{x\}$. Basta mostrare che f è suriettiva. Se B è una componente connessa di $U \setminus \{x\}$ che non interseca V allora allora essa è aperta e chiusa in U perché $U \setminus V$ è chiuso in $U \setminus \{x\}$. Ma ciò contraddice il fatto che U sia connesso.