Esercizio 1. In \mathbb{R} Euclideo, sia A l'insieme di tutti i numeri reali che si possono scrivere in base 10 senza l'uso del numero 4.

- (1) Si dica se A è aperto;
- (2) Si dica se A è chiuso;
- (3) Si dica se A è connesso;
- (4) Si dica se A^c è connesso;
- (5) Si dica se A è localmente connesso;
- (6) Si dica se A^c è localmente connesso per archi;
- (7) Si dica se A è localmente compatto:

Soluzione. L'insieme A è costruito in modo simile all'insieme di Cantor. Si noti che il numero 4 può essere scritto come 3,9999..., quindi senza l'uso del numero 4. (Nota: coloro che hanno considerato il numero 4 come non scrivibile senza l'uso del numero 4, hanno svolto un altro esercizio, che comunque è stato valutato nel suo svolgimento).

L'intervallo (4,5) non sta in A in quanto ogni numero in tale intervallo necessita del numero 4: se $x \in (4,5)$ allora necessariamente $x = 4, \ldots$

In generale, se x non sta in A allora x si scrive in base dieci nella forma

$$\pm 10^m (10n+4,\dots)$$

per qualche $n \in \mathbb{N}, m \in \mathbb{Z}$. Il complementare di A è quindi formato dall'unione degli intervalli $(\frac{10n+4}{10^m}, \frac{10n+5}{10^m})$ e $(-\frac{10n+5}{10^m}, -\frac{10n+4}{10^m})$ al variare di $n \in \mathbb{N}$ e $m \in \mathbb{Z}$. Tali intervalli sono tutti aperti. Quindi:

- (1) A^c è aperto, ergo A è chiuso.
- (2) Siccome $1 \in A$ e $\pi = 3, 1415... \notin A$, e siccome \mathbb{R} è connesso, allora A non può essere contemporaneamente aperto e chiuso. Quindi A non è aperto.
- (3) A non è connesso in quanto $A = (A \cap (-\infty, \pi)) \sqcup (A \cap (\pi, +\infty))$ è unione di due aperti non vuoti disgiunti.
- (4) A^c non è connesso in quanto $A^c = (A^c \cap (-\infty, 1)) \sqcup (A^c \cap (1, +\infty))$ è unione di due aperti non vuoti disgiunti.
- (5) A non è localmente connesso. Infatti, $0 \in A$ ma ogni intorno U di zero contiene un'insieme del tipo $B = (-\epsilon, \epsilon) \cap A$. Per m abbastanza grande in modo che $10^{-m} < \epsilon$, si ha $\pm 10^{-m} \in (-\epsilon, \epsilon) \cap A$ e $10^{-m}(0.141) < 10^{-m}$ non sta in A. Quindi $U = (U \cap (-\infty, 10^{-m}(0.141))) \sqcup (U \cap (10^{-m}(0.141), +\infty))$ è unione disgiunta di due aperti non vuoti, quindi non è connesso. Quindi 0 è un esempio di un punto di A che non ha intorni connessi in A.
- (6) A^c è un aperto di \mathbb{R} quindi è localmente connesso per archi.
- (7) A è un chiuso di \mathbb{R} quindi è localmente compatto: per ogni $x \in A$ l'insieme $[x-1,x+1] \cap A$ è un intorno compatto (perchè chiuso e limitato in \mathbb{R}) di x.

Esercizio 2. Per ogni spazio topologico X e per ogni $x \in X$ chiamiamo Y_x l'intersezione di tutti i sottoinsieme di X contenenti x e che siano contemporaneamente aperti e chiusi. Dimostrare o trovare un controesempio alla seguente affermazione: "Per ogni spazio topologico X compatto e T_2 , per ogni $x \in X$, l'insieme Y_x è connesso."

Soluzione. Dimostriamo l'affermazione, che è vera. Basta dimostrare che se $Y_x = A \sqcup B$ è unione disgiunta di due insiemi entrambi chiusi in Y_x , allora uno dei due è vuoto.

Sia A quello contenente x. Sia $F = \{C \subseteq X : x \in C, C \text{ aperto e chiuso}\}$ la famiglia dei sottoinsiemi di X contemporaneamente aperti e chiusi che contengono x. Quindi $Y_x = \cap_{C \in F} C$. Siccome Y_x è intersezione di chiusi di X, allora è chiuso in X. Siccome A, B son chiusi in Y_x , che è chiuso in X, allora son chiusi in X. Siccome X è compatto, essi son compatti. Siccome X è T_2 , essi si separano con aperti: esistono U, V aperti in X tali che $A \subseteq U, B \subseteq V, U \cap V = \emptyset$. Siccome U, V sono aperti, $U^c \cap V^c = (U \cup V)^c$ è un chiuso di X e siccome $Y_x = A \cup B \subseteq (U \cup V)$, si ha

$$(\cap_{C \in F} C) \cap U^c \cap V^c = \emptyset;$$

in altre parole la famiglia $F \cup \{U^c, V^c\}$ è una famiglia di chiusi di X con intersezione vuota. Siccome X è compatto, essa ha una sottofamiglia finita con intersezione vuota. Esistono quindi $C_1, \ldots, C_n \in F$ tali che

$$C_1 \cap C_2 \cap \cdots \cap C_n \cap U^c \cap V^c = \emptyset;$$

equivalentemente, $\bigcap_{i=1}^n C_i \subseteq U \sqcup V$. L'insieme $\bigcap_{i=1}^n C_i \cap U$ è intersezione finita di aperti di X, quindi è un aperto di X. D'altronde $\bigcap_{i=1}^n C_i \cap U = \bigcap_{i=1}^n C_i \cap V^c$ è intersezione di chiusi di X quindi è un chiuso di X. Ne segue che $\bigcap_{i=1}^n C_i \cap U \in F$ dunque $Y_x \subseteq U$ e quindi $B = Y_x \cap U^c = \emptyset$.

Esercizio 3. Siano p, q due punti distinti di \mathbb{R}^2 euclideo, sia \sim la relazione d'equivalenza generata da $p \sim q$ e sia $Z = \mathbb{R}^2 / \sim$ il quoziente.

- (1) Si descrivano esplicitamente tutte le classi di equivalenza;
- (2) si dica se la proiezione $\pi: \mathbb{R}^2 \to Z$ è aperta;
- (3) si dica se Z è una varietà topologica;
- (4) si calcoli il gruppo fondamentale di Z.

Soluzione. L'insieme Z è \mathbb{R}^2 in cui si sono identificati i due punti p,q.

- (1) $[p] = [q] = \{p, q\}$. Per ogni altro $x \in \mathbb{R}^2$ si ha $[x] = \{x\}$.
- (2) Siccome \mathbb{R}^2 è T_2 esiste un aperto U contenente p ma non q. Quindi il saturato di U risulta essere $U \cup \{q\}$ che non è aperto in quanto q non è interno (perché $q \notin U$). Quindi la proiezione non è aperta.
- (3) Se fosse una varietà sarebbe di dimensione due perchè il quoziente è localmente omeomorfo a \mathbb{R}^2 lontano dai punti p,q. Sia 0 < r < d = dist(p,q)/2, e siano A = B(p,r) e $B = \cup B(q,r)$. L'insieme $U = A \cup B$ è un intorno aperto saturo di p e q, quindi $\pi(U)$ è un intorno aperto di [p]. Esso è connesso in quanto A e B sono connessi, quindi le loro proiezioni al quoziente sono connesse, e si intersecano in [p]; quindi U, che è la loro unione, è connesso. D'altronde $U \setminus \{[p]\} = \pi(A \setminus \{p\}) \sqcup \pi(B \setminus \{q\})$ è unione disgiunta di insiemi che sono entrambi aperti perchè $A \setminus \{p\}$ è un aperto saturo, e $B \setminus \{q\}$ pure. Ma in una varietà di dimensione due nessun aperto connesso può essere sconnesso rimuovendo un punto. Quindi Z non è una varietà.
- (4) \mathbb{R}^2 si retrae per deformazione sul segmento \overline{pq} e dunque Z si retrae per deformazione sullo spazio ottenuto da \overline{pq} incollando tra loro p e q, che è S^1 , il cui gruppo fondamentale è \mathbb{Z} . Più dettagliatamente: A meno di omeomorfismi, possiamo supporre che p,q siano i punti p=(0,0) e q=(1,0). La retrazione di \mathbb{R}^2 sull'asse X data da f(x,y)=(x,0) è omotopa all'identità tramite l'omotopia $F: \mathbb{R}^2 \times [0,1] \to \mathbb{R}^2$, F(x,y,t)=(x,y(1-t)). In oltre tale retrazione passa al quoziente. Quindi Z si retrae per deformazione sullo spazio ottenuto da \mathbb{R}

identificando i punti0e 1. La retrazione $g:\mathbb{R} \rightarrow [0,1]$ data da

$$\begin{cases} g(x) = 0 & x < 0 \\ g(x) = x & x \in [0, 1] \\ g(x) = 1 & x > 1 \end{cases}$$

è omotopa all'identità tramite l'omotopia $G:\mathbb{R}\times [0,1]\to \mathbb{R}$

$$G(x,t) = \begin{cases} x(1-t) & x < 0 \\ x & x \in [0,1] \\ 1 + (x-1)(1-t) & x > 1 \end{cases}$$

Quindi Z si retrae per deformazione sullo spazio ottenuto da [0,1] identificando i punti 0,1. Tale spazio è S^1 e il suo gruppo fondamentale è $\mathbb Z$.