1. Il rango di \(\begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 2 & 0 & 0 & 2 & 0 \\ 1 & 1 & 0 & 2 & 0 \end{pmatrix} \) è: \(\boxed{a \ 2; \ b \ 4; \ c \ 3; \ d \ 5} \).

2. Le coordinate di \((1, 1, 0)\) rispetto alla base di \(\mathbb{C}^3 \) formata da \(e_3, ie_2, -e_1 \), sono:
\(\boxed{a \ (0, -i, -1); \ b \ (0, i, 1); \ c \ (1, 1, 0); \ d \ (1, -i, 0)} \).

3. Se \(\{e_1, e_2, e_3\} \) è la base canonica di \(\mathbb{R}^3 \), quale dei seguenti insiemi di vettori è una base di \(\mathbb{R}^3 \)?
\(\boxed{a \ \{0, e_1, e_2, e_3\}; \ b \ \{e_1 + e_2, e_1 + e_3, e_2 + e_3\}; \ c \ \{e_1, e_2\}; \ d \ \text{nessuna delle precedenti.}} \)

4. La dimensione di \(\{f \in \text{hom}(\mathbb{R}^3, \mathbb{R}^2)|f(1, 1, 0) = f(1, 1, 1) = 0\} \) è: \(\boxed{a \ 6; \ b \ 1; \ c \ 4; \ d \ 2} \).

5. Quanti blocchi ha la forma di Jordan di \(f(x, y, z, s, t) = (0, -y + z, -y + z, y, t, 0) \)?
\(\boxed{a \ 1; \ b \ 2; \ c \ 3; \ d \ 4} \).

6. Sia \(A \in \mathcal{M}_{4 \times 4}(\mathbb{C}) \) non diagonalizzabile con autovalori 0, 1, −1. Se 0 ha molteplicità algebrica 2 allora:
\(\boxed{a \ \text{dim} \ker A = 1; \ b \ \text{dim} \ker A = 2; \ c \ \text{rango} A > 3 \ \text{d \ rango} A \leq 2} \).

7. La matrice di \(f : \mathbb{C} \rightarrow \mathbb{C}, z \mapsto iz \) rispetto alla base \(\{1, i\} \) su \(\mathbb{R} \) è:
\(\boxed{a \ \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right); \ b \ \left(\begin{array}{cc} i & 0 \\ 0 & i \end{array} \right); \ c \ \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right); \ d \ \left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right)} \).

8. La matrice, in base canonica, della forma bilineare \(b((x_1, x_2), (y_1, y_2)) = x_1y_1 - 2x_2y_2 \) è:
\(\boxed{a \ \left(\begin{array}{cc} 1 & 0 \\ 0 & -2 \end{array} \right); \ b \ \left(\begin{array}{cc} 1 & 1 \\ 0 & -2 \end{array} \right); \ c \ \left(\begin{array}{cc} 1 & -2 \\ 0 & 1 \end{array} \right); \ d \ \left(\begin{array}{cc} -2 & 0 \\ 1 & 1 \end{array} \right)} \).

9. Sia \(b \in \text{bil}(\mathbb{R}^4) \) la forma simmetrica con forma quadratica \(2xy + zt \). La segnatura \((n_0, n_+, n_-) \) di \(b \) è:
\(\boxed{a \ (1, 2, 1); \ b \ (0, 2, 2); \ c \ (2, 1, 1); \ d \ (1, 1, 2)} \).

10. Un sistema lineare di 3 equazioni in 5 incognite: \(\boxed{a \ \text{non ha soluzione}; \ b \ \text{ha sempre almeno una soluzione}; \ c \ \text{ha soluzione solo in certi casi}; \ d \ \text{ha sempre una soluzione unica}} \).

11. Quali dei seguenti vettori sono affinemente indipendenti tra loro?
\(\boxed{a \ (1, 0, 0, 0, 0, 0, 1); \ b \ (1, 0, 0, 0, -1, 0); \ c \ (1, 0, 0, 0, 0, 1); \ d \ (2, 0, 0, 2, 1, 1)} \).

12. Se \(f \in \text{hom}(V, W) \) con \(V, W \) spazi vettoriali di dimensione finita, allora:
\(\boxed{a \ \text{Imm} f \neq \{0\}; \ b \ \text{dim} \text{Imm} f > \text{dim} \ker f; \ c \ \ker f \neq \{0\}; \ d \ \text{dim} \text{Imm} f \leq \text{dim} (V)} \).

13. In \(\mathbb{R}^3 \) standard, il piano contenente la retta \(x - y = 2z + 1 = 2z + x \) ed il punto \((1, 2, -1) \) è:
\(\boxed{a \ \{3, 2, 1\} + \{x = 1\}; \ b \ x = 3; \ c \ 2x + y + 2z = 2; \ d \ \text{Tale piano non è univocamente determinato}} \).

14. In \(\mathbb{R}^3 \) siano \(v_1 = (1, 2, 3), v_2 = (4, 5, 6), v_3 = (7, 8, 9) \) e \(w_1 = (0, 1, 1), w_2 = (1, 0, 1), w_3 = (1, 1, 0) \). Una \(f \in \text{End}(\mathbb{R}^3) \) tale che \(f(v_i) = w_i \) per ogni \(i \):
\(\boxed{a \ \text{non esiste}; \ b \ esiste ed è unica}; \ c \ esiste ma non è unica; \ d \ \text{nessuna delle altre}} \).

15. Date due rette affini in \(\mathbb{R}^3 \), quale affermazione è falsa?
\(\boxed{a \ \text{se si intersecano allora sono contenute in un piano affine}; \ b \ \text{se sono contenute in un piano allora si intersecano}; \ c \ \text{se sono sghembe generano \(\mathbb{R}^3 \); \ d \ \text{se le giaciture sono uguali allora sono contenute in un piano affine}} \).
Risposte esatte

Cod. 8919280

1. c
2. a
3. b
4. d
5. c
6. a
7. a
8. a
9. b
10. c
11. a
12. d
13. d
14. a
15. b
1. La conica di equazione \((x-1)^2 - (x-y)^2 - 1 = 0\) è:
 - \(\text{a} \) un'iperbole;
 - \(\text{b} \) un'ellisse;
 - \(\text{c} \) una parabola;
 - \(\text{d} \) una coppia di rette incidenti.

2. Le coordinate di \(1 - x + x^2\) rispetto alla base \(1, 1 + x, x^2\) di \(\mathbb{R}_2[x]\) sono:
 - \(\text{a} \) \((1, -1, 1)\);
 - \(\text{b} \) \((2, -1, 1)\);
 - \(\text{c} \) \((0, 1, 0)^2\);
 - \(\text{d} \) \((-1, 2, 1)\).

3. Quale di questi è un insieme di vettori linearmente indipendenti in \(\mathbb{R}[x]?)
 - \(\text{a} \) \(x^2, (x+1)^2, 2x, 1\);
 - \(\text{b} \) \((1+x)^7, (x-x^2+3)^5\);
 - \(\text{c} \) \((x+1)(x-1), x+1, x-1, x^2\);
 - \(\text{d} \) nessuno.

4. Sia \(A = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}\). Quale di questi insiemi è un sottospazio vettoriale di \(\mathcal{M}_{2 \times 2}(\mathbb{C})\)?
 - \(\text{a} \) \(\{B \mid B = A^T\}\);
 - \(\text{b} \) \(\{B \mid \det(B) = \det(A)\}\);
 - \(\text{c} \) \(\{B \mid AB = 0\}\);
 - \(\text{d} \) nessuno.

5. Quali sono gli autovalori dell'endomorfismo di \(\mathcal{M}_{2 \times 2}(\mathbb{R})\) definito da \(f(X) = X + X^T\)?
 - \(\text{a} \) \(\pm 1\);
 - \(\text{b} \) \(2\);
 - \(\text{c} \) \(0, 2\);
 - \(\text{d} \) \((-1, 1, 0, 2)\).

6. Sia \(f(x, y, z) = (2x, y, x+y+z)\). Quali dei seguenti è autovettore di \(f\)?
 - \(\text{a} \) \((2, -1, -1)\);
 - \(\text{b} \) \((1, 0, 1)\);
 - \(\text{c} \) \((1, 2, 3)\);
 - \(\text{d} \) nessuno dei precedenti.

7. La matrice associata a \(f(x, y) = (x+y, x+y)\) rispetto alla base \(v_1 = (1, -1), v_2 = (1, -1)\) è:
 - \(\text{a} \) \(\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}\);
 - \(\text{b} \) \(\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}\);
 - \(\text{c} \) \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\);
 - \(\text{d} \) \(v_1, v_2\) non è una base.

8. Sia \(b \in \text{bil}(\mathbb{R}^2)\) la forma simmetrica con forma quadratica \(x^2 - y^2 + 2xy\). La matrice di \(b\) rispetto alla base \((1, 1), (1, 0)\) è:
 - \(\text{a} \) \(\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}\);
 - \(\text{b} \) \(\begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix}\);
 - \(\text{c} \) \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\);
 - \(\text{d} \) \(\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}\).

9. Su \(\mathbb{R}_{\leq 1}[x]\) con base \(1, x, \) la matrice associata al prodotto scalare \(\langle p, q \rangle = 6 \int_0^1 p(x)q(x)dx\) è:
 - \(\text{a} \) \(\begin{pmatrix} 6 & 3 \\ 3 & 2 \end{pmatrix}\);
 - \(\text{b} \) \(\begin{pmatrix} 2 & 2 \\ 2 & 8/3 \end{pmatrix}\);
 - \(\text{c} \) \(\begin{pmatrix} 1/3 & 1/2 \\ 1/2 & 1 \end{pmatrix}\);
 - \(\text{d} \) \(\begin{pmatrix} 12 & 24 \\ 24 & 64 \end{pmatrix}\).

10. Quante soluzioni ha in \((\mathbb{Z}_2)^3\) il sistema:
 \[
 \begin{align*}
 x + z &= 0 \\
 x + y + z &= 0
 \end{align*}
 \]
 - \(\text{a} \) \(2\);
 - \(\text{b} \) \(1\);
 - \(\text{c} \) \(0\);
 - \(\text{d} \) \(4\).

11. La funzione da \(\mathbb{R}^3\) in sé definita da \(f(x, y, z) = (z, y, x)\) è:
 - \(\text{a} \) una rotazione;
 - \(\text{b} \) una riflessione;
 - \(\text{c} \) una traslazione;
 - \(\text{d} \) nessuna delle precedenti.

12. L'immagine di \(f \in \text{hom}(\mathbb{R}^4, \mathbb{R}^3)\) associata alla matrice \(\begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & -2 & 2 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}\) ha dimensione:
 - \(\text{a} \) \(0\);
 - \(\text{b} \) \(2\);
 - \(\text{c} \) \(4\);
 - \(\text{d} \) nessuna delle precedenti.

13. Sia \(f \in \text{hom}(\mathcal{M}_{2 \times 2}(\mathbb{R}), \mathbb{R}^2)\) data da \(f(A) = (\text{traccia}(A), -\text{traccia}(A))\). La matrice di \(f\) nelle basi \(v_1 = (1, 0, 0), v_2 = (1, 1, 0), v_3 = (0, 0, 1), v_4 = (0, 0, 1)\) di \(\mathcal{M}_{2 \times 2}(\mathbb{R})\) e \(w_1 = (1, 1), w_2 = (0, -1)\) di \(\mathbb{R}^2\) è:
 - \(\text{a} \) \(\begin{pmatrix} 2 & 0 \\ 4 & 0 \end{pmatrix}\);
 - \(\text{b} \) \(\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}\);
 - \(\text{c} \) \(\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}\);
 - \(\text{d} \) \(f \notin \text{hom}(\mathcal{M}_{2 \times 2}(\mathbb{R}), \mathbb{R}^2)\).

14. In \(\mathbb{R}^2\) siano \(P_1 = (1, 0), P_2 = (0, 0), P_3 = (0, 1)\).
 - \(\text{a} \) Esiste un'isometria che manda \(P_1\) in \(P_2\), \(P_2\) in \(P_3\) e \(P_3\) in \(P_1\);
 - \(\text{b} \) Esiste un'affinità che manda \(P_1\) in \(P_2\), \(P_2\) in \(P_3\) e \(P_3\) in \(P_1\);
 - \(\text{c} \) Esiste \(f \in \text{End}(\mathbb{R}^2)\) che manda \(P_1\) in \(P_2\), \(P_2\) in \(P_3\) e \(P_3\) in \(P_1\);
 - \(\text{d} \) Nessuna delle precedenti.

15. In \(\mathbb{R}^3\), la distanza tra \(P = (0, -1, 1)\) ed il piano \(\pi\) di equazione \(x - y - z = 1\) è:
 - \(\text{a} \) \(0\);
 - \(\text{b} \) \(1\);
 - \(\text{c} \) \(-1\);
 - \(\text{d} \) \(1/\sqrt{3}\).

Non è concesso alzarsi prima del termine né chiedere chiarimenti. Telefoni, tablet, smartwatch, etc... devono essere spenti. Sul tavolo si possono tenere solo i fogli forniti, una penna, libretto e/o documenti. Non si può usare la calcolatrice. Ricordarsi di annotare le risposte date sull’apposito foglio. Risposta esatta 2 punti, errata -1, non data 0. Si è ammessi all’orale con 18. Va consegnato SOLO questo foglio.
Risposte esatte

Cod. 7919271

1. a
2. b
3. b
4. c
5. c
6. b
7. d
8. b
9. a
10. a
11. b
12. d
13. a
14. b
15. d
1. La conica di equazione $y^2 + 2y + 1 = x^2$ è:
 - [a] un’ellisse reale; [b] una coppia di rette incidenti; [c] una parabola; [d] un piano.
2. In \mathbb{R}^4, le coordinate di $(1, 0, 1, 0)$ nella base $v_1 = (1, 1, 1, 1)$, $v_2 = (0, 1, 1, 1)$, $v_3 = (0, 0, 1, 1)$, $v_4 = (0, 0, 0, 1)$ sono:
 - [a] $(2, 1, 3, 4)$; [b] $(1, 1, 1, 1)$; [c] $(1, -1, 1, -1)$; [d] Nessuna delle altre.
3. Sia V uno spazio vettoriale su un campo \mathbb{K}. Quale affermazione è necessariamente vera?
 - [a] V ha una base; [b] dim(V) $<$ ∞; [c] V è infinito; [d] V ha un numero finito di vettori.
4. La dimensione di $V = \{f \in \text{hom}(\mathbb{R}^3, \mathbb{R}^3) \mid \text{Imm}(f) = \text{span}(e_1)\}$ è:
 - [a] 1; [b] 3; [c] 6; [d] V non è uno sottospazio di hom($\mathbb{R}^3, \mathbb{R}^3$).
5. Gli autovalori di $f(x, y, z) = (-3z, -2x + y + 4z, -z)$ sono:
 - [a] 0, 1, -1; [b] -3, -2, 4; [c] 1; [d] 0, 1, -1, 2.
6. Gli autovalori della derivate seconda, come endomorfismo di $\mathbb{R}_{\leq 2}[x]$ sono:
 - [a] 0; [b] 1, -1; [c] 1, -1, 0; [d] 2.
7. La matrice della rotazione in senso antiorario di $\pi/4$ rispetto alla base canonica di \mathbb{R}^2 è:
 - [a] $\frac{1}{2} \begin{pmatrix} \sqrt{2} & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{pmatrix}$; [b] $\frac{1}{2} \begin{pmatrix} \sqrt{2} & \sqrt{2} \\ -\sqrt{2} & \sqrt{2} \end{pmatrix}$; [c] $\frac{1}{2} \begin{pmatrix} \sqrt{2} & \sqrt{2} \\ -\sqrt{2} & \sqrt{2} \end{pmatrix}$; [d] $\frac{1}{2} \begin{pmatrix} -\sqrt{2} & \sqrt{2} \\ -\sqrt{2} & \sqrt{2} \end{pmatrix}$.
8. La matrice, nella base canonica, della forma $b(x, y) = x_1y_1 - x_1y_3 + 3x_2y_1$ su \mathbb{R}^3 è:
 - [a] $\begin{pmatrix} 0 & -3 & 1 \\ -1 & 1 & 1 \\ 2 & 1 & 0 \end{pmatrix}$; [b] $\begin{pmatrix} 1 & 0 & 1 \\ 3 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$; [c] $\begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$; [d] $\begin{pmatrix} 1 & 2 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & 3 \end{pmatrix}$.
9. Per quali valori di k la matrice $\begin{pmatrix} k & k - 1 \\ k - 1 & k \end{pmatrix}$ rappresenta un prodotto scalare su \mathbb{R}^2?
 - [a] $k > 0$; [b] $k \in [0, \frac{1}{2}]$; [c] $k > \frac{1}{2}$; [d] $k < 0$ o $k > \frac{1}{2}$.
10. In \mathbb{R}^4 una base delle soluzioni del sistema:
 - [a] $\begin{pmatrix} x - 3y + 4z = 0 \\ x - y + t = 0 \end{pmatrix}$ è:
 - [a] $\{(3, 1, 0, -2), (2, -2, 1, 0)\}$; [b] $\{(2, 2, 1, 0), (-4, 1, 0, 4)\}$; [c] $\{(2, -2, 1, 0), (-4, 0, 1, 4)\}$; [d] Nessuna delle precedenti.
11. Siano A, B due matrici 3×3 a coefficienti reali. Allora det(AB) $=$
 - [a] det(A)/det(B); [b] det A + det B; [c] det(BA); [d] Nessuna delle precedenti.
12. La proiezione ortogonale di $(3, 2, 1)$ lungo $(1, 1, 1)$ è:
 - [a] $(2, 2, 2)$; [b] $(1, 1, 1)$; [c] $\frac{18}{\sqrt{14}}, 12/\sqrt{14}, 6/\sqrt{14}$; [d] $-\frac{18}{\sqrt{14}}, 12/\sqrt{14}, -6/\sqrt{14}$.
13. Sia $f \in \text{hom}(\mathcal{M}_{2\times 2}(\mathbb{R}), \mathbb{R}^2)$ data da $f(A) = (\text{traccia}(A), \det(A))$. La matrice di f nelle basi $v_1 = (\frac{1}{3}, 0, 1, 0)$, $v_2 = (0, 1, 1, 0)$, $v_3 = (0, 0, 1, 1)$, $v_4 = (0, 0, 1, 1)$ di $\mathcal{M}_{2\times 2}(\mathbb{R})$ e $w_1 = (1, 1), w_2 = (0, -1)$ di \mathbb{R}^2 è:
 - [a] $\begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$; [b] $\begin{pmatrix} 2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}$; [c] $\begin{pmatrix} 2 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$; [d] $f \notin \text{hom}(\mathcal{M}_{2\times 2}(\mathbb{R}), \mathbb{R}^2)$.
14. La forma di Jordan della rotazione di \mathbb{R}^3 di angolo π intorno all’asse Z è:
 - [a] $\begin{pmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$; [b] $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$; [c] $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$; [d] Non esiste.
15. La distanza in \mathbb{R}^3 tra il punto $P = (1, -2, 1)$ ed il piano $\pi : x + 2y + z + 2 = 0$ è:
 - [a] $\sqrt{6}$; [b] $1/\sqrt{6}$; [c] $2/\sqrt{6}$; [d] Nessuna delle precedenti.
Risposte esatte

Cod. 191342

1. b
2. c
3. a
4. d
5. a
6. a
7. a
8. b
9. c
10. a
11. c
12. a
13. d
14. a
15. d
1. La conica di equazione \(x - y^2 + 2y + 1 = 0 \) è:
 \[\begin{array}{lll}
 \mathbf{a} & \text{un'ellisse}; & \mathbf{b} \text{ una parabola}; \\
 \mathbf{c} & \text{un'iperbole}; & \mathbf{d} \text{ l'insieme vuoto}.
 \end{array} \]

2. In \(\mathbb{R}_{\leq 2}[x] \), le coordinate di \((x + 1)(x + 2)\) rispetto alla base \(\{x + 1, x^2 + x, 1\} \) sono:
 \[\begin{array}{lll}
 \mathbf{a} & (1, 1, 1); & \mathbf{b} \ (-1, 0, 1); \\
 \mathbf{c} & (2, 1, 0); & \mathbf{d} \ (2, 1, -1).
 \end{array} \]

3. Sia \(V \) uno spazio vettoriale. Dei vettori \(v_1, \ldots, v_n \in V \) sono una base di \(V \) se e solo se:
 \[\begin{array}{lll}
 \mathbf{a} & \text{dim}(V) = n; & \mathbf{b} \text{ generano } V; \\
 \mathbf{c} & \text{sono lin. ind. e dim}(V) = n; & \mathbf{d} \text{ nessuna delle precedenti}.
 \end{array} \]

4. Quali di questi è un sottospazio vettoriale di \(\mathbb{R}^3 \)?
 \[\begin{array}{lll}
 \mathbf{a} & \{xy = z\}; & \mathbf{b} \{x^2 = z\}; \\
 \mathbf{c} & \{x = y - 2\}; & \mathbf{d} \text{ nessuno}.
 \end{array} \]

5. Quali delle seguenti matrici non è diagonalizzabile?
 \[\begin{array}{lll}
 \mathbf{a} & \begin{pmatrix} -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & 1/3 \end{pmatrix}; & \mathbf{b} \begin{pmatrix} 0 & 1/3 \\ 0 & 1/3 \end{pmatrix}; \\
 \mathbf{c} & \begin{pmatrix} -2 & 4 \\ 2 & 2 \end{pmatrix}; & \mathbf{d} \text{ Lo sono tutte le precedenti}.
 \end{array} \]

6. Qual è la qualità massima dei blocchi di Jordan nella forma canonica di \(f(x, y, z, t) = (-x + y - z, -x + y, z, t) \)?
 \[\begin{array}{lll}
 \mathbf{a} & 4; & \mathbf{b} 3; \\
 \mathbf{c} & 2; & \mathbf{d} 1.
 \end{array} \]

7. La matrice associata a \(f(x, y) = (x + y, x + y) \) rispetto alla base \(v_1 = (1, -1), v_2 = (1, -1) \) è:
 \[\begin{array}{lll}
 \mathbf{a} & \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}; & \mathbf{b} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}; \\
 \mathbf{c} & \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; & \mathbf{d} v_1, v_2 \text{ non è una base}.
 \end{array} \]

8. Sia \(b \in \text{bil}(\mathbb{R}^2) \) la forma simmetrica con forma quadratica \(x^2 + 2xy + y^2 + 2z^2 \). La segnatura \(\{n_0, n_+, n_-\} \) di \(b \) è:
 \[\begin{array}{lll}
 \mathbf{a} & (1, 2, 0); & \mathbf{b} \ (2, 1, 0); \\
 \mathbf{c} & (1, 0, 2); & \mathbf{d} \ (1, 1, 1).
 \end{array} \]

9. Quali delle seguenti matrici rappresenta una forma bilineare definita positiva?
 \[\begin{array}{lll}
 \mathbf{a} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}; & \mathbf{b} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}; \\
 \mathbf{c} & \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}; & \mathbf{d} \begin{pmatrix} 6 & -4 \\ -4 & 9 \end{pmatrix}.
 \end{array} \]

10. Se \(A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & -1 \\ 0 & 2 & 0 \end{pmatrix} \) e \(b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \) quante soluzioni ha in \(\mathbb{R}^4 \) il sistema \(AX = b \)?
 \[\begin{array}{lll}
 \mathbf{a} & 0; & \mathbf{b} 1; \\
 \mathbf{c} & 2; & \mathbf{d} \infty.
 \end{array} \]

11. Quali delle seguenti espressioni per \(b((x, y), (x', y')) \) definisce un'applicazione bilineare?
 \[\begin{array}{lll}
 \mathbf{a} & (x + y)^2 + (x' + y')^2; & \mathbf{b} xx' + 2xy' + yy'; \\
 \mathbf{c} & x^2 + 2xy + y^2; & \mathbf{d} x - y'.
 \end{array} \]

12. Sia \(V \) uno spazio vettoriale di dimensione finita e sia \(f \in \text{End}(V) \). \(\mathbf{a} \) se \(k f = 0 \) allora \(f \) è suriettiva;
 \[\begin{array}{lll}
 \mathbf{b} & V = \ker f \oplus \text{Imm} f; & \mathbf{c} \ker f = \text{Imm} f; \\
 \mathbf{d} & \text{ Nessuna delle precedenti}.
 \end{array} \]

13. La forma di Jordan della rotazione di \(\mathbb{R}^3 \) di angolo \(\alpha = \pi/3 \) intorno all'asse \(Z \) è:
 \[\begin{array}{lll}
 \mathbf{a} & \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}; & \mathbf{b} \begin{pmatrix} \cos \alpha & 0 & 0 \\ 0 & \sin \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}; \\
 \mathbf{c} & \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}; & \mathbf{d} \text{ non esiste}.
 \end{array} \]

14. Sia \(A \in M_{2\times 2}(\mathbb{R}) \) con un autovalore reale \(\lambda \). Allora sicuramente:
 \[\begin{array}{lll}
 \mathbf{a} & A \text{ è diagonalizzabile}; & \mathbf{b} A \text{ è triangolabile}; \\
 \mathbf{c} & m_a(\lambda) = 1; & \mathbf{d} m_g(\lambda) = m_a(\lambda).
 \end{array} \]

15. In \(\mathbb{R}^2 \) col prod. scal. standard, la distanza tra \((1, 2)\) ed la retta \(r(t) = (t, t + 1) \) è:
 \[\begin{array}{lll}
 \mathbf{a} & 2/3; & \mathbf{b} \sqrt{2}/3; \\
 \mathbf{c} & 0; & \mathbf{d} \sqrt{1}/3.
 \end{array} \]
Risposte esatte

Cod. 1913333

1. b
2. c
3. c
4. d
5. d
6. c
7. d
8. a
9. b
10. d
11. b
12. a
13. d
14. b
15. c
1. Qual è il rango di \(A = \begin{pmatrix} 1 & -2 & 0 & 0 & -1 \\ 0 & -5 & 1 & 1 & -1 \\ 1 & 0 & 0 & 0 & -1 \\ -2 & -2 & 4 & 3 & -5 \end{pmatrix} \) su \(\mathbb{R} \)? \(\text{a) } 2; \text{ b) } 3; \text{ c) } 4; \text{ d) } 5. \)

2. Le coordinate di \((0,1,1)\) rispetto alla base \(\{ (1,1,0), (1,0,1), (0,0,1) \}\) di \(\mathbb{Z}^3_2\) sono:
\(\text{a) } (1,0,1); \text{ b) } (1,1,0); \text{ c) } (0,0,0); \text{ d) } (0,0,1).\)

3. Quale dei seguenti insiemi costituisce una base per \(\mathbb{R}_{\leq 2}[x]\)?
\(\text{a) } [0,1,x]; \text{ b) } x^2 + 2x + 1, x + 1, x(x + 1); \text{ c) } 0,1,x,x^2; \text{ d) } x^2 - 1, x - 1, x + 1.\)

4. In \(\mathbb{R}^4\) la dimensione di \(\text{span}\{ x + y = 1, z + 2 = x, t = 3 \}\) è: \(\text{a) } 1; \text{ b) } 2; \text{ c) } 3; \text{ d) } 4.\)

5. Sia \(f \in \text{End}(\mathbb{R}^3) \) tale che \(f^2 = -\text{Id} \). Allora:
\(\text{a) } -1 \) è un autovalore di \(f; \text{ b) } \) una tale \(f \) non esiste; \(\text{c) } \ker f \neq \{0\}; \text{ d) } f \) è diagonalizzabile.

6. Gli autovalori di \(f(x,y,z) = (y,2x - z,y) \) sono:
\(\text{a) } 1,0,2; \text{ b) } -1,0; \text{ c) } 1,-1,0; \text{ d) } 1,0.\)

7. Sia \(f : \mathbb{R}_{\leq 3}[x] \to \mathbb{R}_{\leq 3}[x] \) data da \(f(p) = xp'(x) \). La sua matrice rispetto alla base canonica è:
\(\text{a) } \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}; \text{ b) } \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}; \text{ c) } \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}; \text{ d) } \) nessuna delle precedenti.

8. Sia \(b \in \text{bil}(\mathbb{R}^3) \) la forma simmetrica con forma quadratica \(x^2 + 2xy + y^2 + 2z^2 \). La segnatura \((n_0, n_+, n_-)\) di \(b \) è:
\(\text{a) } (1,2,0); \text{ b) } (2,1,0); \text{ c) } (1,0,2); \text{ d) } (1,1,1).\)

9. Per quali valori di \(k \) la matrice \(\begin{pmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{pmatrix} \) rappresenta un prodotto scalare su \(\mathbb{R}^2? \)
\(\text{a} \) Per nessun valore di \(k; \text{ b} \) \(k \in]0,1]; \text{ c} \) \(k > \frac{1}{2}; \text{ d} \) \(k < 0 \cup k > 1.\)

10. Una base dello spazio delle soluzioni del sistema \(AX = 0 \) con \(A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \) è:
\(\text{a) } (1,0,0); \text{ b) } (0,1,0); \text{ c) } (0,0,1); \text{ d) } \) Nessuna delle altre.

11. Quante affinità di \(\mathbb{R}^2 \) esistono che mandano \(e_1, e_1 + e_2, 0 \) in \(e_2, 0, e_1 \)?
\(\text{a) } 0; \text{ b) } \) infinite; \(\text{ c) } 1; \text{ d) } \) nessuna delle precedenti

12. Un’applicazione lineare da \(\mathcal{M}_{7 \times 5}(\mathbb{K}) \to \mathbb{K}_{\leq 42}[x] \) non può:
\(\text{a) } \) esistere; \(\text{ b) } \) essere iniettiva; \(\text{ c) } \) essere suriettiva; \(\text{ d) } \) nessuna delle altre.

13. In \(\mathbb{R}^3 \) siano \(v_1 = (1,2,3), v_2 = (4,5,6), v_3 = (7,9,8) \) \(w_1 = (0,1,0), w_2 = (1,1,0), w_3 = (1,0,1) \). Una \(f \in \text{End}(\mathbb{R}^3) \) tale che \(f(v_i) = w_i \) per ogni \(i \):
\(\text{a) } \) non esiste; \(\text{ b) } \) esiste ed è unica; \(\text{ c) } \) esiste ma non è unica; \(\text{ d) } \) nessuna delle altre.

14. In \(\mathbb{R}^3 \) siano \(v_1 = (0,1,1), v_2 = (1,1,0), v_3 = (1,0,1) \) e \(w_1 = (1,2,3), w_2 = (4,5,6), w_3 = (7,8,9) \). Una \(f \in \text{End}(\mathbb{R}^3) \) tale che \(f(v_i) = w_i \) per ogni \(i \):
\(\text{a) } \) non esiste; \(\text{ b) } \) esiste ed è unica; \(\text{ c) } \) esiste ma non è unica; \(\text{ d) } \) nessuna delle altre.

15. La retta affine di \(\mathbb{R}^3 \) passante per \((1,3,6) \) e parallela a \(s(t) = (t + 1,2t + 2,3t + 3) \) è:
\(\text{a) } (t,2t+1,3t); \text{ b) } x+y = z-2, y = 2x+1; \text{ c) } x-y = -2, y = 2x; \text{ d) } (t,2t-1,3t+3).\)
Risposte esatte

Cod. 4413324

1. c
2. b
3. d
4. b
5. b
6. c
7. a
8. a
9. a
10. a
11. c
12. c
13. b
14. b
15. b
La conica \((x-1)^2-(y-2)^2-x=0\) è una: a) parabola; b) ellisse; c) iperbole; d) retta.

Le coordinate di \(\begin{pmatrix}1 & 0 \\ 0 & 2\end{pmatrix}\) rispetto alla base \(\begin{pmatrix}0 & 0 \\ 0 & 1\end{pmatrix}, \begin{pmatrix}0 & 0 \\ 1 & 1\end{pmatrix}, \begin{pmatrix}0 & 1 \\ 1 & 1\end{pmatrix}, \begin{pmatrix}1 & 1 \\ 1 & 2\end{pmatrix}\) di \(\mathbb{M}_{2\times2}(\mathbb{R})\) sono: a) \((1,0,-1,1); b) \((-1,0,1,-1); c) (1,0,0,2); d) (1,1,1,1).

Quale di queste è una base di \(\mathbb{C}_{\leq2}[x]\)? a) \(i,x+i,x^2+x+i,x-i); b) \((x-i)^2,x,x^2-ix-1); c) i,ix,i^2+2x+2ix); d) \(x^2-ix,2x,2x^2-3ix\).

Siano \(V=\{(x,y,z,t)\in\mathbb{R}^4| x=0, y=z-t\}\) e \(W=\text{span}\{(0,1,0,1), (0,0,1,1)\}\). Qual è la dimensione di \(V\cap W\)? a) 0; b) 1; c) 2; d) 3.

Qual è la dimensione massima dei blocchi di Jordan nella forma canonica di \(f(x,y,z,t) = (x-y+z,x-y+z,x-y+z,t)\)? a) 4; b) 3; c) 2; d) 1.

Gli autovalori di \(f(x,y,z) = (x+2z,y+z,-z)\) sono: a) \(1,2,3\); b) \(\pm1\); c) \(\pm1,3\); d) \(\pm\sqrt{3}\).

La matrice associata a \(f(x,y,z) = (2x+y,y-x)\) nella base di \(\mathbb{R}^2\) formata da \(v_1 = e_2, v_2 = e_1\) è: a) \(\begin{pmatrix}2 & 1 \\ -1 & 1\end{pmatrix}\); b) \(\begin{pmatrix}2 & 1 \\ 1 & -1\end{pmatrix}\); c) \(\begin{pmatrix}1 & 1 \\ -1 & 1\end{pmatrix}\); d) \(\begin{pmatrix}1 & -1 \\ -1 & 2\end{pmatrix}\).

Nella base \(v_1 = (0,1), v_2 = (1,0)\) di \(\mathbb{R}^2\), la matrice della forma bilineare simmetrica con forma quadratica \(x^2-2xy+3y^2\) è: a) \(\begin{pmatrix}1 & -1 \\ -1 & 3\end{pmatrix}\); b) \(\begin{pmatrix}1 & 2 \\ 2 & 3\end{pmatrix}\); c) \(\begin{pmatrix}3 & -2 \\ -2 & 1\end{pmatrix}\); d) \(\begin{pmatrix}3 & -1 \\ -1 & 1\end{pmatrix}\).

La forma bilineare associata a \(\begin{pmatrix}0 & x \\ x & 1\end{pmatrix}\) è definita positiva: a) mai; b) sempre; c) solo se \(x \geq 0\); d) solo se \(x \neq 0\).

Quante soluzioni ha il sistema \(\begin{pmatrix}x-z=0 \\ x+y=1\end{pmatrix}\) su \(\mathbb{Z}_2\)? a) 0; b) 4; c) 2; d) infinite.

Quale matrice commuta con \(A = \begin{pmatrix}1 & 1 \\ 0 & 1\end{pmatrix}\)? a) \(\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}\); b) \(\begin{pmatrix}A^2 & \end{pmatrix}\); c) \(\begin{pmatrix}0 & 0 \\ 0 & 1\end{pmatrix}\); d) \(\begin{pmatrix}0 & 0 \\ 0 & 2\end{pmatrix}\).

In \(\mathbb{R}^4\) l’ortogonale di \(V = \{(x,y,z,t)\in\mathbb{R}^4| x=y, z=-t\}\) è: a) \(\{(x,y,z,t)\in\mathbb{R}^4|x=y\}\); b) \(\text{span}\{e_1+e_2+e_3-e_1\}\); c) \(\{(x,y,z,t)\in\mathbb{R}^4|x-y=0, z+t=0\}\); d) \(\text{span}\{e_1-e_2, e_3+e_4\}\).

In \(\mathbb{R}^3\) standard, il piano ortogonale alla retta \(x+y+z=1\) e passante per \((0,1,0)\) è: a) \(z+y=1\); b) \(y=x+1, x=0\); c) \(y+z=0\); d) \(x+y+z=1\).

In \(\mathbb{R}^4\) col prodotto scalare standard siano \(W = \{(t+s,t,s,t) : t,s\in\mathbb{R}\}\) e \(v = (1,1,1,1)\). La proiezione \(\pi_W(v)\) di \(v\) lungo \(W\) è: a) \((-\frac{2}{3}, \frac{1}{3}, 1, \frac{1}{3})\); b) \((-2,2,-4,-6)\); c) \(\frac{4}{3},\frac{1}{3}, 1, \frac{2}{3})\); d) \((-6,3,-5,-5)\).

In \(\mathbb{R}^3\) la distanza di \((1,1,1)\) dal piano \(y+z=0\) è: a) \(1\); b) \(\pi\); c) \(\sqrt{2}\); d) \(2\sqrt{2}\).
Risposte esatte

Cod. 321135

1. c
2. a
3. c
4. c
5. d
6. b
7. d
8. d
9. a
10. c
11. b
12. d
13. a
14. c
15. c
1. Il rango della matrice $A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 2 & 1 & 1 & 3 \end{pmatrix}$ è: $\begin{cases} a) 1 \\ b) 2 \\ c) 3 \\ d) 4 \end{cases}$.

2. In $\mathbb{R}_{\leq 2}[x]$, le coordinate di $(x+1)(x+2)$ rispetto alla base $\{x+1,x^2+x,1\}$ sono: $\begin{cases} a) (1,1,1) \\ b) (-1,0,1) \\ c) (2,1,0) \\ d) (2,1,-1) \end{cases}$.

3. Quale dei seguenti insiemi di vettori genera $\mathbb{R}_{\leq 2}[x]$?
 $\begin{cases} a) \text{tutti} \\ b) 1,x,x^2,45x-71x^2 \\ c) x^2,(x+1)^2,114x,65 \\ d) x,(x+1)^2,(x-4)(x+4) \end{cases}$.

4. La dimensione di $\{ f \in \text{End}(\mathbb{R}^3) \mid f(e_1) = f(e_3) \}$ è: $\begin{cases} a) 6 \\ b) 4 \\ c) 3 \\ d) 2 \end{cases}$.

5. Se 1 è autovalore per un endomorfismo $f : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ allora: $\begin{cases} a) f(x) = 1 \\ b) \forall x f(x) = x \\ c) f(x) = \lambda x \\ d) \text{nessuna delle precedenti} \end{cases}$.

6. Gli autovalori di $f(x,y,z) = (x+z,-y+z,x+z)$ sono: $\begin{cases} a) 0,1,2 \\ b) 0,-1,2 \\ c) 0,-1 \\ d) 0,1,-1 \end{cases}$.

7. La matrice associata a $f(x,y) = (2x,y)$ rispetto alla base $(0,-1),(2,1)$ è: $\begin{cases} a) \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \\ b) \begin{pmatrix} 0 & 4 \\ -1 & 1 \end{pmatrix} \\ c) \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \\ d) \begin{pmatrix} 0 & -1 \\ -1 & 2 \end{pmatrix} \end{cases}$.

8. Sia $b \in \text{bil}(\mathbb{R}^2)$ la forma simmetrica con forma quadratica x^2-y^2+2xy. La matrice di b rispetto alla base $(1,1),(1,0)$ è: $\begin{cases} a) \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \\ b) \begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix} \\ c) \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \\ d) \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \end{cases}$.

9. La forma bilineare su $\mathbb{R}_{\leq 2}[x]$ definita da $b(p,q) = p(1)q(1)$ è: $\begin{cases} a) \text{simmetrica} \\ b) \text{antisimmetrica} \\ c) \text{un prodotto scalare} \\ d) \text{definita positiva} \end{cases}$.

10. Una base dello spazio delle soluzioni del sistema $AX = 0$ con $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ è: $\begin{cases} a) (1,0,0) \\ b) (0,1,0) \\ c) (0,0,1) \\ d) \text{nessuna delle altre} \end{cases}$.

11. L'inversa di $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ è: $\begin{cases} a) \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \\ b) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \\ c) \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \\ d) \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \end{cases}$.

12. La proiezione ortogonale di $(3,2,1)$ lungo $(1,1,1)$ è: $\begin{cases} a) (2,2,2) \\ b) (1,1,1) \\ c) (18/\sqrt{14},12/\sqrt{14},6/\sqrt{14}) \\ d) (-18/\sqrt{14},12/\sqrt{14},-6/\sqrt{14}) \end{cases}$.

13. In \mathbb{R}^3 siano $v_1 = (0,1,1)$, $v_2 = (1,1,0)$, $v_3 = (1,0,1)$ e $w_1 = (1,2,3)$, $w_2 = (4,5,6)$, $w_3 = (7,9,8)$. Una $f \in \text{End}(\mathbb{R}^3)$ tale che $f(v_i) = w_i$ per ogni i è: $\begin{cases} a) \text{non esiste} \\ b) \text{esiste ed è unica} \\ c) \text{esiste ma non è unica} \\ d) \text{nessuna delle altre} \end{cases}$.

14. Sia $A = \begin{pmatrix} 0 & b \\ c & d \end{pmatrix}$ tale che b sia autovalore di A. Allora sicuramente: $\begin{cases} a) 0 \text{ è autovalore di } A \\ b) c \text{ è autovalore di } A \\ c) d \text{ è autovalore di } A \\ d) \text{nessuna delle precedenti} \end{cases}$.

15. In \mathbb{R}^3, la distanza tra $P = (1,-1,0)$ ed l'asse Y è: $\begin{cases} a) 0 \\ b) 1 \\ c) -1 \\ d) \sqrt{2} \end{cases}$.
Risposte esatte

Cod. 221156

1. c
2. c
3. a
4. a
5. d
6. b
7. a
8. b
9. a
10. d
11. b
12. a
13. b
14. d
15. b
1. Sia \(A = \begin{pmatrix} 1 & 2 & 1 & 4 \\ i & i & 1+i & 1+i \\ 0 & 0 & 1 & 0 \\ 1 & 0 & -i & 0 \end{pmatrix} \). Qual è il range di \(A \)? [a] 1; [b] 2; [c] 3; [d] 4.

2. Le coordinate di \((1, 2, 3)\) rispetto alla base \(e_3, e_2, e_1\) sono:
 a \((1, 2, 3)\); b \((3, 2, 1)\); c \((-1, -2, 3)\); d \((-1, -1, 3)\).

3. Quale insieme genera \(M_{2 \times 2}(\mathbb{Z}_2) \)?
 a \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \); b \(\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \); c \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \); d \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \).

4. Siano dati in \(\mathbb{R}^3 \) i sottospazi \(W = \{(x, y, z) \in \mathbb{R}^3 \mid x - 2y = 0, x - y + z = 0\} \) e \(V = \text{span}\{e_1 + e_2, 2e_1 - e_3\} \). La dimensione di \(V \cap W \) è: [a] infinita; [b] 2; [c] 1; [d] 0.

5. Gli autovalori di \(f \in \text{End}(\mathbb{R}^3) \) definita da \(f(x, y, z) = (z, x, 0) \) sono:
 a \((0, 1); [b] 0, 1, -1; [c] 1, 2; [d] 0, -1.

6. Se \(A \in M_{n \times n}(\mathbb{R}) \) con \(A_{ij} = i \cdot j \) (la tavola pitagorica), allora: a \(A \) è invertibile; b \(\dim(\text{ker} A) = 1 \); c \(A \) ha n autovalori distinti; d \(\mathbb{R}^n \) ha una base di autovettori di \(A \).

7. La matrice associata a \(f(x, y) = (2x + y, y - x) \) nella base di \(\mathbb{R}^2 \) formata da \(v_1 = e_2, v_2 = e_1 \) è:
 a \(\begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} \); b \(\begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \); c \(\begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix} \); d \(\begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} \).

8. La matrice della forma \(b(x, y) = 2x_1y_1 - 3x_1y_2 \) rispetto alla base \(\{(2, -1), (3, 2)\} \) di \(\mathbb{R}^2 \) è:
 a \(\begin{pmatrix} 0 & 3 \\ 0 & 0 \end{pmatrix} \); b \(\begin{pmatrix} 21 & 0 \\ 0 & -18 \end{pmatrix} \); c \(\begin{pmatrix} 18 & 0 \\ 36 & -9 \end{pmatrix} \); d \(\begin{pmatrix} 14 & 0 \\ 21 & 0 \end{pmatrix} \).

9. Sia \(b \in \text{bil}(\mathbb{R}^3) \) la forma simmetrica con forma quadratica \(4x^2 + 3y^2 + 2z^2 + 2xy + 2yz \). La segnatura \((n_0, n_+, n_-) \) di \(b \) è:
 a \((3, 0, 0); [b] (2, 1, 0); [c] (0, 3, 0); [d] (1, 2, 0).

10. Quante soluzioni ha il sistema \[\begin{align*} x - y - z &= 0 \\ x + 3iz &= i \end{align*} \] su \(\mathbb{C} \)? [a] \(\infty \); [b] 4; [c] 2; [d] 0.

11. In \(M_{2 \times 2}(\mathbb{Z}_2) \), l’inversa di \(A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \) è:
 a \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \); b \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \); c \(\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \); d \(A \) non è invertibile.

12. Un’applicazione lineare da \(M_{2 \times 15}(\mathbb{K}) \to \mathbb{K}_{\leq 25}[x] \) non può:
 a esistere; b essere iniettiva; c essere suriettiva; d nessuna delle altre.

13. In \(\mathbb{R}^3 \) siano \(v_1 = (1, -1, 1), v_2 = (1, 1, 1), v_3 = (0, 1, 1) \) e \(w_1 = (1, 1, 1), w_2 = (1, 2, 1), w_3 = (2, 0, 2) \). Una \(f \in \text{End}(\mathbb{R}^3) \) tale che \(f(v_i) = w_i \) per ogni \(i \):
 a non esiste; b esiste ed è unica; c esiste ma non è unica; d nessuna delle altre.

14. Se \(d(v, w) \) è la distanza indotta da un prodotto scalare \(\langle \cdot, \cdot \rangle \) su \(V \) allora:
 a \(d(v, v) = 0 \); b \(d(v, w) \geq -d(v, u) + d(u, w) \); c \(d(v, w) \geq d(v, u) - d(u, w) \); d tutte le precedenti.

15. L’equazione della retta affine passante per \((1, 0, 0)\) e \((1, 1, 1)\) è:
 a \(\begin{cases} x + y + z = 0 \\ x + y = 0 \end{cases} \); b \(\begin{cases} x - y - z = 0 \\ y = 1 \end{cases} \); c \(\begin{cases} y - z = 0 \\ x = 1 \end{cases} \); d \(\begin{cases} x + z = 0 \\ z - y = 1 \end{cases} \).

Non è concesso alzarsi prima del termine né chiedere chiarimenti. Telefoni, tablet, smartwatch, etc... devono essere spenti. Sul tavolo si possono tenere solo i fogli forniti, una penna, libretto e/o documenti. Non si può usare la calcolatrice. Ricordarsi di annotare le risposte date sull’apposito foglio. Risposta esatta 2 punti, errata -1, non data 0. Si è ammessi all’orale con 18. Va consegnato SOLO questo foglio.
Risposte esatte

Cod. 1123817

1. d
2. b
3. c
4. d
5. a
6. d
7. d
8. d
9. c
10. a
11. d
12. b
13. a
14. d
15. c
1. La conica di equazione \((x+1)^2 - (y-1)^2 - 4x - 2y - 1 = 0 \) è:
 a) una parabola; b) un’ellisse; c) una coppia di rette incrociate; d) un’iperbole.
2. Le coordinate di \((1, -1, 2)\) rispetto alla base \\{\(\{(1, 0, 1), (0, -1, 2), (1, 1, 1)\}\) di \(\mathbb{R}^3\) sono:
 a) \((0, 0, 0)\); b) \((\frac{3}{2}, \frac{1}{2}, -\frac{1}{2})\); c) \((3, 1, -1)\); d) \((-1, -1, 2)\).
3. Quale di questi elementi completa \(\{x^2 - 2ix - 1, 2ix\}\) ad una base di \(\mathbb{C}_{\leq 2}[x]\)?
 a) \(x\); b) \((x-i)\); c) \(i(x+1)(x-1)\); d) \(3i\).
4. Quale di questi è un sottospazio vettoriale di \(\mathbb{R}^2\)?
 a) \(\{x + y = 1\}\); b) \(\{x + y^2 = 1\}\); c) \(\{x^2 + y^2 = 1\}\); d) nessuno.
5. La forma di Jordan di \(\begin{pmatrix} f(x, y) = (2x, 3x - 6y) \end{pmatrix}\) è:
 a) \(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\); b) \(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\); c) \(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\); d) nessuna delle precedenti.
6. Gli autovalori di \(\begin{pmatrix} f(x, y, z) = (x + z, y + z, x + z) \end{pmatrix}\) sono:
 a) 0, 1, 2; b) 0, -1, 2; c) 0, -1; d) 0, 1, -1.
7. Sia \(f : \mathbb{R}_{\leq 3}[x] \rightarrow \mathbb{R}_{\leq 1}[x]\) la derivata seconda. La sua matrice nelle basi canoniche è:
 a) \(\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 6 & 0 \end{pmatrix}\); b) \(\begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 6 \end{pmatrix}\); c) \(\begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}\); d) nessuna delle precedenti.
8. Sia \(b \in bil(\mathbb{R}^3)\) la forma simmetrica associata alla forma quadratica \(q(x, y, z) = x^2 + z^2 + 4xy + 2xz\). La matrice di \(b\) rispetto alla base canonica è:
 a) \(\begin{pmatrix} 1 & 2 & 1 \\ 2 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}\); b) \(\begin{pmatrix} 1 & 4 & 2 \\ 2 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}\); c) \(\begin{pmatrix} 6 & 2 \\ 2 & 1 \\ 1 & 0 \end{pmatrix}\); d) \(\begin{pmatrix} 1 & 2 & 1 \\ 2 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}\).
9. La segnatura di \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}\) è: a) \((0, 1, 2)\); b) \((1, 1, 1)\); c) \((2, 0, 1)\); d) \((0, 2, 1)\).
10. Quante soluzioni ha in \((\mathbb{Z}_2)^3\) il sistema \(\begin{pmatrix} x + z = 0 \\ x + y + z = 0 \end{pmatrix}\)?
 a) 2; b) 1; c) 0; d) 4.
11. Due matrici \(A, B\) si dicono simili se:
 a) \(AB = BA\); b) esiste \(N\) t.c. \(A = N^{-1}BN\);
 c) esiste \(N\) t.c. \(^t\!NAN = B\); d) Sono entrambi diagonalizzabili.
12. L’ortogonale di \((1, -1, 0)\) rispetto a \(b(x, y) = x_1y_1 + 2x_2y_2 + 3x_3y_3 + 3x_3y_2\) ha equazione:
 a) \(-2x - 2y - 3z = 0\); b) \(2x + 3y + 2z = 0\);
 c) \(x + y = 0\); d) \(x + y = 2z\).
13. Sia \(f \in \text{hom}(\mathbb{R}_{\leq 3}[x], \mathbb{R}_{\leq 2}[x])\) la derivata. La matrice di \(f\) nelle basi \(1, x, x^2, 3, x^2 + 1, x, x\) è:
 a) \(\begin{pmatrix} 0 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 2 & 0 \end{pmatrix}\); b) \(\begin{pmatrix} 0 & 0 & 3 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ -1 & 2 & 0 \end{pmatrix}\); c) \(\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}\); d) \(\begin{pmatrix} 0 & 1 & 1 \\ 2 & 0 & 0 \end{pmatrix}\).
14. Sia \(V \leq M_{2 \times 2}(\mathbb{C})\) lo spazio generato dalle matrici associate alle rotazioni di \(\mathbb{R}^2\) rispetto alla base canonica.
 a) \(\text{dim}_\mathbb{C}(V) = 1\); b) \(\text{dim}_\mathbb{C}(V) = 2\); c) \(\text{dim}_\mathbb{C}(V) = 4\); d) \(\text{dim}_\mathbb{C}(V) = 8\).
15. In \(\mathbb{R}^3\), la distanza tra \(P = (1, 0, 1)\) ed il piano \(\pi\) di equazione \(x - y - z = 1\) è:
 a) 0; b) 1; c) \(1/\sqrt{3}\); d) \(\sqrt{2}\).
Risposte esatte

Cod. 56411238

1. d
2. b
3. d
4. d
5. d
6. b
7. b
8. d
9. d
10. a
11. b
12. a
13. a
14. b
15. c
1. La conica di equazione \((x - 1)^2 - (x - y)^2 - 1 = 0\) è:
 a) un’iperbole;
 b) un’ellisse;
 c) una parabola;
 d) una coppia di rette incidenti.

2. Le coordinate di \((1 - x)^2\) in \(\mathbb{R}_{\leq 2}[x]\) sono:
 a) \((1, -2, 1);\)
 b) dipende dalla base scelta;
 c) \((1, 1)^2;\)
 d) nessuna delle precedenti.

3. Siano \(v_1, \ldots, v_k\) vettori linearmente indipendenti di \(\mathbb{R}^n\), allora:
 a) generano;
 b) suriettivo;
 c) di rango \(k\);
 d) nessuna delle precedenti.

4. La dimensione di \(\{f \in \text{hom}(\mathbb{R}^2, \mathbb{R}^3) \mid f(e_2) \subseteq \text{span}(1, 2, 3)\}\) è:
 a) \(1;\)
 b) \(2;\)
 c) \(3;\)
 d) \(4.\)

5. Sia \(A \in M_{2 \times 2}(\mathbb{R})\) diagonalizzabile. L’endomorfismo di \(M_{2 \times 2}(\mathbb{R})\) definito da \(f(M) = AM\) è:
 a) suriettivo;
 b) diagonalizzabile;
 c) iniettivo;
 d) nessuna delle precedenti.

6. Quanti autovalori semplici ha \(f(x, y, z) = (x - y + 7z, 4x - 3y - 6z, 3z)\)?
 a) \(0;\)
 b) \(1;\)
 c) \(2;\)
 d) \(3.\)

7. La matrice di \(f : \mathbb{C} \rightarrow \mathbb{C}, z \mapsto iz\) rispetto alla base \(\{1, i\}\) su \(\mathbb{R}\) è:
 a) \(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix};\)
 b) \(\begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix};\)
 c) \(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix};\)
 d) \(\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.\)

8. La matrice della forma \(b(x, y) = x_1y_1 - 2x_3y_2 + 4x_2y_3\) su \(\mathbb{R}^3\) rispetto alla base \((e_1 + e_2, e_1 - e_2, 2e_3)\) è:
 a) \(\begin{pmatrix} 1 & 0 & -1 \\ 3 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix};\)
 b) \(\begin{pmatrix} 1 & 2 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & 3 \end{pmatrix};\)
 c) \(\begin{pmatrix} 1 & 1 & 8 \\ 1 & 1 & -8 \\ -4 & 4 & 0 \end{pmatrix};\)
 d) \(\begin{pmatrix} 1 & -2 & 4 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix}.\)

9. Se \(A = M^T BM\) con \(A, B \in M_{n \times n}(\mathbb{R})\) simmetriche e \(M\) invertibile:
 a) \(\det A = 0 \leftrightarrow \det B = 0;\)
 b) \(\text{rango } A = \text{rango } B;\)
 c) \(A\) e \(B\) hanno la stessa segnatura;
 d) tutte le precedenti sono vere.

10. Un sistema lineare di 3 equazioni in 5 incognite:
 a) non ha soluzione;
 b) ha sempre almeno una soluzione;
 c) ha soluzione solo in certi casi;
 d) ha sempre una soluzione unica.

11. Quali dei seguenti vettori sono affinamente indipendenti tra loro?
 a) \((1, 0), (0, 0), (0, 1);\)
 b) \((1, 0), (0, 0), (-1, 0);\)
 c) \((1, 0), (0, 1), (0, 0), (1, 1);\)
 d) \((2, 0), (0, 2), (1, 1).\)

12. Quale delle seguenti espressioni per \(f(X)\) rappresenta un’isometria di \(\mathbb{R}^2\) che manda \((1, 0)\) in \((1, 1)\) e \((0, 0)\) in \((0, 0)\)?
 a) \(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} X;\)
 b) \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} X + \begin{pmatrix} 0 \\ 1 \end{pmatrix};\)
 c) \(\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} X;\)
 d) Nessun’opzione.

13. Siano \(A, B, C\) tre matrici tali che \(AB = C\). Allora
 a) \(BA = C;\)
 b) \(C^{-1} = B^{-1}A^{-1};\)
 c) \(C^{-1} = A^{-1}B^{-1};\)
 d) Nessuna delle precedenti.

14. Sia \(f \in \text{End}(M_{2 \times 2}(\mathbb{R}))\) dato da \(f(X) = X(\begin{pmatrix} 1 & 1 \end{pmatrix})\). Qual è la dimensione massima dei blocchi della forma di Jordan di \(f\)?
 a) \(4;\)
 b) \(3;\)
 c) \(2;\)
 d) \(1.\)

15. L’equazione della retta affine di \(\mathbb{R}^3\) passante per \((-1, 0, 0)\) e \((-1, 1, -1)\) è:
 a) \(\begin{cases} x + y + z = 0 \\ x + y = 0 \end{cases};\)
 b) \(\begin{cases} x - y - z = 0 \\ y = 1 \end{cases};\)
 c) \(\begin{cases} x + z = 0 \\ z - y = 1 \end{cases};\)
 d) \(\begin{cases} y + z = 0 \\ x = -1 \end{cases}.\)
Risposte esatte

Cod. 564189

1. a
2. b
3. c
4. d
5. b
6. b
7. a
8. c
9. d
10. c
11. a
12. d
13. d
14. c
15. d