
CARLO PETRONIO 

AN A L G O R I T H M  P R O D U C I N G  H Y P E R B O L I C I T Y  

E Q U A T I O N S  F O R  A L I N K  C O M P L E M E N T  IN  S 3 

ABSTRACT. We describe a constructive and effective method for decomposing the complement of 
an alternating link in the three-sphere into tetrahedra with identifications and vertices removed. 
Consequently we obtain an algorithm for writing down the byperbolicity equations associated to 
such decomposition. 

According to the combined results of [Thl ] ,  [-Th4] and [Ep.-Pe] (see also 
[Ne-Za] and [Be-Pc, Chapter El, in the latter of which one could find a self- 
contained exposition of the subject) an orientable non-compact hyperbolic 
three-manifold of finite volume can be decomposed in a finite number of 
tetrahedra with glued faces and vertices removed; these tetrahedra are 
isometric to ideal tetrahedra in the hyperbolic three-space and they are 
parametrized by complex numbers satisfying certain rational equations 
depending on the combinatorics of the gluings (see Section 3 for definitions 
and precise statements). Moreover it is well known that such a manifold is the 
interior of a compact manifold whose boundary consists of tori. The natural 
question, arising from this topological description, whether the complement 
of a link in S a can be endowed with a hyperbolic structure, was faced and 
given important answers in [Th3], [Adl] ,  [Ad2] and [Me2], the results being 
purely existential as based on Thurston's hyperbolization theorem ([Th2] 
and [Th4]). On the other hand one can produce examples using the fact that 
for any three-manifold having a topological decomposition into tetrahedra as 
the one sketched above the equations can be written down and a solution, if 
any, actually defines a hyperbolic structure on the manifold. 

As suggested by these remarks in this paper we provide an algorithm for 
writing down hyperbolicity equations (associated to a decoraposition into 
tetrahedra) for the complement of a link in S 3 (not an arbitrary one, but quite 
a general one; moreover we prove that it is always possible to add 
components to a link in order to get one  to which the algorithm applies). 
Some basic examples are studied in [Th l ]  (Thurston's notes are actually the 
main source for this subject); in [Mel ]  a description of a more general 
procedure is partially carried out but in a quite rough way (for instance the 
conditions under which the procedure works are not explicitly stated; on the 
contrary we collect those we need in step 1 of our algorithm). We actually 
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moved from Menasco's paper trying to make the procedure as simple and as 
effective as possible. Some important differences arise: 

(a) we never make use of three-dimensional pictures, all our steps reduce 
to very elementary operations on plane graphs (this is important in 
particular in the last steps of the construction, when we add edges); 

(b) we prove that the hypothesis that the projection be alternating allows 
an important simplification in the procedure (Lemma 4.2); 

(c) we include in the 'automatic' procedure the calculation of the derivative 
of the holonomy (giving completeness equations), while Menasco (as 
well as Thurston in his examples) needed to reconstruct the tori from 
their triangulation. 

Moreover we give a fully detailed description of the geometric construction 
justifying the steps of the algorithm (in particular the cell decomposition of 
the link complement is carefully explained, while Menasco just sketched it). 

In Section I we describe the procedure without any explanation (we call 
the procedure an 'algorithm' as it is evident that it could be easily 
implemented on a computer: as to checking if a solution exists, this is another 
matter). In Section 3 we show how to apply the algorithm on a concrete 
example (and we prove that the complement of the considered link is actually 
hyperbolic); by a different application of the algorithm (step 6 actually 
requires a choice among a specified finite number of possibilities) to the same 
link we also obtain an interesting fact that we will discuss at the end of the 
next section. In Section 2 we briefly recall some definitions and the basic 
results motivating the algorithm, while in Sections 4 and 5 we describe the 
construction leading to the algorithm. We prove as an appendix the fact that 
given (the projection of) any link it is possible to add components to it in 
order to get (the projection of) a link to which the algorithm applies. 

For the reader's convenience we have used boldface type to number the 
effective steps to be performed, both in the description of the algorithm 
(Section 1) and in its explanation (Sections 4 and 5). Then if one looks for the 
explanation of Step n(m) of the algorithm (where n and m are integers) he only 
needs to look for Step n(m) in Sections 4 and 5 (taking care that it could recur 
several times). However we remark that explanations of Sections 4 and 5 are 
necessary for understanding the geometric construction but not for applying 
the algorithm: with a minor exception, Section 1 is completely self-contained. 

1. THE ALGORITHM 

The starting point of the algorithm is a regular plane projection of a link, i.e. a 
finite graph G c •2 such that close to each vertex G looks like a cross, in 
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which at each vertex the branch passing over the other one is specified with 
the usual symbolism. We assume the projection cannot be trivially simplified, 
i.e. that each vertex of G meets four different components of $2= ~2w {~}  
minus G (these components will be called regions) and that if a region has 
only two vertices then its two edges pass once above and once below at the 
two vertices. Thus the situations represented in Figure 1 cannot occur. 

! 

I t 

Fig. 1. These situations are excluded by the initial assumptions. 

We also assume G is not a plain circle, i.e. a single loop without crossings. 
(Of course once an explicit way of describing the projection is given these 
conditions can be automatically checked; the same holds for every operation 
or verification we are going to make, and we will not repeat the remark 
again.) 

We will refer in Section 4 to the assumptions made till now as 'initial 
assumptions'.  The reason for distinguishing them from the further as- 

sumptions we are going to make now is that the 'initial assumptions'  will be 
taken without discussion, while the others will be explained in Section 4. 

Step 1. Verification that: 
(1) the regions are homeomorphic  to the open disc (i.e. the boundary of 

each region is a simple loop); 
(2) the projection is alternating (i.e. for all components K of the link, given 

any orientation to K, each crossing at which K passes below is 
followed by one at which it passes above, and conversely); 

(3) if two edges in G have the same endpoints then they bound a region; 
(4) G is not a projection of the type represented in Figure 2; 

Fig. 2. If the number of crossings is even this is the projection of two circles wrapping around 
each other; otherwise of a single knot (e.g. the trefoil). 
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(5) the unbounded region has at least three vertices. 

If one of these conditions is not fulfilled the algorithm does not work. 
From now on we use the term 'bigon' to denote a region having only two 

vertices (in G and in the other graphs we are going to construct). 
Step 2. Choice of a name R1, R2 . . . .  for each region. Choice of a name 

91, 92 . . . .  for each vertex of G. Choice of a symbol (D or ® for each vertex of 
G, in such a way that if two edges join two vertices then the two 
corresponding symbols are different (for an effective method for doing this, 
see the proof of (4) =~ (2) in Lemma 4.5). For  each component of the link, 
choice of an edge in G belonging to it, named m~ (i = 1, 2 , . . . ,  number of the 
components). Whenever possible, the following criteria are used for such a 
choice: 

(a) mi is chosen as an edge of a bigon; 
(b) m~ is not chosen as an edge having one common vertex with a bigon. 

We denote the object thus obtained (a labelled graph) by G again. 
Step 3. Production of a new labelled plane graph G+ coinciding with G as 

an unlabelled graph and labelled according to: 
(1) edges and regions are labelled as indicated by the rules of Figure 3; 

Fig. 3. The rules of Step 3(1). 

(2) inside each region R~ + we draw a little arrow pointing towards the first 
endpoint of 9~, where j is the least index appearing on OR+; 

(3) new symbols labelled by mi are added as indicated by the rules of 
Figure 4. (One of the determining aspects of these symbols labelled by 
mi is the vertex near which they are drawn.) 

Step 4. Production of a new labelled plane graph G_ coinciding with a 
reversed copy of G (i.e. the image of G under a reflection of the plane relative 
to a line) as an unlabelled graph, and labelled according to: 

(1) edges and regions are labelled as indicated by the rules of Figure 5; 
(2) inside each region R 7 we draw a little arrow pointing towards the first 

endpoint of g j, where j is the least index appearing on 0RZ; 
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Fig. 4. The rules of Step 3(3). 
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Fig. 5. The rules of Step 4(1). 

(3) new symbols labelled by mi are added as indicated by the rules of 
Figure 6. 

m I 
Fig. 6. The rules of Step 4(3). 

~ ~  c~t - 

Since Figure 5 may cause confusion as it depends on the position of the 
part in question with respect to the line relative to which we are reversing the 
graph, we rephrase the rule for Step 4(1): 

(i) we give the name R~- to the region obtained by reversing R~; 
(ii) let Ri and Rj be adjacent along the edge e in G; if the endpoint of e at 

which e passes above has name gk, then in G_ we have that R7 and R f  
are adjacent along gk; 

(iii) with the same notation, let i and j be chosen in such a way that a 
segment going from Ri to Ri leaves gk on the right (we possibly need to 
interchange the roles o f / a n d  j); then if the symbol (3 is attached to gk, 
in G_ we have that gk runs clockwise with respect to R f  and 
counterclockwise with respect to RT; the converse for the symbol ®. 
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Similarly one could rephrase the rule of Step 4(3) independently of the line 
relative to which we are reversing. 

From now on the objects represented in Figure 7 will be called respectively 
a 'passage' and an 'arc' of rn i. 

Fig. 7. The object at the left-hand side of the figure will be called a 'passage' of rag, and the one at 
the r ight-hand side an 'arc' of m i. 

Step 5. Production of two new labelled graphs G + and G_ starting from the 
old ones, according to the following rules (the notation refers to G÷, but the 
rules are the same for G_): 

(1) if in the old G + two edges join two vertices, then one of them is deleted 
(we call this operation 'elimination of the bigon' bounded by the two 
edges); 

(2) the little arrows inside the bigons are forgotten, and the other are 
copied; 

(3) we fix an ordering of the bigons and eliminate them following this 
ordering; when eliminating a bigon with edges gl and gj we give the 
surviving edge the name gi where i =  min{i,j}, and moreover we give 
the name gl to all other edges previously having name g j; 

(4) arcs and passages of the mi's not involving bigons are copied. 
In order to establish what one of the objects represented in Figure 8 (or a 
similar one with the orientation of m~ reversed) causes to appear, a recursive 
method is used: one first eliminates the bigon in question according to the 
rules of Figure 9 and similar ones with the orientation of mi reversed). 
(Remark that the rule described in the upper-right part of Figure 9 refers to a 
situation which cannot now occur.) 

Fig. 8. The objects in the old graph of which the effect on the new graph is described in Step 5(4). 

Then the recursive method starts again (and now a situation as in the 
upper-right rule can occur). The method stops when the arc or passage of mi 
we have produced does not touch a bigon, and then it is copied in G+. 
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Fig. 9. The rules of Step 5(4). 

Remark that this recursive method requires to perform the elimination of 
the bigons (following the four rules of Figure 9) in several different ways (i.e. 
according to several different orderings). However if the bigons are isolated 
(i.e. if any two bigons do not have common vertices) the recursive method 
stops after the first step, and then we only need to perform the elimination of 
the bigons following any fixed ordering, without recursive methods; this 
allows us to simplify much of the procedure. 

Step 6. In G+ we add p - 3  edges (without adding vertices.) inside each 
region R + (even in the unbounded one) having p/> 4 edges, in order to divide 
it into triangles (of course there exists a finite number of possibilities for doing 
this). We correspondingly add edges inside each R f  in the following way: (i) 
starting from the vertex towards which the little arrow inside R + points and 
proceeding counterclockwise we number the vertices of R +; (ii) starting from 
the vertex towards which the little arrow inside R f  points and proceeding 
clockwise we number the vertices of R~-; (iii) if in R + an edge is added having 
the nth and the ruth vertex as endpoints, the same is done in R 7. 

Each R7 is now divided into triangles too. We give the added[ edges names 
gin+ 1, 9,.+ Z,' '" (if m was the greatest index previously appearing) both in G+ 
and G_ (of course we give the same name to corresponding edges). The 
remainder of the labellings of G + and G_ (excluding the names of the regions 
and the little arrows, which no longer make sense) is kept unchanged, with the 
exception of the arcs labelled by rn i, which transform with the rule described 
in Figure 10. 

Fig. 10. The rule of transformation of the arcs m,. 



74 C A R L O  P E T R O N I O  

We also delete the orientation of the 9i's. We keep calling G+ and G_ the 
labelled graphs thus obtained. 

Let us assume now that in G+ and G_ any two edges have at most one 
common endpoint. Since there exists a finite number  of possibilities for the 
subdivision of the R+'s  it is possible to establish by a finite number  of 
calculations whether we succeed or not in fulfilling this condition: if we do not 
the procedure fails. 

Step 7. In G + we choose a vertex v + of the unbounded triangle. For  each of 
the triangles not having vertex v + we write the symbols zi, z'i, z'[ inside the 
triangle and near the three edges in a counterclockwise order (starting from 
an arbitrary edge). Near  each edge having endpoint v + we write the symbol 
thus obtained: if v is the other endpoint we take the product of all the symbols 
written inside the triangles containing v and not v + near the edge opposite to 
v. We also adopt  the convention that if there are two symbols written near an 
edge e, when speaking of 'symbol written near e' we actually mean the 
product of these two symbols; remark however that the phrase 'symbol 
written near e inside T'  (where T is a triangle containing e) has the same 
meaning as above, i.e. it defines a single symbol and not the product of two. 

We repeat the procedure in the very same way for G_, calling v-  the chosen 
vertex of the unbounded triangle and using the symbols w~, w'i, w~. 

We are going to write now formal equations of the form 'product of 
symbols z~, z~, zi', w~, w~, w'[ = 1'; they are translated into true equations in the 
complex variables z 1 . . . .  ,wl . . . .  by the convention u ' = l / ( 1 - u )  and 
u" = 1 - 1/u. If  a solution of these equations exists with all the zi's and w~'s in 
the upper half-plane then the complement of the link considered at the 

beginning can be endowed with a hyperbolic structure. 
First compatibility equations. We describe a procedure referring to G+ for 

the notation, to be repeated for G_ too. For  all the vertices v being not joined 
to v + we take the product of all the symbols written inside the triangles 
containing v and not v + near the edge opposite to v, and we set this product 
to 1. 

Second compatibility equations. For  all the g~'s we set to 1 the product of the 
symbols written near the various existing copies of g~ in both G+ and G_. 

Completeness equations. For  all i's we select the passages and arcs of m~ 
leaving the vertex they are referred to on the left, and mark  them with a little 
circle as represented in Figure 11. 

Then we take the product  of the symbols written near all the edges marked 
by a little circle, and we set it to 1 if the number  of arcs of m~ in G + is even, - 1 
otherwise. We also set the sum of the arguments of these symbols to be rc 
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Fig. 11. The little circles we draw if m i leaves its vertex on the left. 

t imes the n u m b e r  of  edges of  mi; if the number  of edges of mi is 1 or  2 then this 

equa t ion  is dispensable .  

2. AN EXAMPLE 

Figures  13 t h rough  16 and  the discussion which follows show how to app ly  

the a lgor i thm to the l ink represented  in F igure  12. 

Fig. 12. The projection to which we apply the algorithm. 

Step 1: Okay .  

Fig. 13. Application of Step 2. 
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Fig. 14. Application of Steps 3 and 4. 
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Fig. 15. Application of Step 5. 
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Fig. 16. Application of Steps 6 and 7. 
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First compatibility equations: n o n e .  

Second compatibility equations: 

77 

t t# t t¢ 
gl: Z 2 " Z 1 " Z 1 " W 1 " W 2 " W 2 ~ 1 

g2: (z~. z'3).z3. (z';. z'3).(w~, w'3)" w3 .(w;.  w'3) = 1 
#v t . t#  

g 3 :  Z t l  " Z 2 " Z 2 " W 2 W 1 " W 1 = 1 

g 4 "  ( Z  1 " Z  2 " Z 3 ) "  ( W  1 " W  2 " W 3 )  = 1 

gs: (z'~.z~).(w'~. w~) = 1 

g6: (fl'Z~)'(W'z'Wg) = 1. 

Completeness equations: 

• tt ~ - - 1  ml: z'2 " W  2 W 2 

• t! -~_ m2: (z~-&) (w2"w~)'w3 -1  
# it 

m3: z 2 " w 2 " ( w  1 - w  2 ` w 3 ) ' w  1 = 1. 

It is not so hard to check that all these equations (translated into true 
equations by the stated convention) have the unique solution in the product 
of six upper half-planes 

z l = z 2 = w l = w 2 = ~ +  i 2 ' Z 3 = W  3 = ~  21- i . 

In order to give an example of the first compatibility equations we consider 
now another way to perform Step 6, as represented in Figure 17. This will also 
lead us to an important  fact we will comment  on at the end of Section 3. 

"7 
'~5 z, 

.,, 

/ "A 

Fig. 17. Application of Steps 6 and 7 (second version). 
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Firs t  compat ib i l i ty  equations: 

z 1 . z  2 . z  3 . z  4 = 1 

W I ' W 2 " W 3 " W  4 ~ 1. 

Second compat ib i l i ty  equations: 

0 , :  (z'~. z '~) 'z l  .(z~ • z : O ' ( w l  • w:~). w~.  (w~- w:O = 1 

05: ( z ~ - z ; ) .  =3 "(z~; . z ; ) . ( w ~ .  % ) .  w3' (w~" % )  = 1 

03: ( z i "  z~) . z~  .(z~ "z' ,) '(w'2" w~).  w l  . (w'i " w'4) = 1 

94: z4"w4= 1~ 

05: ( z ~ - z ; ) - ( w l . w ; )  = 1 

06: ( z i ' z ; ) ' ( % ' w ; )  = 1. 

Comple teness  equations: 

ml:  (z'~. z~) .  w , . . ( w ~ ,  w'4) = - 1 

ms: ( z ~ . z ; ) . ( w ~ -  % ) .  w3 = - 1 

• t t !  o t !  m3: z~ (w~.  w4) (w~ "w'~) = - 1. 

It is easily checked that if one uses the first two equations to eliminate z4 and 
w4 the result is the system of 9 equations in 6 unknowns we obtained above. 
Then we must have that z~ , . . . ,  wa are as above, and hence 

z~ = w4 = (z~" z 3 ) -  ~ = - 1 

so that there is no solution in the product of upper half-planes• 

3. T H R E E - M A N I F O L D S  D E C O M P O S I N G  INTO T E T R A H E D R A  AND 

H Y P E R B O L I C I T Y  E Q U A T I O N S  

Let M be a (connected and orientable) non-compact 3-manifold without 
boundary being the interior of a compact manifold with boundary made of 
tori. It is possible to prove (see [Ma-Fo]  and [Be-Pc]) that M can be 
obtained according to the following procedure: a finite number of copies of 
the standard 4-simplex (the tetrahedron) is considered, the faces of these 
tetrahedra are glued in pairs (via simplicial maps) and the vertices are 
removed. (In other words, M can be 'triangulated' by tetrahedra without 
vertices.) We will denote by ~a the 'set' of all these manifolds together with 
their realization as above (the procedure is not unique in general). Elements 
of ~ will be denoted as the manifold they represent, a fixed realization as 
glued tetrahedra being understood. 
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From now on with the terms tetrahedron, face and edge we will often 
understand that vertices are removed. Given M e Y-3 obtained by gluing the 
tetrahedra A 1 . . . . .  An we reserve the term projection for the natural mapping 
from the disjoint union of A 1 . . . .  , A, onto M; a tetrahedron (face, edge) in M 
is just the projection of a tetrahedron (face, edge). Remark that each 
tetrahedron in M is the projection of precisely one tetrahedron and each face 
is the projection of precisely two faces, while the edges may be the projection 
of several edges. 

It is quite easily checked that the edges in an element of ~ a~re as many as 
the tetrahedra. 

Given M s f 3  obtained by gluing n tetrahedra and removing k vertices we 
will describe a system of n + k rational equations in the product of n copies of 
the upper half-plane 1-I + whose solution, if any, essentially represents a 
hyperbolic structure on M (i.e. a complete Riemannian structure with 
sectional curvatures - 1 ;  the word 'essentially' means that there is another 
minor verification to carry out). It is worth remarking that the topological 
assumptions imply that M has finite volume with respect to any such 
structure, and moreover by the rigidity theorem the structure, if any, is 
unique. 

The basic idea is to realize the tetrahedra as ideal tetrahedra in the 
hyperbolic 3-space H 3 and try to globalize and make complete the hyperbolic 
structure naturally defined on the interior of the tetrahedra. The structure 
always naturally extends to the interior of the faces; n equations will come 
from the requirement that the structure extend to the n edges, and k more 
equations from the requirement that the structure be complete on a 
neighborhood of the k removed vertices (this fact being equivalent to 
completeness, as a compact set is left out). 

We recall that if we fix a preferred pair of opposite edges on an ideal 
tetrahedron in H 3, its oriented isometry class is parametrized by II +. We use 
the notion of modulus of an ideal tetrahedron along an edge with the obvious 
meaning. Figure 18 shows the moduli of a tetrahedron along the different 
edges, where z' stands for 1/(1 - z )  and z"stands for 1 - 1/z. 

2[" 
Fig. 18. Moduli of an ideal tetrahedron. 
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Now, let us turn to our M E ~--3 obtained by gluing n tetrahedra; we choose 
on each of them a preferred pair of opposite edges and realize them as ideal 
tetrahedra in H3; we denote the corresponding moduli by z l , . . . , z , , .  The 
condition that the hyperbolic structure extend to a certain edge e is easily 

translated in terms of z l , . . . ,  z,: we need that the product  of the moduli along 
the various edges projecting onto e is 1 and that the sum of the arguments of 
these moduli is 2m Moreover  a lemma to be found in [Be-Pe] implies that it is 
sufficient to impose the first condition ( 'product of the moduli = 1') for all the 
n edges. Remark that these are in fact n rational equations in zl . . . . .  z,. 

Now we turn to completeness. Let z 1 . . . .  , z, define a hyperbolic structure 
extending to the whole M. Then the toric links of the k removed vertices are 

obtained by gluing in pairs the edges of plane Euclidean triangles (well- 
defined up to similarity, each triangle being the intersection of one of the 
tetrahedra with a suitably small horosphere centered at one of the vertices) 

and the condition that the structure extend to the whole M implies that the 
similarity structure globalizes to the toric link. 

It turns out (see [Be-Pe]) that the hyperbolic structure is complete if and 
only if these similarity structures on the k tori are actually Euclidean. In turn 
this is equivalent to the fact that with respect to the similarity structure the 
holonomy of a meridian of each torus is a translation (i.e. has derivative 1) 

and is not the identity. 
Then, going back to our M, we must compute the derivative of the 

holonomy of a meridian m of each of the k tori with respect to the similarity 
structure induced by zl . . . . .  z,. This is achieved by representing m as a simple 
simplicial loop: if # m  0 denotes the number of vertices of m then the 
derivative of the holonomy of M is given by ( -  1) #m° times the product of the 
moduli of the triangles m leaves on the right along the vertices on m. (The 
modulus of a triangle T along a vertex v is the modulus of the tetrahedron 
containing T along the edge containing v.) So if the structure is complete we 
have that z ~  . . . .  , z n satisfy k more rational equations. The converse is not 
precisely true as we have to check that the holonomy is not the identity; this 
condition is equivalent to having the sum of the arguments of the moduli m 

leaves on the right equal to # too're. Remark that if the previous equations 
are satisfied this sum must be (#mo+2k)rc  for some k; so we can think to 
these equations involving the arguments as a 'final verification': we first solve 
the rational equations and then we check that the arguments of the solutions 
satisfy the last equations. Remark as well that if #mo  is 1 or 2 then the 
condition about  the arguments is automatic. 

As we said, given M ~ J'3, the existence of a solution for the compatibility 
and completeness equations (which depend only on the combinatorics) 
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provides a hyperbolic structure on M. Then one may wonder if a solution of 
the equations must exist whenever a hyperbolic structure is defined on M. In 
[Be-Pc] it is shown that a solution must exist with the unknowns in C\{0, 1}, 
but the question is not settled whether it is possible or not to find a solution 
with the unknowns in II +. Since we are going to see in the next sections that 
the equations described in the algorithm are those associated to a realization 
of the link complement in ~ ,  the example of Section 2 implies the following: 

T H E O R E M  3.1. Let an element M of 5-3 be given and consider the 
compatibility and completeness equations associated to the realization of M. 
Existence of a solution for these equations in a product of half-planes is a 
sufficient but in general not a necessary condition for M to be hyperbolic. 

4. E X P L A N A T I O N  OF THE A L G O R I T H M :  GEOMETRIC C O N S T R U C T I O N  

AND C O M P A T I B I L I T Y  EQUATIONS 

Let us consider a link L represented by a regular projection satisfying the 
initial assumptions stated at the beginning of Section 1. We start by 
describing a cell decomposition of the space S3/L obtained from S 3 by 
collapsing each component of L to a point, in which the 0-cells are precisely 
the collapsed components; later we will discuss how (and when) to such a cell 
decomposition it is possible to associate a realization in J-3 of 
S3\L -- (S3/L)\O-cells. In this and the following section we will use several 
three-dimensional pictures by looking at the projection plane of L as a 
horizontal one in ~3; however we will show that everything can be 
represented by 2-dimensional pictures as we actually need for the algorithm. 

We start by assuming that all the regions (the components R1, R2, . . .  of 
S 2= ~2 k..){OO} minus G, where G is the projection in question, a graph) are 
homeomorphic to the open disc (Step 1(1)). Remark that by the initial 
assumption that each vertex be in the closure of four different regions we 
obtain that the closure of each region is homeomorphic to the closed disc. 
From now on we will often use the term 'region' to denote the closure of the 
components of S2\G; remark that the regions are polygons, so that it is 
natural to speak of their edges and vertices. 

The assumption that the regions be discs is necessary for associating to G a 
cell decomposition of S 3 in which the 0-cells are the vertices of G, the 1-cells 
are the edges of G, the 2-cells are the regions and the 3-cells are the two 
components of $3\S 2, denoted by B+ and B_ as they are 3-dimensionally 
viewed as the upper and lower half-spaces. 
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Remark that the assumption that the regions be discs is automatic for 
knots but in general not for links; moreover this condition is obviously 
necessary for Sa\L to be irreducible and hence to possess a hyperbolic 
structure. 

The first step is to construct a new 2-complex C c S 3 by modifying the cell 
decomposition ofS  3 up to the 2-skeleton. C is constructed in such a way that 
(a link equivalent to) L is a subset of its 1-skeleton: this is achieved by 
replacing each vertex in G with a short vertical segment as suggested in 
Figure 19. 

• • ~ °° f\ • • ~  
• ° 

Fig. 19. How to replace a crossing by a vertical segment. 

The 0-cells and the 1-cells of this new 2-complex C are evident; the 2-cells 
are obtained by modifying the previous regions as suggested by Figure 20. 

Fig. 20. How to modify the old regions and get the 2-cells. 

We keep denoting the modified regions by R1, R2 . . . .  Remark that these 
new 2-cells are nicely chosen, so that S 3 minus C still consists of two balls we 
keep denoting by B+ and B_. Remark, however, that C together with these 
two balls does not define in general a cell decomposition ofS  3 (B÷ and B_ are 
not bounded by spheres now). 

We describe how to associate to C a cell decomposition of S3/L. We start 
by giving names gl, g2,-. ,  to the added vertical segments and attaching to 
them an orientation (an arbitrary one at the moment: we will come back to 
this later). The following is the description of the cell decomposition 
(becoming more and more complicated as the dimension of the cells grows). 

(a) The 0-cells are the collapsed components pl, P2 . . . .  of the link. 
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(b) 

(c) 

The 1-cells are segments we keep denoting by 01, 02 . . . .  coming from 
the vertical segments; the gluing function is obvious: the first (second) 
endpoint of Oj is mapped to p~ if the first (second) endpoint of Oj as a 
vertical segment lies on the component collapsing to p~. 
The 2-cells come from the above modified regions and they are denoted 
by RI, R2 . . . .  again; the right gluing is easily constructed: the boundary 
of a modified region consists of (oriented) segments 0i alternated with 
segments lying on the link (denoted by the same symbol p~ as the 
collapsed component they lie on); then we only need to shrink to points 
the segments of the latter type. An example of this is given in Figure 21; 
the construction implies that the boundary of the 2-cell in question is 
mapped onto the loop 9z '93"9~  1 in the 1-skeleton. 

~" ~ , ~ ~  83 ~ j  ~ _ ~  

Fig. 21. How to obtain the gluing functions of the 2-ceUs. 

(d) The 3-cells are two and they come from the balls B+ and B_; in order 
to describe the gluing functions we give explicit realizations, corre- 
sponding to the gluings of B+ and B_, of S2=OB 3 as union of the 2- 
cells. The point is to partially perform the collapsing of the components 
in order to make C become a horizontal plane again. 

We start with B + and remark that in a situation as in Figure 22 we have 
that 'looking from above', i.e. from B+, R1 and R2 are adjacent along O, and 
so are R3 and R 4. 

Fig. 22. Determination of the adjacencies of the 2-cells. 
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Fig. 23. Representation of the adjacencies obtained. 

Then we replace the part of graph represented in Figure 22 by the part of 
graph given in Figure 23 (and lying on the horizontal plane); remark that we 
are again denoting by p~ both the components of the link and the 0-cells 
obtained by collapsing them. 

We do this for all the g~'s and we get a graph (obtained by adding to G some 
vertices) in which some edges are labelled with a symbol p~ and some are 
labelled with asymbol g~ and an orientation; then we only have to shrink to 
points the edges labelled by p~ (of course we must allow the other edges to 
stretch). An example of this procedure is described in Figures 24 and 25. 

Fig. 24. An example of how to shrink the p~ edges. 

Fig. 25. Example of Figure 24 continued. 
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The object we obtain at last is a plane graph we denote by G+, in which the 
edges are oriented and labelled by the symbols gi (each appearing twice); as in 
the above example, the components of S2\G+ a r e  denoted by R +, R~ . . . .  

corresponding to R1R2 . . . . .  The gluing of the 3-cell coming from B + (denoted 
by B + again) is obtained by considering a copy ~2 of the plane containing 
G+, setting S 2 = ~2 u {oo}, considering sZ+ as the boundary of the upper 
half-space B+ and gluing $2+ to the 2-skeleton in the way prescribed by the 
labelling: each p~ must be mapped to the corresponding 0-cell, each g~ must be 
mapped to the corresponding 1-cell following the orientation, each R + must 
be mapped to the 2-cell R~ following the labelling of the boundary. Of course 
by the very construction these gluing instructions do not cause any 
contradiction. 

A similar construction works for the other 3-cell B_. We replace the left- 
hand side of Figure 26 by its right-hand side. Then we shrink to points the 
edges labelled by p~ and we call G_ the resulting labelled graph. As above we 
consider ~2 ~ G_, S 2_ = ~2 ~ {oo}; the only difference now is that B_ is the 
lower half-space. 

Fig. 26. The rule for B_. 

The realization of S3/L as a cell complex is now perfectly described. The 
construction seems to be quite involved, but a further assumption on the 
projection will make it much simpler. Before discussing this we prove another 
result, implying that the graphs G_ and G+ together with their labelling are 
actually enough to reconstruct everything; even more: from G + and G_ one 
can remove the symbols Pl and the result remains true. Let us remark first of 
all that the labellings of OR + and ORi suffice to define without ambiguity the 
identification between R + and RT; in fact each g~ appears at most once on 
them. 

LEMMA 4.1. S3/L is obtained by considering the disjoint union of two balls B+ 
and B_ bounded by S 2 and S 2_ as described above, and then identifying each R + 
to R~ as indicated by the labelling of OR + and ORT. 



86 CARLO PETRONIO 

Proof  What we have to show is that from the gluing of the 2-cells one 

deduces the gluings of the 0-cells and the 1-cells. 
We start with the l-cells; a situation like the one represented in Figure 27 

gives in G+ and G_ respectively the left-hand side and the fight-hand side of 

Figure 28. 

Fig. 27. Proof that the gluings of the 2-cells imply all the gluings of the 1-cells; a generic crossing. 

Fig. 28. These situations in G+ and G_ come from Figure 27. 

In Figure 28 we have added apices to the different copies of g in order to 
check that the gluing of the 2-cells actually allows to identify them all; in fact 

we have: 

R ~  = R ;  ~ g' = g" ,  R ]  = R 2  ~ g' = g", 

R ~  = R ~  ~ g" = g" 

and then the four copies of g are glued together. 
Now, for 0-cells we confine ourselves to an example and leave the general 

case to the reader. Let f (g)  and s(9) denote respectively the first and second 
endpoint of an oriented segment g. In a situation like that of Figure 29 we 

must check that s(gx) = f(g2) = f(g3) = s(g3) = s(g4) = s(gs). 

. o  . • 

Fig. 29. Proof that the gluings of the 2-cells imply all the gluiugs of the 1-cells. An example. 
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Fig. 30. Example of Figure 29 continued. 

In G + we obtain the situation of Figure 30 (remark that we already know 
that the two copies of gi are glued together). 

Then we easily have that 

s(gl) = f(g2) = f(g3) = s(g3) 

f(g3) = s(g,) = s(gs) 

and the conclusion follows. []  

According to the above result we remove from G + and G_ the symbols p~ 
and keep denoting the labelled graphs thus obtained by G + and G_. 

We discuss now the further assumption on the projection making the 
construction of G+ and G_ much simpler. We say the projection of L is 
alternating if for all components K of L, given any orientation to K, each 
crossing at which K passes above is followed by one at which it passes below, 
and conversely. 

Since the next result describes the first effective step in our algorithm we 
introduce some symbols in order to keep the pictures plane. To each vertex of 
G we attach a symbol (3 if we choose the corresponding vertical segment to 
point upwards, ® otherwise. 

L E M M A  4.2. Assume the projection is alternating; then G+ and G_ both 
coincide with G (the initial projection) as unlabelled graphs; moreover the 
labelling is obtained according to the rules given in Figure 31 and Figure 32 (for 
G+ and G_ respectively). 

L 
Fig. 31. Statement of Lemma 4.2: rules for G+. 
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O 

I 
O 

I 
Fig. 32. Statement of Lemma 4.2: rules for G_. 

Fig. 33. Generic situation for an edge in the case of alternating projection. 

Proof We refer to G+. All the edges in G are in the situation of Figure 33. 
Then we have that on each edge e of G there exists precisely one edge 

labelled by gi; it follows that shrinking the other edges to points just 
corresponds to extending the label gl to the whole e. 

Orientation matters are easily settled. []  

From now on we will assume that the projection is alternating (Step 1(2)), 
so that the construction of G+ and G_ becomes much simpler. There are 
other reasons for assuming this, as we will point out later. 

Before summarizing what we have we remark that for uniformity of 
notation it is convenient to reverse G_ (i.e. transform R 2_ by any orientation- 
reversing mapping, for instance the reflection relative to a line) so that S 2_ 
must be considered to bound the upper half-space, just like S 2. From now on 

upper half-spaces will be considered closed. 
The following result summarizes the construction. 

T H E O R E M  4.3. Let G be a graph representing an alternating projection of  a 
link L and satisfying the initial assumptions. Denote the components of  
S 2 = ~2k.){O0} minus G by R1, R2,... and assume they are homeomorphic to 

discs. Give the vertices of  G names gl, 02 . . . .  and attach to each of them a symbol 
(S) or ®. Produce two new plane labelled graphs G+ and G_ according to the 
rules given in Step 3(1) and Step 4(1). Let S 2 and S 2 _ be spheres (horizontal 
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plane plus oo in distinct copies of N a) containing G+ and G_ respectively; look 
at them as bounding the upper half-spaces B+ and B_. Then S3/L is obtained by 
taking the disjoint union orb + and B_ and identifying each R + to R i  according 
to the labelling of the boundaries. Moreover the collapsed components of the 
link come precisely from the vertices of G+ and G_. 

Our next step will be to add edges and faces (but not vertices) to B+ and B_ 
in order to decompose them into tetrahedra (i.e. triangulate them); of course 
this produces in an obvious way a realization in ~-3 of Sa\L. 

Remark that S 2 and S 2_ are now presented as polyhedra (nicely glued 
polygons); of course a necessary condition that by adding edges and faces one 
can decompose B+ and B_ into tetrahedra is that no 'bigon' (polygon with 
two edges) appears. However, if we do have a bigon, we can eliminate it by 
identifying its two edges (i.e. by giving them the same name) and allowing the 
surrounding polygons to enlarge; in order to do this for all the bigons we need 

that: 

(a) the two edges of the each bigon have 'the same orientation' (see Figure 
34); 

Fig. 34. A bigon whose edges have the same orientation. 

(b) there does exist some region being not a bigon; 
(c) the edges of each bigon keep having different names during the 

procedure of elimination (remark that this is true at the beginning, but 
when we eliminate a bigon with edges gl and 02 and give them the 
name, say, gl, then we must give name gl to all other existing copies of 
g2, which may cause problems). The reason for this requirement is that 
if the edges of a bigon have the same name then the bigon projects onto 
a sphere in S3/L, and there is no sense in switching it to a segment. 

Conversely, these conditions are sufficient for eliminating the bigons. 
The following result concerns the second and third of these conditions. 

LEMMA 4.4. (1) The only projections (satisfying the underlying assumptions) 
such that all the regions are bigons is the one consisting of two plain circles with 
two intersection points (being the projection of two trivially chained unknots); 

(2) the procedure of successive elimination of the bigons produces a bigon 
with edges having the same name if and only if one of the following situation 
OCCURS: 
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O) in G we have two bigons having a common edge; 
(ii) G is a projection of the type represented in Figure 2 (Step 1(4)). 

Proof. We leave it to the reader to check (1) and that situations (20)) and 
(2(ii)) actually lead to a bigon with edges having the same name. 

As for the converse in (2), let us start with a bigon B with edges gl and g2; if 
the other copy ofg 1 does not lie on a bigon too there cannot be any problem: 
if we eliminate all other bigons but B we have that there keep being only two 
segments named gl. Similarly if the other copy of g2 does not lie on a bigon. 
So, let us assume that both the other copies of gl and g2 lie on bigons too, and 
moreover that the situation is not as in (2(i)). It is quite easily checked that if 
proceeding from B in a direction (and hence in both directions) we find an 
edge not lying on a bigon then no problem arises. The only possibility left 
(using the hypothesis that the projection be alternating) is (20i)). [] 

From now on we will exclude the situations (20)) (of which (1) is a special 
case) and (2(ii)); this is contained respectively in Step 1(3) (which excludes 
even more: we will see later why) and Step 1(4). Remark that excluding 
situations like (20)) implies in particular that at most two edges join two fixed 
vertices of G. This is used in the following result, in which otherwise 'two 
edges' should be replaced by 'more than one edge', and 'one is deleted' by 'all 
but one are deleted'; it deals with the first condition stated above for the 
elimination of the bigons. Remark that the proof depends on the hypothesis 
that the projection could not be trivially simplified, namely on the fact that 
the edges of the bigon are alternating. 

LEMMA 4.5. The following conditions are pairwise equivalent: 

(1) an orientation of the segments gi can be chosen in such a way that in G+ 
and G_ the two edges of each bigon have the same orientation; 

(2) it is possible to attach to each vertex of G a symbol (S) or ® in such a way 
that different symbols are attached to the vertices of each bigon; 

(3) let G be the subgraph of G obtained in the following way: the vertices are 
the same; if two edges join two vertices, one of them is deleted; if only one 
edge joins two vertices then it is deleted; then G contains no non-trivial 
simple simplicial loop with an odd number of vertices; 

(4) / fG is as above then G contains no non-trivial simplicial loop with an odd 
number of vertices (each counted the number of times it is touched). 

Proof. Equivalence of (1) and (2) follows immediately from the explicit way 
of constructing G÷ and G_ stated in Lemma 4.2 (G_ is now reversed, but of 
course this makes no difference). 
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(2) =~ (3). Assume by absurd that in G there exists a simple simplicial loop 
with vertices vl,v2 . . . .  , v2,+ 1. If for instance Vl has 6) attached to it (in G) then 
v 2 has ® attached to it (by construction of G there exists a bigon with vertices 
vl and v2). Similarly we go on and we finally have that v2,+ 1 has 6) attached 
to it: a contradiction. 

(3)=~(4) is a very easy general property (depending on the fact that if the 
sum of two numbers is odd then one of the numbers is odd). 

(4) => (2). By construction of G it suffices to attach symbols 6) or ® to its 
vertices in such a way that different symbols are attached to the endpoints of 
each segment. In each component of G we choose a vertex v I and for any 
other vertex v we define n(v) as the least number of vertices of a simplicial path 
joining v to v 1. Then we attach 6) to v if n(v) is odd and @ otherwise. (4) easily 
implies that things match up. []  

It is easily seen that the assumptions of Step 1(1, 2, 3, 4) together imply the 
equivalent conditions of the previous result; furthermore we assume the 
unbounded region (defined by G) is not a bigon. (This is needed to make the 
elimination of the bigons automatic starting from G+ and G_; the veri- 
fication is in Step 1(5).) We keep denoting by G+ and G_ the labelled graphs 
obtained by eliminating the bigons from the old G+ and G_, according to the 
procedure described in Step 5(1, 3). We leave the remainder of the notation 
unchanged; in particular S 2 and S 2_ are spheres containing G÷ and G_ 
respectively. 

Remark that in both S 2 and S 2_ each region keeps being homeomorphic to 
the closed disc (it is easily checked that elimination of bigons does not affect 
this property). 

Since in the sequel we are going to use the identification between R~ + and 
R~- we must add something to our construction. In fact we previously 
remarked that (before eliminating the bigons) the labelling of 0R~ + and 0RF 
suffices to determine this identification (each gj appeared at most once on 
them); unfortunately this is not true any more after the elimination of the 
bigons. For  instance from the situation of Figure 35 we get respe, ctively in G + 
and G_ the situations at the left- and right-hand sides of Figure 36 and then 
there exists no sensible way to choose the identification between R~- and R 7. 

Fig. 35. After the elimination of the bigons the identification between R~ + and RT must be 
specified. An example. 
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Fig. 36. Example of Figure 35 continued. 

Then we go back to the situation before eliminating the bigons and we 
choose a vertex on each region R/+ and correspondingly one on R~-; we label 
these vertices by little arrows inside the region and pointing towards it, as 

shown in Figure 37. 

( 

e: ( r,- 
| * 

' x  
°~ 

Fig. 37. The little arrows we add to remove ambiguity. 

A non-ambiguous way to make this choice is described in Step 3(2) and 
Step 4(2). Then when eliminating the bigons we keep these little arrows (of 
course not inside the bigons) as stated in Step 5(2). The identification between 
Ri + and R/- can now be described as follows: (i) the vertices of Ri + and R f  
towards which the little arrows point are identified; (ii) 8R/+ and aR~- are 
identified starting from the above vertices and following OR~ + in a counter- 
clockwise sense and ORF in a clockwise sense, in such a way that edges are 

identified to edges; (iii) the identification is extended to the interiors. 
The fact that ORi + and OR~- must be followed in opposite senses depends on 

the fact that G_ has been reversed. Remark that by the very example above 
the specification of the senses to be followed is necessary; the orientation of 
the gi's may not be sufficient. 

The next step in our construction (corresponding to Step 6) is to add some 
edges to G+ and G_ in such a way that all the resulting regions (even the 

unbounded one) are triangles; we do this in such a way that the region R i is 
divided in the same way as R{ under the prescribed identification (i.e. we first 
divide R~ + and then we repeat for R~-; it is easily checked, using the 
description of the identification we just gave, that the method described in 
Step 6 actually allows us to do this). Of  course there are several ways for 
adding edges: if R~ + has p t> 4 vertices we add inside R~ + edges el . . . . .  ep_ 3 in 
such a way that: 

(a) e i ne j  consists of at most  a common endpoint for i ~ j ;  
(b) ei does not have both the endpoints in common with an edge of R~+; 
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(it is easily checked that these are necessary and sufficient conditions for a set 

of edges to divide R~ + into triangles without adding vertices); remark that a 
finite number  of possibilities is given. 

Let us denote once more by G+ and G_ the graphs obtained by adding 
edges as described. We give the added edges names 9,~ + l, 9m + 2, . . .  (assuming 
rn to be the greatest index previously appearing) both in G + and G_: of course 
the edges to be identified under the identifications R~ + = R~- will have the 
same name. One should also give new names to the triangles in order to keep 
in mind the way they must be glued together (the labelling of the edges may 
not be sufficient); however, since we are going to show that for writing down 

the equations we do not require this, we simplify the notation and give no 
names to the triangles. 

Let us assume now that G+ and G_ define triangulations of S 2 and $2; 
remark once again that we keep having that the triangles are homeomorphic  

to the closed disc (adding edges as described does not affect the property that 
the regions be closed discs) so that there cannot be any forbidden self- 
adjacency on a triangle, but forbidden adjacencies between different triangles 
or edges may exist. It  is easily checked that the condition that G+ and G_ 
triangulate S 2 and S 2_ is equivalent to the fact that they do not contain pairs 

of edges having both the endpoints in common; this is assumed in Step 6. We 
will explain later why we make this assumption. 

We are ready to describe the final step of our construction and to write 
down the equations. The point is to extend the triangulations of S 2 and S 2_ 

defined by G+ and G_ to triangulations of B+ and B_, without adding 
vertices. This is done in the following way (we refer to B + for the notation): a 
vertex v ÷ of the unbounded triangle is chosen and lifted over the horizontal 
plane, while all the triangles not containing v ÷ are left on the horizontal 
plane. Then a straight edge is drawn from v ÷ to any vertex on the plane, and a 
cone from v + is taken over the edges on the plane (the cone being then a 
triangle), as suggested by the 3-dimensional pictures of Figure 38. 

,a.) + 

i - -  ---"..-7 - B -  

/ /  / \ : ~ ' .  / Z 

Fig. 38. The cone construction. 
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In Figure 38 the dotted edges are those we must add, while the others 
already existed; we did not draw the triangles. It follows that B+ is 
decomposed into tetrahedra by adding: 

(a) as many edges as the vertices of G+ being not joined to v+; 
(b) as many triangles as the number of edges in G + not containing v +. 

The resulting tetrahedra are as many as the triangles in S 2 not containing 
v + (they are explicitly given by the cones from v + over these triangles). 

Of course the same method works for B_ (and we denote by v- the chosen 
vertex of the unbounded triangle). Let us recall that in an ideal tetrahedron 
the modulus is the same along opposite edges. Then in order to determine 
very easily all the moduli it suffices to number both in G+ and G_ the 
triangles not containing the chosen vertex and write inside the ith one 
(starting from any edge and proceeding counterclockwise) the symbols given 
in Figure 39. As usual u' stands for 1 / ( l - u )  and u" for 1-1/u .  This 
construction corresponds to Step 7 of the algorithm. 

Fig. 39. The symbols to add inside the triangles; the left-hand side corresponds to G+ and the 
right-band side to G_. 

First compatibility equations. We want to write the compatibility equations 
for the lastly added edges (not appearing in the 2-dimensional pictures). Of 
course the procedure is the same in B+ and B_; we refer to B+ for the 
notation; we know such an edge joins v + with a vertex v which, by 
construction, has around it triangles with symbols zi, z'~, z~' written in. The 
corresponding 3-dimensional situation is described in Figure 40. 

tO+ 

I I ~ 

i 

Fig. 40. First compatibility equations: the edges we do not see. 
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It follows that we must set to 1 the product  of the symbols written inside 
the triangles having vertex v near the edge opposite to v. 

Second compatibility equations. We want to write the compatibility 
equations for an edge gi; if in G+ a copy of gi (i.e. an edge labelled with the 
symbol g~) has not v ÷ as endpoint but it belongs to a triangle containing v +, 
then only one tetrahedron in B+ contains it and the corresponding modulus 

is just the only symbol written near it; if it is not the edge of a triangle 
containing v ÷ then the tetrahedra containing it in B + are two, and the 
corresponding moduli are the two symbols written near it; finally, if it has v + 
as endpoint and v is the other endpoint then it is contained in as many 

tetrahedra as the triangles containing v and not v +, and the corresponding 
moduli are those written inside these triangles near the edge opposite to v. 
The situation in the three cases is represented in Figure 41. 

- ~  / \ ._ ., 
, , ,  .\ / 

. . . . . . . . - -  - - 

Fig. 41. Second compatibility equations. 

These remarks lead quite naturally to the following conventions as in 
Step 7: 

(a) if an edge in G+ (or G_) is not the edge of a triangle containing v ÷ 
(resp. v- )  then when speaking of 'symbol written near it' we actually 
mean the product of the two symbols written near it; 

(b) if an edge in G ÷ (or G_) has endpoints v ÷ (resp. v- )  and v, we write near 
it the product of the symbols written inside the triangles containing v 
but not v ÷ (resp. v-)  near the edge opposite to v. 

Then the compatibility equation for 9i is obtained by setting to 1 the 
product of the symbols written near all the existing copies of 9i in G + and G_. 

The description of the construction and the compatibility equations is now 
complete. 

We go back now to our assumption that G + and G_ triangulate S 2 and 
$2_. Let us assume for example that B+ is not triangulated by G+; this implies 
that in G + we have two vertices v 1, v2 being joined by at least two edges. If  v ÷ 
is one of them then our cone construction does not even make sense. Assume 
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v + is not va or 0 2 and assume the compatibility equations (which make sense 
now) have a solution; then we would have in H 3 two ideal tetrahedra having 
in common three vertices (v~, v 2 and v +) but not the face containing them, and 
of course this is absurd. 

A necessary condition for having the possibility of adding edges to G + and 
G_ in such a way that they triangulate S 2 and S 2_ is that in G+ and G_ we do 
not already have pairs of edges having both the endpoints in common. This 

means that if at the beginning in G one had a pair of edges with common 
endpoints then he has eliminated one of them, i.e. that these edges were the 
boundary of a bigon; this is assumed in Step 1(3). 

Such condition does not seem to be sufficient, as in G+ and G_ (before 

adding edges) one could have several multiple adjacencies between regions 
and then be forced to add edges to G + in some particular way; the hard point 
is that even if one succeeds in adding edges to G+ in order to triangulate S 2, 
these edges copied in G_ may not work, as adjacencies are different. 

As a conclusion of the paragraph we deduce from the above discussion 
another good reason for assuming the projection to be alternating: if this 

were not the case several consecutive multiple adjacencies between regions 
along edges would have appeared since the very first steps. 

5. EXPLANATION OF THE ALGORITHM: COMPLETENESS EQUATIONS 

We want to describe now how to obtain the equations implying the 
completeness of the hyperbolic structure associated to the moduli 
zl . . . . .  wl . . . .  solving the equations previously obtained. According to what 
we stated in Section 3 we must compute the derivative of the holonomy of the 
meridians of the toric links of the removed vertices in Sa\L, the holonomy 
being referred to the similarity structure induced on this toric links by 

zl . . . .  , wl .... The calculation is performed using the rule mentioned in 
Section 3. 

We number  the components of the link and for the ith one we fix in G (the 
initial projection of the link, a graph) an edge belonging to it (like in Step 2); 
we consider around such an edge a standard meridian mi of a tubular 
neighborhood of the component  in question, as represented in Figure 42. 

We want to describe (a loop isotopic to) mi in S 2 and S 2 _ (we obtain this by 
adding something to G+ and G_); by the very construction such a loop will 
be a simple simplicial loop with respect to the triangulation of the toric link of 
the removed vertex. According to the rule mentioned in Section 3 we must  
keep track not only of the arcs of m~ (contained in the 2-cells) but also of the 
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"ml, 

Fig. 42, The standard meridian around a component  of the link. 

way it touches the 1-cells. Thus we introduce the symbolic conventions of 
Figure 43: its left- and right-hand sides mean respectively that: 

! 

e~. i ~ 

| 

"L/ 

Fig. 43. Conventions about  rn~. 

(a) an arc of m i is contained in the 2-cell R in the toric link of the vertex v 
and it goes from el to e2; 

(b) mi touches the edge e in the toric link of the vertex v, though in the 
neighborhood of the touching point it is not contained in R1 or R2; 
moreover it passes first close to R1 and then close to R:,.. 

We go back to the situation considered above (Figure 42). While perform- 
ing the construction described in Section 4 we can modify mi to the loop 
represented in Figure 44 (this loop is chosen to be contained in the modified 
regions). 

Fig. 44. How to represent the meridian by a loop in the 2-skeleton. 

It easily follows that, with the above symbolism, in SZ+ and S 2 this loop is 
represented respectively by the left- and right-hand sides of Figure 45. 
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t 

Fig. 45. Representation in S 2 and S 2 _ of the loop of Figure 44. 

In Figure 45 the representation of S 2 refers to the situation before 
reversing; this implies that the rules to be followed are those described in Step 
3(3) and Step 4(3). 

Now, we must discuss what happens when eliminating the bigons; from 
now on we refer to $2+ for the notations, the rules being identical for $2_. It is 
quite easily checked that if an arc of m~ is contained in the bigon then we are 
left a simple passage, as shown in Figure 46. 

, 

Fig. 46. What is left when eliminating a bigon containing an arc. 

Remark that, according to our symbolism, if there is another arc of mi 
adjacent to the one in question we do not need to add new symbols, we only 
delete the bigon; then the resulting rules are those described in the upper-left 
and upper-right of Figure 9 of Step 5(4). Now, if m~ has only a passage on one 
of the edges el o fa  bigon we must consider the fact that when identifying to el 
the other edge e z of the bigon another passage appears on the other existing 
copy of e2; moreover ifm~ passes from the left to the right ofe~ (with respect to 
its orientation) then the same must hold for e2; the resulting rules are those 
described in the lower-left and lower-right parts of Figure 9 (Step 5(4)). 

These procedures must be followed with some care, since we must keep 
track of all the passages appearing (i.e. as we will explain soon, we must not 
allow the order of elimination of the bigons make us lose passages which 
could have appeared with a different choice of order). Assume for instance 
that we have the situation of Figure 47. 

%x ~3 

Fig. 47. When eliminating the bigons we must take care not to lose passages of rn i. An example. 
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Fig. 48. Example of Figure 47 continued. 

Then if we use the above procedures and eliminate: (a) first R 1 and then R2;  

(b) first R 2 and then R1; we get respectively the left- and right?hand side of 
Figure 48. 

Of  course the right result is the latter; in fact if at the beginning we have a 
passage of a certain m~ on an edge g j, such a passage must cause a passage of 
m i to appear on all edges identified to g~ during the elimination of the bigons. 
It is quite easily checked that the recursive method described in Step 5(4) 
actually allows us not to lose passages of m~. 

Remark that according to the rules described in order to keep the 
construction as simple as possible it is convenient (as stated in Step 2): 

(a) to choose the edges of G where to put the meridians as edges of bigons; 
(b) not to choose these edges as having only one vertex on a bigon. 

It  is worth remarking that near each vertex of G + and G_ we 1have arcs and 
passages of at most  one m~: in fact if i # j  we have that m~ and mj lie on the 
toric links of different vertices. This guarantees that the picture does not 
become too complicated. 

The next step is to discuss what happens when adding edges to G+ in order 
to make the polygons become triangles; of course simple passages are not 
affected, while an arc may be cut into several arcs and one gets the rule 
described in Figure 10, referring to Step 6. 

Thus in the final pictures of G + and G_ (with all the moduli written in) we 

have now also these symbols of passages and arcs of the mrs. In order to 
compute the derivative of the holonomy of m~ we first remark that it has as 
many vertices as arcs (it is a loop); the number of arcs equals the number of 
arcs labelled by m~ we have either in G+ or in G_ (of course the same numbers 
of arcs labelled by m~ appear in G + and G_, as the triangles in S 2 and S 2_ are 
identified in pairs). This allows us to calculate the factor + 1 or - 1  in the 
derivative of the holonomy of mi, as mentioned in Section 3. 

Then we must establish what moduli mi leaves on the right (we give the 
toric links their natural orientation). Remark that we are now only interested 
in the vertices of m~ (its intersection with the 1-cells) so that we can view the 
situations of Figure 49 as identical. 
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Fig. 49. These two situations can be identified when calculating the derivative of the holonomy. 

ql'l ~t 

- \  

Fig. 50. The possible positions of the passages of the meridian. 

Figure 50 summarizes all possible positions of the passage. 
Remark that in the 2-dimensional part  of Figure 50 we always have that m~ 

leaves on the left the vertices to which the passages are referred; in the 3- 
dimensional part  it always leaves the depicted triangles on the right (with 

respect to the natural  orientation). It  follows that (up to the factor _ 1 already 
discussed) the derivative of the holonomy of m~ is obtained in the following 

way: in G÷ and G_ we select all the edges e touched by m i such that the 
passage ofml on e leaves the vertex it is referred to on the left; then we take the 
product of the symbols written near all these edges e. Completeness equations 
are obtained by setting the derivative of the holonomy equal to 1 and the sum 
of the arguments of the moduli appearing in it equal to rc times the number of 
vertices. 

APPENDIX 

In this appendix we are going to prove the following result. 

T H E O R E M  A.1. Given any regular projection of an arbitrary link it is possible 
to add components to the link in order to get a link represented by a projection 
to which the algorithm applies. 
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We prove this result constructively, i.e. we describe explicitly how to add 
the components. So, let us start with a regular projection of a link (a graph 

with above-be low specifications at the crossings); we assume the link has 
been isotoped in order to satisfy the initial conditions; we also assume the 
projection is not a plain circle or that of Step 1(4) (otherwise we add 
something else, no matter  what). During the construction we will leave it to 
the reader to check that, once a property has been satisfied, the further steps 
we make do not waste such a property. In the pictures the new components 
added are boldfaced. 

The first step is to make the regions become discs; this is done very easily 
and we do not loiter on this point. 

The next step is to make the projection become alternating. We say an edge 
is alternating if it passes once above and once below at its endpoints; we say it 
is above (below) if it passes above (below) at both the endpoints. The idea is 
just to cut each edge being not alternating into two edges being alternating; 
the following lemma implies that it is possible to do this. 

L E M M A  A.2. Let e l , . . . ,  e, be the edges of a region, consecutively numbered, 
and assume for instance ea is below. Then there exist integers 

1 = P l  < q l  <P2  < q 2  < P 3  < " ' "  <Pm<qm <.n 

such that the epj's are below, the eqfS are above and the other ei's are 
alternating. 

Proof We confine ourselves to checking that the first non-alternating edge 
we find after ea is above, and moreover that there exists one. We omit pictures 
as the situation is easily figured out. Since e 2 passes above e~ we must have 
that e 2 is either alternating or above. In case it is alternating the same remark 
applies to ea. In order to conclude we only need to remark that we cannot 
close up and find only alternating edges: ifea . . . . .  en- a are alternating then e, 

is above. []  

Now, inside each region having a non-alternating edge, we add (with the 
symbolism of the lemma) an edge with endpoints on the middle points of %j 
and eq~, passing below the former and above the latter; we do this for 
j = 1 . . . .  , m in such a way that the added edges do not meet. For  instance with 

n = 8, pa = 1, ql = 2, P2 = 4 and q2 = 6 we obtain Figure 51. 

Of  course if we do the same for all the regions things match up; remark that 
we are adding plain unlinked circles (but obviously these circles are not 
unlinked from the previous link). 

The preliminary conditions and those of Step 1(1, 2, 4) are now satisfied. 
The next step is to remove situations in which one has a pair of edges with 



102 C A R L O  P E T R O N I O  

Fig. 51. How to make a projection alternating. 

common endpoints (in particular, bigons). This allows the conditions of Step 
1(3, 5, 6) to be satisfied. This is done by adding on each edge having both the 
endpoints in common with 
described in Figure 52. 

j r  
I 

another edge two plain unlinked circles as 

G31 
Fig. 52. How to avoid bigons. 

In order to conclude our construction we prove the following elementary 
fact. 

LEMMA A.3, Assume the projection satisfies the preliminary conditions and 
those of Step 1. Moreover assume that: 

(i) there exists no bigon; 
(ii) two regions have at most two common vertices and if they do these 

vertices are the endpoints of a common edge. 

Then Step 6 can be performed. 
Proof. Since we have no bigons to eliminate, the graphs G÷ and G_ we 

have before Step 6 are just the same as the initial graph (straight and 
reversed). It easily follows from (ii) that no matter how we triangulate the 
regions we always get a triangulation of both S 2 and $2_. [] 

Since condition (i) of the lemma is already satisfied by the previous steps we 
made we only need to satisfy (ii). We begin to eliminate multiple adjacencies 
of regions along edges; assume R1 and R2 are adjacent along more than one 
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edge, and  call  e one of  them; then we add  two p la in  un l inked  circles as 

represented  in F igure  53. 

I j q _  
J 

Fig. 53. How to remove multiple adjacencies along edges. 

Since it is easily checked that  such a construct ion does not  introduce new 

multiple adjacencies an induct ion argument  allows us to prove that  one can 
always add  componen t s  in such a way  tha t  the regions have at  mos t  one 

c o m m o n  edge. W e  are  left to remove  the s i tuat ions  in which two regions have 

a c o m m o n  vertex being not  the endpo in t  of a c o m m o n  edge. This  is easily 

done  as suggested by F igure  54 (once again  we are  add ing  two p la in  un l inked  

circles). 

1 

Fig. 54. How to remove multiple adjacencies at vertices. 
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