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1. Introduction

The object we are interested in are knots and, their multicomponent counterpart
called links. Everyone knows what a knot is in real life, but it is the same think as
a knot in topology? The answer is yes and no: as in real life we want to study the
knotting of curves in the space, but while a knot in real life could be modeled as a
compact but not closed curve (i.e. it has boundary), a topological knot is closed 1.
The reason is essentially that every knot in real life can be untied (even if sometimes
it is really hard!), while in topological knots only the trivial knot could be untied.
Nevertheless, as we will see, deciding whether a given knot is the trivial one is a
difficult task. Before stating our definition of knots and links, it worth mentioning
that the study of knots started in 19th century with Gauss and Lord Kelvin, as
tools involved in physical problems, while the development of the mathematical
theory started in the 20th century with Dehn, Reidemeister and Alexander. Since
then, significant applications of knot theory outside topology, were discovered, as
those in algebraic geometry, mechanical statistic and biochemistry.

2. Basic notions

2.1. The objects: knots and links. We will consider only knots and links in S3.
Since S3 can be viewed as R3 ∪∞ and each 1-dimensional submanifold in S3 may
avoid a point, up to equivalence, (see Subsection 2.2 and Exercise 2.3.1) we can
consider knots and links also in R3.

Definition 2.1.1. A link with k-components is the image of an embedding of a
disjoint union of k copies of S1 in S3. A link with a single component is called
a knot. Equivalently a link is a subset of S3 homeomorphic to a disjoint union of
circles.

Some care is needed with the regularity of the embedding. If we require just
a topological embedding, wild knots and links may appear as the one depicted in
Figure 1. In order to avoid these kind of topological objects, we require that the
embedding is C∞ or PL. Sometimes such links are called tame links.

Remark 2.1.2. In dimension at most 3 the categories C∞ and PL are equivalent
(see [11]).

In Figure 2 there are some examples of knots and links.

Date: June 21, 2022.
1In the last decade a similar theory for compact curves with boundary, called knotoids, was

developed, see [18]
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Figure 1. A wild knot

1) 2) 3)

4) 5)

Figure 2. Some examples of links: 1) trivial knot, 2) trefoil knot,
3) figure-eight knot, 4) Hopf link, 5) Borromean rings.

2.2. The equivalence relation between knots and links. Knots and links are
considered up to the natural equivalence relation given by deformations: roughly
speaking, two links are equivalent it they can be deformed one into each other
without breaking nor crossing strands.

Exercise 2.2.1. Convince yourself, and at least one friend, that the two knots
depicted in Figure 3 are equivalent. (On the right-side knot consider the two strands
connected at infinity).

Figure 3. Two representations of the figure-eight knot
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Exercise 2.2.2. Try to convince at least yourself that the trefoil and the figure-eight
knots are not equivalent.

Exercise 2.2.3. Are all links and knots depicted in Figure 2 not equivalent to each
other?

Again, some care is needed when ones goes to mathematically defines such equiv-
alence.

A classical caveat here is that continuous deformations are not enough: every
knot can be deformed to the unknot by means of a continuous deformation which
is a en embedding at all times! This can be done by pulling tight the strands of
the knot. At the limit the knotted region disappear into a point. Figure 4 depicts
such procedure.

Figure 4. How to continuously deform every knot to the unknot

The first possibility to formalize the equivalence relation between links is via
ambient homeomorphisms:

Definition 2.2.4 (Ambient Homeomorphism equivalence). Two links L1, L2 in S3

are equivalent if there is an orientation preserving homeomorphism f ∶ S3 → S3 so
that f(L1) = L2.

This viewpoint is clean and global, but in some sense it hides the concept of
deformation, which can be formalized via the notion of isotopy.

Definition 2.2.5. A (continuous, smooth, PL) isotopy between two maps f, g ∶
A → A is a (continuous, smooth, PL) map F ∶ A × [0,1] → A such that, if we set
Ft(a) = F (a, t), then

F0 = f, F1 = g
and any Ft is a (continuous, smooth, PL) isomorphism.

So if F is a continuous isotopy, then each Ft is a homeomorphism; if it is smooth,
then any Ft is a diffeomorphism, and so on.

Definition 2.2.6. Given K1,K2 ⊂ A, an ambient isotopy between K1 and K2 is
an isotopy F ∶ A × [0,1]→ A, between the identity of A and a map f ∶ A→ A, such
that F1(K1) =K2.

Definition 2.2.7 (Ambient Isotopy Equivalence). Two links L1, L2 in S3 are equiv-
alent if there is an ambient isotopy between L1 and L2.

The notion of continuous deformation has a PL-counter part, that can be de-
scribed as a finite sequence of some standard combinatorial moves.

A PL-link is just a (not necessarily connected) simple (i.e. without self-crossings)
closed (i.e. without free endpoints) polygonal line in R3 = S3 ∖ {1 point}.
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Figure 5. Simplicial subdivision

The first move we are allowed to use is the subdivision: this simply means
that we are allowed to add vertices to interior of segments, or remove the common
vertex of two consecutive, aligned, segments.

The second move we use is the ∆-move. Any pair of consecutive segments in
R3 determines a Euclidean triangle. If such triangle does not intersects our link, we
are allowed to replace the pair of segment with the third segment in the boundary
of the triangle. And vice versa.

Figure 6. ∆-move

Definition 2.2.8 (Delta Equivalence). Two PL-links L1 and L2 are equivalent
if they can obtained one from the other by a finite sequence of subdivisions and
∆-moves and their inverses.

The above three notions of equivalence are in fact equivalent to each other:

Theorem 2.2.9. Two links L1, L2 in S3 are equivalent if one (hence all) of the
following equivalent conditions is fulfilled:

● There is an ambient isotopy between L1 and L2;
● there is an orientation preserving homeomorphism f ∶ S3 → S3 such that
f(L1) = L2;

● they are equivalent up to subdivisions and ∆-moves.

Proof. The proof of this theorem can be found in [10, Appendix A]. �

Note that the homeomorphism is required to be orientation preserving. This is
crucial in some aspects of chemistry. Given a knot (or link) in R3 ⊂ S3, one can
consider its reflected image along a plane which does not intersect it (such reflection
is an orientation reversing homeomorphism of S3). This is called the mirror image
of the knot.

Definition 2.2.10. A knot is called chiral if it is not equivalent to its mirror
image.

An example of chirality in chemistry is the glucose (or dextrose, which in Italian is
also called destrosio, which sounds like “rightose”). Its mirror image is the fructose
(or levulose, which in Italian is also called levulosio or zucchero invertito). They are
basically the same molecule, but they interacts differently. For instance, glucose
crystallises while fructose doesn’t (that’s why in fruit we find mainly fructose and
not glucose, and that’s why in patisserie it is used fructose for certain cakes).
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An example of chiral knot (but for the proof of its chirality we have to develop
some more theory) is the trefoil knot: it exists in its left and right versions, like
glucose (See Figure 7).

Right trefoil Left trefoil

Figure 7. The right and left trefoil knots.

A knot which is not chiral is called achiral (or amphicheiral). In the spirit
of Theorem 2.2.9, one can see that a knot K is achiral if and only if there is an
orientation-reversing homeomorphism f ∶ S3 → S3 such that f(K) =K.

Exercise 2.2.11. Each orientation preserving homeomorphism of the sphere is
isotopic to the identity (see [2, Section 2.2]): use this fact to prove the previous
statement.

An example of such is the figure-eight knot. The proof of achirality of figure-eight
knot is easy: see Figure 8.

mirror image

rotate along
vertical axis rotate by π in

the page plane

Figure 8. The figure-eight knot is achiral

Chirality or achirality are quality of knots that are clearly well defined w.r.t.
the equivalence relation: by definition if two knots are equivalent, then either both
are chiral or both are achiral. This is the first example of invariant of knots,
that is to say, a quality that remains unvaried under the deformations defining the
equivalence relation.

Such quality allow us to distinguish knots: if we know that the trefoil is chiral,
then it follows that the trefoil and the figure-eight knots are not equivalent to each
other: that’s simply because one is chiral and the other is achiral.
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Further reading. With the same ideas, one can define other invariant qualities
of knots. For instance, one can consider oriented knots, and ask whether or not
a knot can be deformed to itself, but with the opposite orientation. This notion
is called inversibility. For example, the trefoil knot is chiral (not equivalent to
its mirror image) but inversible (equivalent to itself with orientation reversed): can
you prove this? Can you give more example of invariant qualities of this type? How
many?

Two oriented knots can be connected in a very intuitive way, forming a third
knot. This procedure is called sum (sometimes connected sum) of knots and it is
depicted in Figure 9.

+ =

Figure 9. Sum of knots

More precisely, the sum of two oriented knots K1,K2 can be defined as follows.
First put knots in S3 so that there is a sphere S having one knot on one side and
one on the other. For each i = 1,2 chose a point xi in Ki. Chose an embedded
arc γ connecting x1 and x2 outside the knots, intersecting S only in one point and
having a neighborhood U which intersects K1∪K2 only in two small arcs near x1, x2
respectively. Then, for i = 1,2, remove from Ki a small interval Ii ⊂ U ∩Ki around
xi, creating in this way two end-points x+i , x

−

i , labelled according with a chosen
orientation of Ki. Finally connect x+1 to x−2 and x−1 to x+2 using paths parallel to γ
and contained in U .

Exercise 2.2.12. Show that the sum of two knots is well-defined, that is to say,
its equivalence class does not depend on: the representatives of K1 and K2 in their
respective classes, the choices of the orientation, xi, γ, Ii and the paths joining x±i .

The above exercise is very important especially for beginners. That’s because
one ”sees” the solution, but then one has to translate what one ”sees” in a formal
proof. The most common example of this situation is (and very often used) is the
following, known as disk theorem (from which you may want to take inspiration if
you got stucked in the exercise).

Theorem 2.2.13 (Disk Theorem). Let Dn = {x ∈ Rn ∶ ∣∣x∣∣ ≤ 1} be the closed disk
of dimension n and let x, y ∈ int(D). Then there is an isotopy of D that moves x
to y and fixes the boundary. More precisely, there is a homeo f ∶ D → D so that
f(x) = y, which is isotopic to the identity via an isotopy which is the identity in a
neighborhood of ∂Dn. Moreover all maps can be chosen to be smooth or PL.

Proof. Let’s start with the 1-dimensional case. Let x, y ∈ (0,1). It is not restrictive
to suppose x > y. One can easily construct a piece-wise affine map f ∶ [0,1]→ [0,1]



KNOT THEORY AND APPLICATIONS: LECTURE NOTES 7

which is the identity near 0,1 and sends x to y. For instance consider the map

f(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

t for t ∈ [0, y
2
]

y

2x − y
(t − x) + y for t ∈ [y

2
, x]

1 − x − 2y

1 − 3x
(t − x) + y for t ∈ [x, 1−x

2
]

t for t ∈ [ 1−x
2
,1]

whose graphic looks like:

y
x

y x

If one wants a smooth map it is easy to produce such a map by smoothing corners

via functions like e−1/x
2

. Now that one has f , the isotopy is just

F (s, t) = st + (1 − s)f.
Note that for any s the derivative in t of F (s, t) is always positive, so t↦ F (s, t) is
a homeo for any s.

Now, we pass to the high dimensional case. First we prove the theorem for the
space Dn−1 × [0,1] with both x, y on the segment {0} × [0,1]. If ρ(p) denotes the
radius of a point in p ∈Dn−1, and F is as above, then the map

g(p, t) = (p,F (ρ(p), t))
is an homeo that maps (0, x) to (0, y) and it is the identity at the boundary. The
isotopy with the Identidy map is G(r, (p, t)) = rId+(1−r)g(p, t) (check that for any
r the map (p, t)↦ G(r, (p, t)) is a homeo). One can deform such map in order to be
smooth (or PL), and so that it is the identity on a neighborhood of the boundary.

Finally, given two points in Dn, one can always find an homeo φ from Dn−1×[0,1]
to a neighborhood V of the two points, mapping (x,0) to the first and (y,0) to the
second. Then φ ○G ○φ−1, which extends to the identity outside V , is the requested
isotopy that moves the first point to the second. �

Exercise 2.2.14. Show that the sum of knots is abelian and associative. Show that
the unknot is an (the) neutral element for the sum.

The above exercise says that the set of equivalence classes of knots is an abelian
monoid under sum. It can be shown that there is no inverse (other than for the
unknot), but this is not an immediate thing.

The converse of the sum, is the so-called Prime decomposition. Given a
knot K which is the sum of two knots K1 and K2, it is clear that there exists an
embedded 2-sphere in S3 which cut K in exactly two points so that K1 is on one
side of the sphere and K2 is on the other.

Therefore, given a knot K in S3, if there is a PL 2-sphere S which intersects K
transversally in exactly two points, we can cut K with S, and then close up the
result using segments coming from (different sides of) S. We obtain two knots K1

and K2 so that K = K1 +K2. It may happen that one of the Ki’s is the trivial
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knot (hence the other is K), and in this case we call such decomposition a trivial
decomposition.

Definition 2.2.15. A knot is called prime if it has no non-trivial decomposition
as sum of two knots.

Exercise 2.2.16. Show that trefoil knots and figure-eight knot are prime. (Hint:
you may (ore may not) want to wait a couple of sections before diving in this
exercise).

Analogously to what happens for integers numbers with respect to the product
each knot could be uniquely decomposed as sum of prime knots.

Further reading. Sum of knots is strictly related to connected sum of man-
ifolds: to sum two manifold one just remove one small ball from each manifold
and then glue together the result along the boundary sphere just created. Can
you see relations between sum of knots and connected sum of (1-dimensional and)
3-dimensional manifolds?

Curiosity: When one binds shoes, if he does the connected sum of two tre-
foils of the same type (also called Granny knot, or ”false knot”, in Italian ”nodo
dell’asino”) the bow does not hold; if, on the other hand, we sum two opposite
trefoils (known as square knot) then the bow holds.

2.3. From 3D to 2D: diagrams. Till now we talked about knot and links in S3

and we depicted knots and links on a plane. Such attitude can be formalized in a
rigorous way.

First of all we can consider knots in R3. This is because a knot K is homeomor-
phic to S1 which is not homeomorphic to S3. In particular K is not S3 and there
is a point of S3 which does not belong to K. By removing that point we obtain a
knot in R3. (Same for links).

The class of K as knot in R3 does not depend on the removed point. This is
because (by using the Disk Theorem one can see that) given x, y ∈ S3 ∖K, there is
an isotopy of S3 which fixes K and sends x to y.

Exercise 2.3.1. Prove the above sentence.

Now, given K, chose a plane which does not intersect K. Since K is compact,
it is in particular contained in a ball; hence there are plenty of such planes.

Next, consider the orthogonal projection of K to such plane. The result is a curve
in the plane, which may self-cross in several points (and in fact will self intersect
unless we started with the unknot). Note that if K is a polygonal simple curve in
R3, then its projection is a polygonal curve in R2. (The same for links)

Not all projections are good for our purposes. We will consider only regular
projections, that is to say projections such that

● they are locally injective in K (any point of K has a neighborhood such
that the restriction of the projection to such neighborhood is injective).

● There are only simple intersections: no multiple nor tangential crossings
are allowed (see Figure 10).

Usually, in the PL-category, we require that crossings do not contain vertices.
Using PL category it is easy to see that regular projections exists, and moreover
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NO YES

Figure 10. Regular projections

that almost all of them are regular (they form an open, dense set whose complement
has measure zero).

Given a regular projection, in order to recover the knot from its image on the
plane it suffices to specify, at each crossing, which strand passes below and which
one above. There are only two possibility, that we realises graphically as usual
(Figure 11, but if one wants to write computer programs has to specify a binary
tag at each crossing)

OR

Figure 11. Crossing resolutions

The result of the image of a regular projection plus the specification of crossings
is what is called a knot diagram (the same for links). Roughly speaking is like
we had a real knot made of rope, we put it on the table and look from above. All
knots and links depicted so far were knots and links diagrams. :)

More precisely, in order to define a projection we need a orthogonal decomposi-
tion of R3 as R2 ×R, where R2 is our projecting plane. Thus any point in a knot
has a ”plane” coordinate and a ”vertical” coordinate. The projection is given by
just taking the plane coordinate. To recover the knot/link one only need to know
the height function at any point. Under/over crossings, just says which strand has
higher height function. Then one can easily show that any two height functions
satisfying the crossing conditions produce isotopic knots/links in R3.

Curiosity: the previous way to label crossings of a diagram in order to recon-
struct the link is not the only one. In the paper [1] of 1928, one of the first about
knot theory, the author use the following method: at each crossing, put a dot in
two of the four corners in such a manner that ‘an insect crawling in the positive
sense along the “lower” branch trough a crossing would always have the two dot-
ted corners on its left.’ Can you depict the link diagrams of Figure 2 using this
convention?

2.4. Reidemeister moves and link-equivalence. If we have a knot K and we
move it with an isotopy, the corresponding diagrams chances. Fortunately they
changes in a controlled way. More concretely there is a handful of simple moves
on diagrams, called Reidemeister moves, so that any isotopy translates in a finite
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sequence of such moves. Such moves are describe by words as follows and depicted
in Figure 12

(1) Twist/untwist a strand on itself;
(2) locally slide a strand under a neighbor;
(3) move a strand completely over or under a crossing.

1) 2) 3)

Figure 12. Reidemeister moves

Theorem 2.4.1. Two links K1,K2 are equivalent if and only if their diagrams are
connected by a finite sequence of Reidemeister moves and isotopies (as subsets of
R2).

Proof. We work in the PL category. By Theorem 2.2.9 it suffices to prove that
∆-moves translate to finite sequence of Reidemeister moves and isotopies, and vice-
versa.

Consider a ∆-move associated to a triangle T . We can subdivide T in smaller
triangle, as small as needed and apply the following argument to any single triangle.
Moreover, up to isotopy we may assume that the projection is regular before and
after the ∆-move.

We may thus assume that T is small enough so that its projection, apart from the
side on which the ∆-move takes place, intersects the diagram of K in a connected
set, contains in its interior at most one vertex/crossing of the diagram of K, and
if this is the case, all strands emanating from such vertex/crossing exit from T
through edges. Therefore, and taking in mind that our projection is regular before
and after the ∆-move, one can easily see that the possible case are:

(1) Empty intersection;
(2) T intersects a single segment of K, not crossing vertices of T ;
(3) T intersects a single segment of K which crosses also a vertex of T ;
(4) T contains a vertex of K in its interior;
(5) the interior of T contains a crossing whose strands touches all edges of T ;
(6) the interior of T contains a crossing whose strands touches only two edges

of T ;

One has to note that since in a ∆-move the interior of the triangle does not
intersect the link, all crossing appearing at the boundary of T with the remaining
of the link are all of the same type: all under or all over crossings. Then, a case by
case check shows that:

(1) In this case the ∆-move corresponds to an isotopy;
(2) here we have either isotopy or Reidemeister move 2;
(3) that’s Reidemeister 1;
(4) either isotopy of Reidemeister 2;
(5) this is either Reidemeister 3 or a combination of 2 plus 3;
(6) this is either Reidemeister 3 or a combination 2, 2, 3.
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The converse is even easier: isotopies of diagrams lift to isotopies of links, up to
isotopy Reidemeister moves can be made PL and it is readily checked that all of
them can be obtained via ∆-moves.

�

Exercise 2.4.2. Show by means of Reidemeister moves that the following knot is
equivalent to the right trefoil knot.

Exercise 2.4.3. Prove that, given a link diagram of K; the mirror image of K is
represented by the same diagram but with all crossing flipped: overcrossings becomes
undercrossings.

Given a link diagram, there are crossings — like for instance that appearing on
Reidemeister move 1 — that are easily removed by thinking to twist a portion of the
link in R3 around that crossing. More precisely, a crossing of a link diagram is called
removable if there is a circle in the plane, intersecting the crossing transversally
and not intersecting the link elsewhere. (See Figure 13).

Something Something

Figure 13. A removable crossing

Definition 2.4.4. A link diagram is called reduced if it has no removable crossing.

3. Combinatorial Invariants

3.1. Invariants. An invariant of knots or links is a way to associate a mathematical
object to each knot/link so that it depends only on the equivalence class of the
knot/link. In other words an invariant is something associated to a link, which
is invariant under the transformations defining equivalence (isotopies, ∆-moves,
Reidemeister moves. . . ).
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Invariants can be numerical, but can be of any (mathematical) nature. We’ve
already seen invariant qualities such chirality and inversibility. Another easy exam-
ple is the number of connected component of a link. This is clearly invariant
under mentioned transformations, and knots are precisely those link whose “con-
nected component”-invariant is one. WE denote with n(L) the number of connected
component of a link L.

So, two knots that are equivalent must have the same invariants. Therefore,
invariants are often used to detect knots.

Spoiler: the two major problems in detecting knots, that is to say:

● given a knot diagram recognize algoritmically whether or not it is the un-
knot; and more generally:

● give two link diagrams decide algoritmically whether or not they represent
the same knot;

are solvable in theory. So we have a theoretic complete classification of knots.
But the theoretic algorithms solving such problems are practically not feasible, and
in practice invariants are very useful.

An example of such unfeasability is the following theorem, which is considered
a very good result:

Theorem 3.1.1 (Lackenby [12]). Any diagram of the unknot with n crossings may
be reduced to the trivial diagram using at most (236n)11 Reidemeister moves.

So, in principle, given a diagram, you can compute all sequence of diagrams
obtained with (236n)11 moves and see if you find the unknot. But the number of
all such diagram is highly exponential in n. (Did you know that 109 seconds are
more or less 30 years?)

The best result so far for detecting the unknot is an algorithm (announced by

the same Lackenby) solving the problem in nc log(n) steps, for some constant c.

Further reading. There are many approaches to decision problems in knot
theory, and many algorithm – more or less efficient – to solve them. They use tools
from many mathematical areas: Combinatorics, 3-manifolds theory, logic, and also
some deep learning stuff. Which is your favourite algorithm?

Exercise 3.1.2. Play the following game with a friend: Take simple figure-eight
and a trefoil knot diagrams. Each player manipulate one of them via Reidemeister
moves, without telling the other which knot was. Then compare the two diagrams.
Wins the first player which is able to say if the two diagrams correspond to the
same knot or not.

There are several ways to produce invariants: define objects that are invariant
on the noose (like the above ”connected component”-invariant); define object as-
sociated to knot-diagrams and show that are invariant under Reidemeister moves
(this is the way polynomial invariants are defined, see Section 6); or associate a
quantity/quality to each link diagram and then among all the diagrams represent-
ing the same link, chose the simplest one. The latter is the way used to define
combinatorial invariants.
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3.2. The crossing number. Any link diagram has a well defined number of cross-
ings, which is clearly NOT invariant under Reidemeister moves. No problem: take
the minimum possible.

Definition 3.2.1. The crossing number of a link in S3 is the minimum number
of crossing of diagrams representing it.

For example, the crossing number of the unknot is 0.

Exercise 3.2.2. Show that there are no nontrivial links with crossing number one.

Exercise 3.2.3. Show that the crossing number of the Hopf link is 2. (Hint: it is
clearly at most 2; if it were less, then the Hopf link would be trivial; in this case there
would be a en embedded disk D1 bounding the first component and disjoint from the
second; but from the diagram we can see that there exists a disc D2 bounding the
first component and intersecting the second only once; gluing D1 and D2 along
the common boundary we get an immersed PL sphere which intersects the second
component only once; arguing by induction on connected components on D1 ∩D2

one can see that we can reduce to the case where the sphere is embedded, hence
bounding a three ball: the second component then would enter that ball and never
exit, providing a contradiction. All these reasoning can be rigoroussly formalized,
even in a shorter way if one can use homology.)

Exercise 3.2.4. Show that the crossing number of the trefoil knot is 3. (After
having solved this exercise: Are you sure your proof is correct?).

Exercise 3.2.5. Show that there are no nontrivial knots with crossing number 2.

Exercise 3.2.6. List all possible knots with crossing number at most 3.

You got it. One can enumerate knots by crossing number. And in fact, there
exists tables of knots and links listed by crossing numbers. You may find it in any
book of knot theory. (Or in internet for instance here:
http://katlas.org/wiki/The_Rolfsen_Knot_Table)

Caveat: Tables are usually up to mirror images, so for instance you’ll find only
one trefoil knot, not both.

Further reading One of the most famous conjecture still open about crossing
number is the additivity under sum of knots

Conjecture 3.2.7. If K =K1 +K2 then Cr(K) = Cr(K1) +Cr(K2).

It is easy to see that Cr(K) ≤ Cr(K1) +Cr(K2) just by summing two minimal
diagrams. On the other direction, the best known result so far is 152Cr(K) ≥
Cr(K1) +Cr(K2).

Exercise 3.2.8. Show that above inequalities imply that a knot with crossing num-
ber 238 (or 922) has no inverse under sum.

On the other hand, there are classes of knots where additivity is known: for
instance that of alternating knots.
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3.3. Alternating links. Given a link diagram, one can chose and follow a strand:
it will pass sometimes under other strands, sometime over. We refer to these situ-
ations as under-crossing or over-crossing

Definition 3.3.1. A link diagram is alternating if any strand cyclically meets
under- and over-crossings alternately. A link is called alternating if it admits an
alternating diagram.

Proving that a link is alternating is easy: it suffices to show an alternating di-
agram. For example, trefoil and figure-eight knot are alternating knots, Hopf link
is an alternating link. Much more difficult is to prove that a link is not alternat-
ing. But non-alternating knots do exist. (The smallest non-alternating knot has 8
crossings. Want to know who is it? Check some knots tables).

Alternating links and knots have particularly good properties (whose proves
however, require sophisticated techniques and usually a strong use of polynomial
invariants). Among others we have:

● The number of crossing of a reduced alternating diagram realises the mini-
mum, i.e. the crossing number of the link they represent. (This was known
as one of the Tait conjectures). We will deal with it in Section 6.1

● The (sum of alternating knots is alternating, and the) crossing number is
additive in the family of alternating knots.

● An alternating knot K is prime if and only if “it looks prime”. That is, if
their alternating reduced diagrams are prime (any circle C ⊆ R2 meeting the
diagram transversally in two non-crossing points, split R2 in two regions,
one of them contains only a simple arc of the diagram. Proven in [14].)

● If a knot is prime and alternating, then any diagram realising the crossing
number is alternating. (This is false in the composite case, a counterexam-
ple being the square knot, that is the sum of a right and left trefoil.)

More geometric properties of alternating links will be described later.

Further reading. Search for complete proves of above results.

Curiosity: Such knowledge of alternating knots can be very useful in real life.
For instance, in climbing one uses often the figure-eight knot for securing itself. It
may happen in a situation of stress that one has doubts about its knot: well, if it
has four crossings and it is alternating (and no removable crossing), then it is the
figure-eight, otherwise not.

Note that unless we use some strong result that we stated without a proof, we
are still not able to prove that the figure-eight knot is non-trivial.

3.4. Colorability. In a link diagram with under/over crossing depicted as usual,
strands are divided in connected components. Namely any strand-component starts
and ends when it meets undercrossings.

A link diagram is tricolorable if its strand-components can be colored by using
three colors in such a way that:

● At least two colors are effectively used;
● At each crossing, the strand-components we see have either all the same

color, or all different colors.
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Note that the diagram of the unknot is not tricolorable, just because it has only
one strand-component, so only one color is effectively used.

At this point one would like to declare a knot tricolorable if it has a diagram
which is tricolorable. But we can do better: tricolorability is a quality of diagrams
which is invariant under Reidemeister moves! This is easily seen from Figure 12.
Hence, if a knot has a tricolorable diagram, then all its diagrams are tricolorable.

Definition 3.4.1. A knot (or link) is tricolorable if its diagrams are tricolorable.

Theorem 3.4.2. The trefoil knot is tricolorable. The figure-eight knot is not tri-
colorable.

Proof. Just try. �

Corollary 3.4.3. The trefoil knot is not the unknot, in particular it has crossing
number 3. (Remember Exercise 3.2.4?). The trefoil knot is not equivalent to the
figure-eight knot.

One can generalizes the tricolorability to p-colorability, with p prime. Instead of
color use tags in 0,1, ..., p − 1 taken modulo p. Then ask that at any crossings, if x
is the color of the over-crosser strands, and y, z the other two, require

y + z ≡ 2x (mod p).

Exercise 3.4.4. Show that in case p = 3 this is exactly the tricolorability.

A diagram is p-colorable if admits a p-coloring with at least two colors effectively
used. Checking p-colorability of a diagram boils down to solve a linear system with
coefficients in the finite field Z/pZ. More precisely, if a knot diagram has n crossings,
then one has n strand-components, and therefore the system is a system of n
equations in n variables x1, . . . , xn. Since equations are invariant under translations
xi ↦ xi + k, one always has the solution (k, . . . , k). So the system always has rank
at most n − 1. Solutions multiple of (1, . . . ,1) correspond to trivial colorings with
only one color, we refer to them to monochromatic solutions. The requirement that
the system has a non-monochromatic solution then translates in asking that the
rank of the system is at most n − 2.

Exercise 3.4.5. Show that p-colorability of diagrams is invariant under Reide-
meister moves, hence it is am invariant of knots. (Hint: write the two linear
systems after and before a Reidemester move and show that a system has a non-
monochromatic solution if and only if the other system has one.)

So, now p-colorability is a link invariant.

Exercise 3.4.6. Show that the figure-eight knot is 5-colorable (using four colors).
In particular it is not trivial, and has crossing number 4.

3.5. Bridge number. If we draw a link diagram just by taking a knotted rope,
throwing it on the table and look from above, we can imagine that the rope is a
street of a city. In this case the over-crossings are brigdes. Clearly if a strand meets
two consecutive over-crossings, one can consider this a single bridge.

Formally, a bridge decomposition of a knot diagram is a subdivision of the link
it represents in two families of arcs:

b1, . . . , bk a1, . . . , ak
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such that b-arcs (the bridges) meet only over-crossings in its interior, and a-arcs
under-crossings. If we have two consecutive b-arcs we can glue them together, and
similarly with a-arcs. So we may assume that neighbors of b-arcs are a-arcs and vice
versa. This proves that we have the same number of a- and b- arcs (up to unknotted
components). This number is called bridge number of the decomposition. It is
easily see that any diagram has a unique combinatorial type of decomposition with
above properties, just by looking at maximal strand-components meeting only over-
crossings.

Definition 3.5.1. The bridge number of a link is the minimum bridge number of
its diagrams.

Example 3.5.2. The knot of Figure 14 has bridge-number two.

Figure 14. A knot diagram with two bridge (litlle secret: it is a trefoil)

Particularly interesting are the so-called two-bridge links, that is, those having
bridge-number two.

Exercise 3.5.3. Show that the trefoil knot is a two-bridge knot (hint: see Figure 15,
compare with Figure 14.)

Exercise 3.5.4. Show that the figure-eight knot is a two-bridge knot. (Hint: see
Figure 16).

Exercise 3.5.5. Show that there are no non-trivial knots with bridge-number one.

One nice characteristic of two-bridge links is that they all can be arranged in a
symmetric position similar to that in Figure 14, and that the first under-crossing
that we meet from a bridge parameterises them.

More precisely, given a diagram with bridges b1, b2, up to isotopy the arcs a1, a2
can be arranged in such a way they under-cross alternatively b1 and b2. Then, up
to isotopy, we can do also the converse (i.e. b-arcs meets alternatively a1 and a2).

Remark 3.5.6. The above condition can be achieved as follows: if there is a situ-
ation in which, say the arc a1 crosses two consecutive times b1 in points p, q, then
the sub-arcs pq in a1 and b1 form an embedded circle, which by Jordan theorem,
bounds two disk in R2 ∪ {∞} = S2. One of them do not contains b2. Looking at the
intersection pattern of a-arcs with that disk, and arguing by innermost components
one reduces the crossing number of the two-bridge diagram. By induction (or, just
by considering a two-bridge diagram that minimizes the number of crossings) we
reduce to the case where we do not have consecutive crossings of an a-arc with a
b-arc. The same reasoning works to prove that there are no non-trivial one-bridge
knots.
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Figure 15. How to deform the standard trefoil diagram in a two-
bridge diagram. Third and fifth steps are just taking the lowest
strand and pass it, in R3, on the upper part of the diagram (or if
you prefer moving it through the ∞ of R2). Fourth step is sliding
the undercrossing along dashed lines. By rotating clockwise the
left horizontal segment by π, one gets the diagram of Figure 14

Figure 16. How to produce a two bridge diagram of the figure-
eight knot. At any step, dashed lines indicate the following sliding
of strands.

So we can arrange bridges horizontally and number the under-crossings, together
with b-end-points, as follows (0, k-points are the b-end-points, others are under-
crossings):

k
. . .

1 0 0 1
. . .

k
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Then we have only to show where the left-zero-point jump on the right and the
remaining of the diagram is uniquely determined.

Exercise 3.5.7. Prove the last sentence. (Hint: when the jump of 0 is determined,
by some instance of Jordan curve theorem, jump of 1 is also determined, and so
on).

Exercise 3.5.8. Prove that in the above construction, if k is odd then the result is
a knot, otherwise it is a link with two components.

Exercise 3.5.9. Prove that two-bridge links are alternating.

n-bridge links have also nice ”braid”-diagrams. More specifically, given an n-
bridge diagram of L in R2, one can recover L in R3 by defining height functions
on any a- and b-arcs. On bridges, we choose a function with only one maximum,
say at level 1 and no other critical point. At a-arcs we choose functions with only
one minimum, say at level −1 and no other critical point. Now project the link
on a vertical plane, and move it a little if necessary to obtain a regular projection.
One obtained a link-diagram with n maximum at level 1, n minimum at −1 and no
other critical points. That is to say, one takes a braid with 2n strands (see Section
7) and cap the top layer and the bottom one with arcs. In Figure 17 is depicted
such kind of diagram for the figure-eight knot.

Figure 17. A two-cap-braid diagram of the figure-eight knot

Further reading. It can be shown that the bridge number well-behaves under
connected sum:

Br(K1 +K2) = Br(K1) +Br(K2) − 1.

This in particular implies that no non-trivial knot has a sum-inverse; or that non-
prime knots have bridge number at least three (so for instance two-bridge knot are
prime – see also [6, Prop. 7.8] for an independent proof of that).

There are many different way of defining the bridge number, you may search and
find your favourite.

3.6. More and more invariants... One can define many other combinatorial
invariants. Another famous one is the unknotting number: it is the minimum swap
of crossing necessary to unknot a knot. You may search and find your favourite
invariant.
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4. Topological invariants: looking outside the knot

4.1. The complement. A mind twisting game you can do with colleagues is the
following: ask for two submanifold of R3, of the same dimension, that are NOT
homeomorphic but such that their complements are homeomorphic. You can stand
hours looking at them trying to figure out such an example. . . But: if you twist
the question the other way, that is: ask for two submanifolds of R3 that ARE
homeomorphic but whose complements are not homeomorphic, then you will receive
immediately the answer: two non-equivalent knots!

It follows directly from Definition 2.2.4, that if two knots are equivalent then
their complements in S3 are homeomorphic. In other words, the homeomorphism
type of the knot-complement is a knot-invariant. As we already mention, invariants
need not necessarily to be numbers, or quantities. In this case the invariant is pretty
topological.

As in the above game, even if passing to complements may seems naive, it is a
very powerful tool.

In fact, it is a very deep result that the knot complement is a complete invariant,
that is to say:

Theorem 4.1.1 ([7]). Two knots in S3 are equivalent if and only if their comple-
ments are homeomorphic.

(Note that since 3-manifolds are in principle classified, this theorem provides
another theoretic possible classification of knots.)

Further reading. Link complement is a link-invariant, but it is not complete.
If one looks at knots inside a 3-manifold, so not necessarily in S3, then also in this
case the above theorem fails (also for knots).

Now is time to make things more precise. What do we mean exactly by knot-
complement? Well, one could just take the complement as subsets in S3. This
produces an open 3-manifold. It is sometime better to work with compact mani-
folds, so usually, when one speaks about knot complement what he really means is
the complement, in S3, of an open tubular neighborhood of the knot. The result
now is a compact manifold with boundary (which is homeomorphic to the 2-torus)
whose interior is homeomorphic to the topological complement of the knot. If you
aim to avoid confusion a good choice is to call ”exterior” the complement of the
tubular neighborhood.

Example 4.1.2. The exterior of the unknot is a solid tours.

4.2. Knot groups. Since the knot complement is a knot invariant, every topolog-
ical invariant of the knot complement turns out to be an invariant of the knot. The
most classical example is the fundamental group of the knot complement, which is
also referred to as the knot group:

π1(S3 ∖K).
There is a nice and effective way to compute the knot group, called Wirtinger

presentation: Given a knot K, chose a knot diagram, say in the horizontal plane,
and place the base-point above the knot. For any connected component of the
knot diagram (remember our convention that under-crossings disconnect the strand
passing under) chose a loop going from the base-point around the strand.
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Exercise 4.2.1. Show that such loops generates π1(S3 ∖K).

Then one can easily see that if x, y, z are the classes of loops corresponding to
the three strands occurring at a crossing, say with x over-crossings, then we can
chose orientations of x, y, z so that

xyx−1 = z
as element of the knot group. Therefore π(S3∖K) is generated by above loops and
relations.

In order to write explicitly a presentation, choose an orientation of the diagram-
plane and one of the knot, and cyclically names γi the connected components (with
indices taken modulo n where n is the number of components).

We call a crossing positive if the under-crossing direction is obtained by rotating
counterclockwise the over-crossing direction by π/2 (see the right picture of Figure
23).

To each γi associate the (class of) loop(s) xi that starts from the base point,
goes once around γi, and crosses positively γi. Then if γi, γi+1 under-crosses γk we
have either

x−1k xixk = xi+1 or x−1k xi+1xk = xi
depending whether the crossing is respectively positive or negative.

Check pictures of this construction in any text book of knot theory. The fact
that the fundamental group of the complement is exactly what we described can
be formalised via Van Kampen Theorem (see for instance [17]).

Exercise 4.2.2. Compute groups of left and right trefoils. (They should be iso-
morphic, right? Why? Exhibit an isomorphism.)

Exercise 4.2.3. If one has n crossings then one gets n relations. Show that one
is consequence of the others. (If your are lazy you are allowed to check Proposi-
tion 4.2.8. But: are you sure to be so lazy?)

Exercise 4.2.4. Compute the group of the figure-eight knot. (You will simplify so
to have two generators and one relation).

Let’s do this exercise. Relations are computed in Figure 18. Now,

x1
x2

x3

x4

x1 x3

x2

x1x2 = x3x1R1

x4 x1

x2

x1x4 = x4x2R2

x3 x1

x4

x3x4 = x1x3R4

x2 x3

x4

x3x2 = x2x4R3

Figure 18. Wirtinger relations for the figure-eight knot.

R4 ∶ x3x4 = x1x3 is equivalent to x3x4x2 = x1x3x2 but

x3x4x2
R2= x3x1x4

R1= x1x2x4
R3= x1x3x2

Therefore the knot group of the figure-eight is generated by x1, x2, x3, x4 with re-
lations

x3 = x1x2x−11 x4 = x−12 x3x2 x1x4 = x4x2.
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First two relations combined describe x3, x4 in terms of x1, x2. So the group is
generated by only x1, x2 with the only last relation, that becomes

x1x
−1
2 x3 /x2= x−12 x3x2 /x2 that is x1x

−1
2 x1x2x

−1
1 = x−12 x1x2x

−1
1 x2

�

Observe that relations we obtain are similar to those in permutation groups.
This basically can be used to build morphisms from knot groups to groups of
permutations, showing that in fact knot groups are not abelian.

Exercise 4.2.5. By using the presentation of the figure-eight knot complement
found in previous exercise, find a non-trivial morphism to the symmetric group in
four elements. Use it to deduces that the figure-eight knot as non-abelian fundamen-
tal group, in particular it is not the unknot (if it does not work with your morphism,
try a ”less commutative” one).

Exercise 4.2.6. Do the same for trefoils.

Exercise 4.2.7. Show that two-bridge knot complements have fundamental group
generated by two elements and one relation. (Hint: use the Wirtinger presentation
with a diagram obtained as discussed at page 17, see also Figure 14. The generators
can be chosen as those corresponding to bridges.)

Proposition 4.2.8. One of the relations in the Wirtinger presentations can be
deduced from others.

Proof. Choose a diagram, orient K, number strand-components cyclically, and de-
fine σ(i) and εi = ±1 so that relations are xi+1 = xεi

σ(i)
xix

−εi
σ(i)

. Then, arguing

recursively, one sees the last relation is

x1 = xεnσ(n)x
εn−1
σ(n−1)

. . . xε1
σ(1)

x1x
−ε1
σ(1)

. . . x−εn−1
σ(n−1)

x−εi
σ(i)

.

Now, observe that the word g = xεn
σ(n)

xεn−1
σ(n−1)

. . . xε1
σ(1)

describe just a curve par-

allel to the knot. In particular both x1 and g are elements of π1(∂N(K)) where
N(K) is the tubular neighborhood of K removed to build the knot exterior. But
∂N(K) = T 2 has abelian fundamental group, hence all its elements commute. So
the last realtion is always satisfyed once previous ones are. Clearly this argument is
independent from the chosen numbering of strand components, so one can deduce
any relation from others. �

So, now, if knot groups are not abelian, what is their abelianisations? That’s
pretty easy: it is always Z. This can be seen directly from the Wirtinger pre-
sentation: when you add commutativity, the Wirtinger relations just say that the
generators are all the same! So the abelianised is the free group in one generator,
that is to say, Z. (This is often stated by saying that the first homology group of
a knot exterior is Z. The homology of a knot exterior can easily be computed also
via usual exact sequences, like Mayer Vietoris or that of the pair).

Exercise 4.2.9. Compute the homology of a Knot exterior.

Exercise 4.2.10. Extend the above discussion to links.
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4.3. Seifert surfaces and genus. Now, we still look outside the knot, but we
focus not on the complete exterior. Heuristically, the unknot is the only knot that
bounds a disc embedded in S3 (can you prove this?). So one may ask if other
knots bound some surface and what kind of information one can retrieve from such
surfaces.

Since the 2-homology of S3 is trivial, any link bounds a 2-cycle. It is a classical
(but not easy) theorem of topology that one dimensional and codimension-one
cocyles can be desingularised (and also 2-dim and codim, provided we work with
oriented manifolds). That is to say, any cycle is homologous to an embedded surface.
In particular any knot bound an embedded surface (wait a moment. . . embedded?
It sounds strange, right? But yes: embedded.).

Definition 4.3.1. A Seifert surface of a link K is a compact connected oriented
surface embedded in S3 such that

∂S =K.

Any link has plenty of Seifert surfaces. We describe now a standard algorithm
to easily get one.

Algorithm for Seifert surfaces. Very concisely, one can work by induction on
the number of crossing of a diagram. No crossing, is some Jordan curve theorem.
Now orient K and pick a crossing. Resolve the crossing following the orientation.

+ −

By induction there is an oriented connected surface bounding the link repre-
sented by the new diagram. Note that such surface does not disconnect S3. So
we can connect the two strands where we had the crossing with an embedded arc
not crossing the surface. Since the orientation of the surface induces that on the
boundary, we can add a (twisted) band to the surface in such a way to preserve
orientation and regenerate the original knot. The new oriented surface now bounds
K.

You may want to do it more algorithmically and at once, without induction. Is
the same: resolve each crossing following the orientations. Now you have a diagram
without crossings, that is a handful of oriented Jordan curves in the planes, each one
bounding a disc, whose orientation is decided by the orientation of the boundary.
You may have some disc inside others: no problem we are in R3 you can move
upwards a little the inner discs. Now attach twisted bands as before. Everything
is coherent with a global orientation of the surface (up to isotopy, one always can
put the discs so that near crossings they look as in above picture).

Remark 4.3.2. Note that this algorithm also shows that the complement of a link
diagram can be chessboard-colored: starts from a region, declare it black and follow
the Seifert surface just constructed. Moreover, the black regions have signs +,− that
one meet alternately along the surface (this is often referred to by saying that the
dual graph of the black regions is bipartite. This graph is known as Seifert graph).

Exercise 4.3.3. Compute Seifert surfaces of trefoil and figure-eight knot.

Clearly, topological invariant of Seifert surfaces turns out to be knot-invariants.
A numerical invariant that can be cooked in this way is the genus of a knot:
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Definition 4.3.4. The genus of K is the least possible genus of a Seifert surface
of K.

Remark 4.3.5. The unknot is the only knot with genus 0. This is because having
genus 0 means bounding a disk.

Theorem 4.3.6. The genus is additive under connected sum.

Proof. Let K = K1 + K2 and let F1, F2 be minimal Seifert surfaces for K1,K2

respectively. Since genus is additive by connected sum we get g(K) ≤ g(K1) +
g(K2). Conversely, if F is a minimal Seifert surface for K, we can use a sphere S
decomposing K as K1 +K2, and put F in generic position with respect to S. Thus
F ∩ S is an arc joining the two points of K ∩ S plus some curves in S. Take an
innermost curve γ. It bounds a disc D in S not intersecting K. Now we cut F along
γ and we glue back two parallel copies of D obtaining a new (possibly disconnected)
surface F ′ bounding K. Is γ do not disconnect F , then F ′ is a Seifert surface for K
with smaller genus, which is impossible since F is minimal. So γ must disconnect. It
follows that F ′ has two connected components. We keep only the one containing K
(by the way, the other has to be a sphere because of the minimality assumption on
F , that is, γ bounds a disc also in F ), and this is a Seifert surface for K intersecting
S in less components. By induction we can eliminate all closed curves form F ∩ S.
This provide a splitting of F as the connected sum of two Seifert surfaces F1, F2

of K1 and K2, which may a priori be not mimimal, but in any case provide the
needed inequality g(K) = g(F ) = g(F1)+g(F2) ≥ g(K1)+g(K2) (hence a posteriori
the Fi’s are minimal). �

Note that since non-trivial knot exists, we then have knots of arbitrarily high
genus constructed via connected sum.

Corollary 4.3.7. No knot except the unknot has an inverse under connected sum.
Moreover, genus 1 knots are prime.

Proof. Let K1,K2 be non trivial knots. Then both g(K1) and g(k2) are at least
one (Remark 4.3.5). Then g(K1 +K2) = g(K1) + g(K2) ≥ 2. So one hand we have
that the sum cannot be trivial. On the other hand we have that the genus of any
non-prime knot is at least 2. �

The genus of the Seifert surface constructed from a diagram as described above,
can be easily computed via a Euler characteristic count: collapse discs to points
and twisted bands to segments. You obtain a graph, that is the Seifert graph, to
which the Seifert surface retract (a so-called spine) and from its characteristic you
recover the genus of the surface. So diagrams provide upper bounds on the genus.
Explicitly, if d is the number of discs and n is the number of crossings we have

d − n + 1 = 2 − 2g g = n + 1 − d
2

.

Exercise 4.3.8. Show that both trefoil and figure-eight knots have genus at most
1.

Corollary 4.3.9. Both trefoil and figure-eight have genus exactly 1. In particular,
they are prime.

Proof. We know by colorability (or because their groups are not abelian) that both
are nontrivial. So they have genus at least one (Remark 4.3.5). By above exercise,
their genus is exactly one. By Corollary 4.3.7 they are prime. �
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From the Seifert surface, one can construct other invariants. A famous instance
of that is the Seifert matrix, a matrix that can be associated to a diagram. Rei-
demeister invariance translates in matrix-operations. We will go into that when
dealing with the Alexander polynomial.

4.4. Peripheral systems. Given a knot K in S3, consider a small tubular neigh-
borhood U of K. It is a solid torus, knotted in S3. The boundary torus T = ∂U
of U , has fundamental group Z×Z. In general, there is no standard way to choose
generators of Z×Z; but in the case of knots this is possible. First, we need a couple
of purely topological facts.

Given a compact oriented n-manifold M , possibly with boundary, there is a
natural intersection form

Hn−1(M,∂M ;Z) ×H1(M ;Z)→ Z (σ, c)↦ σ ⋅ c

defined as follows.
We are mainly interested in cases n = 2,3. We describe the argument for n = 3,

for n = 2 being even easier. Given σ ∈ H2(M,∂M) and c ∈ H1(M), by classical
desingularisation theorems, we may assume that the class α is represented by an
oriented surface Σ, non necessarily connected, but embedded in M ; and that, sim-
ilarly, c is represented by an embedded oriented curve γ. Now, if necessary, modify
via isotopy Σ and γ so that they meet transversely. At any intersection point assign
+1 if the orientation given by Σ and γ agree with that of M , and −1 otherwise.
Then make the algebraic sum of all those ±1. The result is the intersection σ ⋅ c.
For the argument n = 2 replace Σ with a curve. Note that both M and Σ may have
empty boundary. (See any book of algebraic topology for details).

Lemma 4.4.1. Let M be a compact, oriented 3-manifold so that ∂M is a torus. Let
γ1, γ2 be simple closed curves in ∂M which are the boundary of surfaces Σ1,Σ2 ⊂M .
Then γ1, γ2 can be made disjoint via isotopy; in particular, if both are homotopically
non trivial, then they are parallel up to isotopy.

Proof. Σ1 represent a class in H2(M,∂M). Therefore the intersection Σ1 ⋅γ2 is well
defined. But since the intersection form is defined in homology and and γ2 = ∂Σ2,
hence is null in homology, then Σ1 ⋅ γ2 = 0. Since γ2 ⊂ ∂M , then Σ1 ∩ γ2 = γ1 ∩ γ2.
So

γ1 ⋅ γ2 = 0

in ∂M . Standard arguments on curves on the torus now conlcude. �

Exercise 4.4.2. Write precisely the ”standard arguents” needed in the above proof.
(Hint: first do the case where one of the γi’s disconnects; then use an infinite cyclic
covering of the torus where γ1 lifts to a simple closed curve. The cover can be
constructed by simply cut T 2 along γ1 and glue Z copies of that along boundary
components in such a way the orientation is preserved. Show that such cover is a
cylinder. What’s goes wrong in higer genus surfaces?)

Corollary 4.4.3. Let K be a knot in S3 and let F1, F2 be to Seifert surfaces for
K. Let V a tubular neighborhood of K, small enough so that both Fi intersect V
in an annulus. Then the curves F1 ∩ ∂V and F2 ∩ ∂V are parallel up to isotopy.

Proof. Just apply above lemma toM = S3∖V . The curves Fi∩∂V are homotopically
nontrivial because ∂Fi =K. �
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We are now in position to complete our task. A meridian of K is every simple
closed curve m in T which bounds a disc in U . They are all isotopic to each other be
Lemma 4.4.1. A meridian is therefore well defined up to isotopy and orientation. A
longitude of K is any other simple closed curve l in T which intersects m only once.
Heuristically a longitude runs along the knot. Curves m, l generates π1(T ). There
are many longitudes, in fact, given one, say l, they are all of the form l′ = ±l + km
for some k ∈ Z.

However, we can chose the longitude of K in a unambiguous way. Namely:
chose the trace of any Seifert surface of K (they are all isotopic by Corollary 4.4.3).
Again, the longitude is well defined up to isotopy and orientation.

Remark 4.4.4. The longitude is the only non-trivial curve which is trivial in the
homology of the knot exterior.

So, given a knot K, one can chose m, l in a unique way by (orienting K) and
choosing m, l as above so that they form a positive basis of the tangent plane of
T at the unique point they meet (where T is oriented as ∂U , and U inherits the
orientation from that chosen for S3. Changing the orientation of K simultaneously
change those of both m, l.). While m, l are well defined isotopy classes of curves
in T , the element they represents in the fundamental group of the exterior of K is
well defined only up to common conjugation.

The triple (π1(S3 ∖K), [m], [l]) is called peripheral system of K (it is well-
defined up to isomorphism. Note that x↦ x−1 is an isomorphism, so the orientation
of K don’t really matter). The following, is a celebrated theorem of Waldhausen:

Theorem 4.4.5. Two knots K1 and K2 with peripheral systems (G1,m1, l1) and
(G2,m2, l2) respectively are equivalent if and only if there is a group isomorphism
f ∶ G1 → G2 such that f(m1) =m2 and f(l1) = l2.

Exercise 4.4.6. Write explicitly peripheral systems for right and left trefoils.

There is easy algorithm to writhe a peripheral system in the Wirtinger presenta-
tion. All generators are meridian: choose one x0. Now start following the knot and
put a x±1i at any under-crossing you meet, where the xi corresponds to the strand
that over-crosses and the sign depends on the sign of the crossing. The results
represent a curve parallel to the knot in a tubular neighborhood of the knot. So it
intersects once a meridian and it is therefore a putative candidate longitude. Now,
remember that the longitude is the unique which is null in homology: add xk0 where
k is minus the sum of exponents of the xi’s you wrote so far. That’s the longitude.

Exercise 4.4.7. Compute the peripheral system of the trefoil with the described
algorithm and check that it coincides (up to common conjugation) to that you found
in previous exercise.

We remark that meridian and longitude are never trivial in the fundamental
group of the torus exterior, unless K is the trivial knot. This is an instance of the
following more general fact.

Theorem 4.4.8. Let K be a non-trivial knot in S3 and let V be a tubular neigh-
borhood of K. Then π1(∂V ) injects in π1(S3 ∖K).

Proof. If it would not be the case, then by the so-called Loop Theorem (which is a
difficult result), there would exist a non-trivial simple closed curve in ∂V bounding
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an embedded disc in S3 ∖ V . By Lemma 4.4.1 such a curve must be the longitude.
Thus K would bound a disk, hence it would be trivial. �

Corollary 4.4.9. No non-trivial knot has abelian knot group.

Proof. We know that the abelianisation is Z, therefore if the group would be abelian,
then it would be Z. But there are no injective morphisms from Z⊕Z→ Z. �

4.5. Linking number. This is an invariant of links. The Hopf link is a link formed
by two circles “linked once one around each other”. The three circles of Borromean
link are mutually unlinked (if the third circle was not there, you could separate
them.)

This can be formalised in (at least) a couple of nice equivalent way. We just
defined Seifert surfaces, so let’s use them.

First, orient S3. Given two oriented knots (i.e. an oriented link with two com-
ponents) K1 and K2 let F be a Seifert surface of K1. We may assume that K2

meets F transversally. At any intersection point assign +1 if the orientation given
by F and K2 agrees with that of S3 and −1 otherwise. Then makes the algebraic
sum of all those ±1. The result is a number, which is the linking number of K2

with respect K1, and usually denoted by

lk(K1,K2).
The careful reader surely noticed that lk(K1,K2) is just the intersection F ⋅K2.

The notation suggests that it does not depend on the chosen Seifert surface. Indeed,
if we have another F ′, we can reverse the orientation of F ′ and join them together
to obtain o closed surface Σ = F ∪ F ′. Since the second homology group of S3 is
trivial, then algebraic intersection between K2 and Σ is zero (roughly, K2 must
enter Σ the same amount of times that it exits). So the intersection with F cancel
that with −F ′, hence the algebraic intersection of K2 and F is the same as that
with F ′.

A simple way to compute the linking number is the following. Draw a diagram of
the link (R2 is oriented as usual). We already know how to assign ±1 to crossings:
well the linking number is just the half of algebraic sums of signs of crossing between
the two link components.

Exercise 4.5.1. Show that the linking number defined via crossings is invariant
under Reidemeister moves (hint: since we are looking at crossings between different
components, type (1) moves do not hurt).

Exercise 4.5.2. Show that the two ways of defining linking numbers agree. (Take
a Seifert surface constructed with the algorithm, consider K2 as a loop, decompose
it in a Wirtinger-way and play with diagrams).

This in particular show that lk(K1,K2) = lk(K2,K1) because the second con-
struction is symmetric.

If one has a link with many components, one can compute the linking number
of all pairs of components: this is a link invariant.

Caveat: Even if two components of a link L have zero linking number, they still
may be “linked” in L. A classical example is the Whitehead link.
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Further reading. Linking number can be defined from “framed” knots, that
is knots where an orientation and a normal vector are chosen at any point. One
can then compute the so called self-linking number (using the vector normal to the
plane diagram, often called black-board frame).

Linking numbers also appears in may aspects of Physic, Chemistry and Biology
(think to the DNA).

5. Torus knots

5.1. Defintion and first properties. Let’s step back one dimension for two sec-
onds: what can we say about knots and links on surfaces? Well, in R2 and S2 there
are only unknots: this is Jordan curve theorem. But in a two-dimensional torus
T 2 we have plenty of nontrivial simple closed curves. If we place T 2 in S3 in a
unknotted way (that is, the boundary of the tubular neighborhood of the unknot),
such curves define knots in S3, which are called torus knots/links.

Given an unknotted torus T 2 in R3, its meridian and longitude are well defined
(up to orientation, see page 25). Be careful: in S3 an unknotted torus bounds two
solid tori: so given an unknotted torus in S3, the pair meridian/longitude is well
defined, but one can interchange meridian and longitude: both of them bound a
disk: one on one side of the torus, one on the other side.

So, once chosen, the pair meridian/longitude defines a basis of π1(T 2) ≃H1(T 2) ≃
Z×Z. Any closed curve γ has coordinates (p, q) in such basis. (This means that γ
goes p times around the meridian and q times around the longitude.)

For any (p, q) there is a unique simple closed (multi) curve in T 2 up to isotopy
with coordinates (p, q). Such (multi) curve has gcd(p, q) parallel components. Thus
if p, q are coprime this construction produces a knot, otherwise a link with gcd(p, q)
strands. We refer to knots and links obtained in this way as torus knot/link of
type (p, q).

Remark 5.1.1. Torus knots of type (±1, q) or (p,±1) are trivial, so we always
assume both p, q different from ±1.

Note that a knot of type (p, q) is also a knot of type (q, p): this is just because
we can interchange the role of meridian and parallel.

Exercise 5.1.2. Choose an unknotted solid torus in R3 and show that a (p, q)
knot on its boundary is equivalent to a (q, p) knot by exhibiting an isotopy. (Hint:
displace the curve to “the other solid torus” and then rotate that torus an put it in
the place of the original one)

Exercise 5.1.3. Show that trefoil knots are the (2,3) and (2,−3) torus knot.

Note that (p,−q) always produces the mirror image of the (p, q) link: this can
be seen by using a reflection on a plane.

Moreover, if K is an oriented (p, q) knot, then it is clear that an (−p,−q) knot
representsK with the inverse orientation. But now a rotation of π along a symmetry
axis of the torus shows that the knot of type (p, q) and that of type (−p,−q) are
the same! We then have proven that:

Proposition 5.1.4. Torus knots are invertible.
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Summarizing, so far we have:

Lemma 5.1.5. Given p, q coprime, the torus knots of type

(p, q), (q, p), (−p,−q), (−q,−p)
are all equivalent.

Torus knot appears naturally at singularities of algebraic curve. Namely, consider
in C2 the equation

xp + yq = 0.

This defines a singular surface Σ (a complex curve) in R4 ≃ C2. The intersection
of that curve with the unit sphere S3 in C2 is a torus knot of type (p, q). This can be
seen directly by hands, by setting (x, y) ∈ C2 in polar coordinates: x = reit, y = ρeiθ.
From the equation we get

rpeipt = −ρqeiqθ ⇒ rp = ρq

and since we are on the sphere we have

r2 + ρ2 = 1.

This determines r (we want r to be real and positive), hence ρ. So Σ∩S3 lies in the
product of two S1 (namely ∣x∣ = r and ∣y∣ = ρ), hence is a torus link. Once settled
moduli, the equation on arguments says pt = π + qθ, which determines a curve of
type (p, q) in S1 × S1.

Torus knots exteriors have particularly easy fundamental group, always with two
generators and one relations:

< a, b ∣ ap = bq > .

Exercise 5.1.6. Prove it. (Hint: Given a torus knot, divide S3 in two solid tori
with common boundary T 2, now remove K and use a direct instance of Van Kam-
pen.)

Exercise 5.1.7. Compute meridian and longitude of torus knots in the presentation
< a, b∣ap = bq > .

5.2. Classification of torus knots. Next theorem shows that Lemma 5.1.5 was
sharp.

Theorem 5.2.1. Two nontrivial torus knots of type (p, q) and (p′, q′) respectively
are equivalent if and only if (p′, q′) is one of

(p, q), (q, p), (−q,−p), (−p,−q).
A torus knot of type (p, q) is trivial if and only if one of p, q is ±1.

Proof. For the first claim, since we have Lemma 5.1.5, it remains to show the
converse, that is, that if a knot of type (p, q) is equivalent to one of type (p′, q′),
then (p′, q′) is one of the above pairs. We will exploit deeply the structure of the
fundamental group of knot exteriors and peripheral systems. Although Wirtinger
presentation is nice, it is not the best for working with torus knots. Let’s start with
some notation (see Figure 19): our torus T 2 splits S3 in two solid tori Ti, Te (Ti is
the inner torus in the picture, Te is the external one). We name x the generator of
π1(Te) and y that of π1(Ti). The knot K of type (p, q) (depicted in blue) then turns
p times along x and q times along y. We chose a curve C (depicted in red) which
is parallel to K, for instance it can be chosen to be one of the two component of
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y

K
K

K
C

Figure 19. Curves on torus knot complement

the intersection of ∂N(K) with T 2, where N(K) is the tubular neighborhood of K
removed from S3 to get the exterior of K. The curve C generates the fundamental
group (Ti ∩ Te) ∖K, and it is xp in π1(Te) and yq in π1(Ti). This in particular
shows, via a direct application of Van Kampen, that

π1(S3 ∖K) = ⟨x, y ∣ xp = yq⟩

We name t the element

t = xp = yq ∈ π1(S3 ∖K)

Lemma 5.2.2. If both p, q are different from ±1, then the center of π1(S3 ∖K) is
the subgroup generated by t. The quotient π1(S3 ∖K)/⟨t⟩ is isomorphic to Zp ∗Zq.
(Here we used the notation Zp for Z/pZ).

Proof. It is clear that t commutes with any word in x, y, so it is central. The
quotient π1(S3 ∖ K) is clearly isomorphic to Zp ∗ Zq, where the isomorphism is

given by mapping a word w = xa1yb1xa2yb2 to its reduction where exponents ai’s
are taken modulo p and bi’s modulo q. (Which is well defined because any two
words representing the same element are related by a finite set of replacements
xp ↔ yq, and two words differing by only one such replacement have the same
image.)
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Now, if both p, q are different from ±1, the group Zp ∗ Zq has trivial center
(because a nontrivial word g commuting with x must start with x, and if it com-
mutes with y, then starts with y), which implies that ⟨t⟩ is in fact the center of
π1(S3 ∖K). �

Corollary 5.2.3. A torus knot of type (p, q) is trivial if and only if at least one of
p, q is ±1. In particular the second claim of Theorem 5.2.1 is proved.

Proof. Clearly if one of p, q is ±1 then the knot is trivial (Remark 5.1.1). Vice versa,
Lemma 5.2.2 says that if both p, q ≠ ±1 then the knot group is not abelian. But the
trivial knot group is Z, which is abelian. �

Now we need to describe a peripheral system (that is, meridian and longitude) in
terms of x, y. Let L be a curve on the torus T 2 which which intersects K positively
and once (that is to say K ⋅ L = 1). Such curve has coordinates (c, d) in π1(T 2)
with pd− qc = 1. One would like to say that L = xcyd in π1(S3 ∖K) but L actually
intersects K. We can move L a little so that it does not intersect K anymore:
we can do it in two directions and the difference of the two resulting curves is the
meridian of K. More precisely, we look what happens locally at the intersection
point (see Figure 20).

K

L

γe

γi

P

Q
T 2

Figure 20. The meridian of K

Let m be the meridian of K given as the boundary of a disk centered at K ∩L.
Let P,Q be the intersection points of m with the torus T 2 where K lives, and
we may assume that they both belong to L. Points P,Q split L in two segments
L0 = PQ (that crosses K) and L1 = QP (the other). Similarly, m is split in γe
(belonging to the exterior torus Te) and γi (belonging to the interior torus Ti). We
have

m = γeγi = γeL1L
−1
1 γi

Moreover, γeL1 is homotopic to xc in π1(Te, P ) and L−11 γi to y−d in π1(Ti, P ).
It follows that the meridian of K in π1(S3 ∖K,P ) is

m = xcy−d.

We now compute the longitude. The curve C is a candidate longitude because it
is parallel to K, therefore the longitude is of the form Cmα for some α ∈ Z. Since
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C is t = xp = yq in π1(S3 ∖K), it follows that all putative longitudes l are of the
form

l = t(xcy−d)α which in homology becomes l = txcαy−dα.
Since l is characterized by the fact that it is null in H1(S3 ∖K), we see that we
must have

α = pq.
We can resume what we just proved in the following statement.

Lemma 5.2.4. The peripheral system meridian/longitude of a (p, q)-knot is

m = xcy−d l = xp(xcy−d)pq with pd − cq = 1.

We are now in position to complete the proof of Theorem 5.2.1. It two torus
knots of type (p, q) and (p′, q′) are equivalent, then they have isomorphic groups.
Looking at quotients modulo centers, we see that (if both p, q ≠ ±1) the pair {∣p∣, ∣q∣}
must equal {∣p′∣, ∣q′∣}. It follows (p′, q′) is one of the following:

(p, q), (q, p), (−p,−q), (−q,−p), (−p, q), (p,−q), (q,−p), (−q, p).

Therefore we need to prove that last four possibility cannot occur. Note that by
Lemma 5.1.5 all of them define equivalent knots. So we are left to prove that:

Lemma 5.2.5. The coprime pairs (p, q) and (p,−q) define either inequivalent or
trivial knots, the latter occurring only if one between p, q is ±1.

Proof. By Corollary 5.2.3 we may assume bot p, q ≠ ±1. By Lemma 5.1.5 we may
assume p > 0. Let K be a torus knot of type (p, q) and K ′ be one of type (p,−q).
Set

G = π1(K) = ⟨x, y ∣ xp = yq⟩ G′ = π1(K ′) = ⟨X,Y ∣Xp = Y q⟩
(yes, I know, you would have expected Y −q, but up to change Y with Y −1 it is the
same). The peripheral systems are:

m = xcy−d l = xpmpq pd − cq = 1

m′ =XrY s l′ =Xp(m′)−pq ps + qr = 1

(again, we have Y s instead of the expected Y −s by coherence with above choice on
generator Y ). Note that these equations imply that c, r are either zero or coprime
with p, and similarly s, d with q.

We need to show tha K and K ′ are not equivalent. We argue by the way of
contradiction and suppose that K and K ′ are equivalent. Then there is a group
isomorphism φ ∶ G→ G′ such that

φ(m) =m′ φ(l) = l′.

The element φ(x) generates a cyclic group of order p when projected in Zp∗Zq =
G/Z(G) (Z(G) denotes the center of G). Similarly for φ(y). It follows that there
exist g1, g2 ∈ G′, h1, h2 ∈ Z(G′) and µ, η ∈ Z coprime with p and q respectively, so
that

φ(x) = g1Xµg−11 h1 φ(y) = g2Y ηg−12 h2.

Condition φ(m) =m′ becomes

g1X
cµg−11 g2Y

−dηg−12 hc1h
−d
2 =XrY s.
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We now project such equality to the abelianised of G′/Z(G′), which is Zp⊕Zq, and
where conjugations and the hi’s disappear, obtaining

(cµ,−dη) = (r, s) ∈ Zp ⊕Zq
that is to say

cµ ≡ r (modp) − dη ≡ s (mod q).
Finally, once we know φ(m) =m′, equation φ(l) = l′ becomes

g1(Xp)µg−11 hp1(m
′)pq =Xp(m′)−pq

which, projected on G′/Z(G′) (which is Zp ∗Zq) becomes

[m′]pq = [m′]−pq

so we have

either r ≡ 0 (modp) or s ≡ 0 (mod q)
which, combined with above equations leads to

either c = r = 0, which implies d = s = p = 1

or s = d = 0, which implies − c = r = q = ±1.

But this contradicts our hypothesis that both p, q ≠ ±1. �

The proof of Theorem 5.2.1 is now complete. �

Corollary 5.2.6. Right ans Left trefoils are not equivalent. In particular trefoils
are chiral.

By the very same reason (that is, that (p,−q) gives the mirror of (p, q)) we have:

Corollary 5.2.7. All torus knot are chiral.

In particular the figure-eight knot is not a torus knot. So there are (prime) knots
that are not torus knot (one never knows. . . )

5.3. Primality, genus, bridge and crossing numbers of torus knots.

Theorem 5.3.1. Nontrivial torus knots are prime.

Proof. Let K be a torus knot of type (p, q) which live in an unknotted torus T in
S3. Let K =K1 +K2 be a decomposition of K, realised by a 2-sphere S, embedded
in S3 and intersecting K only in two points. Put T and S so that they intersect
transversally. So T ∩ S is a handful of simple closed curves.

Let γ ⊆ T ∩S be a curve not intersecting K and which is homotopically trivial in
T (if any), whence it bounds a disk D in T . Since K is non-trivial, it lives outside
D. Up possibly to pass to an innermost curve, we may assume that D ∩S = γ. We
cut S along γ and glue back two parallel copies of D. We obtain two spheres S′, S′′.
Since H2(S3) = 0 and since S ∩K consists in two points, only one between S′, S′′,
say S′, intersects K. Therefore, we may replace S with S′ and getting a new sphere
that realises the splitting K = K1 +K2, with less connected components in T ∩ S.
Therefore, by induction we may reduce to the case where all curves in T ∩S which
do not intersect K, are nontrivial in T .

Let γ ⊆ T ∩ S; it bounds a disk B in S. Up possibly to pass to an innermost
curve, we may assume that B ∩T = ∅. Therefore γ is a meridian of T with respect
to one of the two solid tori bounded by T . Now we have three cases;
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(1) If γ ∩K = ∅, then γ – which is non trivial at this point of the proof – is
parallel to K. In this case K is a meridian, which imply that K is the
unknot.

(2) If γ ∩K is a single point, then K intersects a meridian of T in one point,
so it is of type (1, q), whence it is trivial again.

(3) If γ ∩K is two points, then either there are other components in T ∩ S –
and this case reduces to case (1) — or T ∩ S = γ. In this case γ bounds
two disks in S, one inside each of the two solid tori bounded by T . This is
possible only if γ is trivial in T , so it bounds a disk E also in T . In this case
the curve E ∩K represent one of K1,K2 in the splitting, which is therefore
the trivial splitting K+ the unknot.

Resuming, we proved that either K is trivial or the splitting is trivial, q.e.d. �

A torus knot of type (p, q) can be obtained a follows: take S1 with p marked
point at angular distance 2π/p one from the following. Then consider the cylinder
S1 × [0,1] and glue S1 × {0} and S1 × {1} by a rotation of q2π/p. The result is a
torus T and segments {k2π/p} × [0,1] give rise to a curve of type (p, q) in T .

In order to produce a knot diagram from this construction, we just have to embed
T in R3 ”as you imagine” and project to the horizontal plane.

Algorithmically, one takes p parallel strands in the plane, then do q times the
following operation: take the right strand and pass it to the left under all other
strands. Then connect final endpoints with initial ones with p parallel arcs.

In Figure 21 we depicted the case p > q) and in Figure 22 the case p < q. (They
are two diagrams of the same knot).

Such diagrams are quite optimal:

Exercise 5.3.2. Show that the Seifert surface obtained from that diagrams has
genus

g = (p − 1)(q − 1)
2

.

Observe that this construction in particular implies that a torus knot of type (p, q)
has genus at most (p − 1)(q − 1)/2.

Remark 5.3.3. It can be shown that indeed the above estimate for torus knots
is sharp: a torus knot of type (p, q) has genus exactly (p − 1)(q − 1)/2. (See [15,
Chapter 7].)

Exercise 5.3.4. Show that the bridge number of diagrams of (p, q) knots, con-
structed as above is q. (So it is 3 in Figure 21, and 7 in Figure 22).

Remark 5.3.5. It can be shown that the bridge number of a (p, q) knot is actually
min(p, q). (See [15, Chapter 7].)

Exercise 5.3.6. Show that the crossing number of diagrams of (p, q) knots, con-
structed as above, is q(p − 1). (So it is 18 in Figure 21 and 14 in Figure 22).

Remark 5.3.7. It can be shown that the crossing number of a (p, q) knot is actually
min(p(q − 1), q(p − 1)). (See [15, Chapter 7].)

Further reading. An important family of knots are those whose complement
admits a complete hyperbolic structure of finite volume. In this case the knot
is called hyperbolic. Torus knots do not admit such structures because the knot
complement has (at least) one incompressible annulus: T ∖K. Also, hyperbolic
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Figure 21. How to obtain a diagram of a torus knot of type (p, q).
Here we depicted the (7,3) knot.

knots must be prime (again non prime knots exhibit an incompressible annulus:
the separating sphere minus K). These are the only obstructions to hyperbolicity
for alternating knots: alternating prime knots are either torus knots or hyperbolic.
(Be careful: not all torus knot are alternating: (5,3), (4,3), (5,4) are examples of
non-alternating torus knots.)

If you are interested in colorability of torus knots, you may check [5].

6. Polynomial invariants

So far we have met numerical invariants (crossing number, genus, bridge num-
ber...) which are not very powerful with respect to the problem of classification of
knots/links, but are very easy to compare. On the other side, there are topological
invariant (the complement, the knot group, the peripheral system,..) that are very
powerful with respect to classification, but very hard to compare. Now, we will
introduce something that stand in the middle: invariants of (Laurent) polynomial
type.
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Figure 22. A diagram of the (7,3) knot (which, of course, is
equivalent to the (7,3) one).

6.1. The bracket and the Jones polynomial. Let’s start with an apparently
näıve question: is there a way to construct a link invariant by resolving the singu-
larities of one of its diagrams? The answer is (unexpectedly) yes, but of course we
have to do it carefully.

First of all notice that we have two ways to resolve the singularity at a crossing
point (why in the algorithm for Seifert surfaces there was just one possibility? Give
yourself an answer!)

D∞ D0

Moreover, observe that after a resolution a trivial component may appear. This
couple of remarks motivates the idea of associating a polynomial ⟨D⟩ ∈ Z[A,B, d]
to a diagram D with the following properties

1) ⟨ ⟩ = 1
2) ⟨D ∪ ⟩ = d⟨D⟩
3) ⟨ ⟩ = A ⟨ ⟩ +B ⟨ ⟩.

The meaning of the third one is that the three diagrams involved differs only
in a portion as indicated in the small pictures. In the future this is the way you
should intend such equations involving portions of diagrams.

Remark 6.1.1. Notice that from the third rule we have ⟨ ⟩ = A ⟨ ⟩+B ⟨ ⟩ (just
rotate the sheet by π/2). An easy way to remember the rule is to label with A the two
region that are swept out by turning the overcrossing line counterclockwise until it
coincides with the undercrossing one: A multiplies the resolution that connects the
A-regions. Of course you can replace A with B and counterclockwise with clockwise.
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By applying recursively the third property we can reduce the computation of the
polynomial to those of trivial links and from 1 and 2 we got ⟨ k⟩ = dk−1 with k

the trivial link with k components. So, the three property allows to compute ⟨D⟩.

Exercise 6.1.2. Convince yourself that the computation is independent from the
order chosen for the crossing resolutions and so the polynomial is uniquely defined
by the three properties.

You may want to have an explicit formula for ⟨D⟩, the idea is: make a choice of
resolution at each crossing, solve all the crossing at the same time, recording as a
monomial in the unknowns A, B and d the choices you’ve made and the number of
trivial components that you got, and then sum up over all possible choices. More
precisely, call a state of a given diagram D a choice at each crossing of one of the
two resolution; associate to each state s the number a(s) of resolutions connecting
A-regions and the number k(s) of connected component of the diagram obtained
by performing all the resolutions. With this notation we get the following formula

⟨D⟩ = ∑
s∈S(D)

dk(s)−1Aa(s)Bc(D)−a(s)

where c(D) denotes the crossing number of the diagram and S(D) denotes the set
of all states of D (how many are they?).

Exercise 6.1.3. Prove the above formula.

As you may suspect, ⟨D⟩ is not a link invariant. Anyway, we can check how it
behaves under Reidemeister moves and see if it is possible to adjust A, B and d to
obtain a link invariant.

Lemma 6.1.4. The following formula holds

⟨ ⟩ = AB ⟨ ⟩ + (ABd +A2 +B2) ⟨ ⟩ .

Hence ⟨ ⟩ = ⟨ ⟩ for all diagrams if

B = A−1 and d = −A2 −A−2.

Proof. We have

⟨ ⟩ = A ⟨ ⟩ +B⟨ ⟩ = A (A ⟨ ⟩ +B ⟨ ⟩) +B (A ⟨ ⟩ +B ⟨ ⟩)

= (A2 +ABd +B2) ⟨ ⟩ +AB ⟨ ⟩ .

So if we want to have we have ⟨ ⟩ = ⟨ ⟩ we have to impose AB = 1 and

A2 +ABd +B2 = 0. �

So for the above choices of B and d we get the invariance under Reidemeister 2.

Exercise 6.1.5. Check that the same holds with ⟨ ⟩ = ⟨ ⟩. Is it necessary?
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Miraculously, the same choices guarantee the invariance also under Reidemeister
3. Indeed, any choice that works for R2 works also for R3.

Lemma 6.1.6. R2 invariance for ⟨ ⟩ implies type R3 invariance.

Proof.

⟨ ⟩ = A⟨ ⟩ +B⟨ ⟩ = by R2 invariance

= A⟨ ⟩ +B⟨ ⟩ = ⟨ ⟩.

�

The invariance of a link diagram under planar isotopy, R2 and R3 corresponds to
3-dimensional equivalence of framed links (see Further reading at page 27). From
now on the we assume that B and d are chosen as above. The corresponding
polynomial, that is an element of Z[A,A−1], is known as the bracket polynomial
and is an invariant of framed links.

In order to have a link invariant we have to check what happens with R1. A
direct computation proves that

⟨ ⟩ = −A3 ⟨ ⟩ ⟨ ⟩ = −A−3 ⟨ ⟩

Exercise 6.1.7. Do the required computations.

So, at first glance, it seems that the only possibility for having a link invariant
would be choosing A = 1 that, however, trivializes ⟨ ⟩.

Exercise 6.1.8. If we were satisfied with having a numerical invariant (instead of
a polynomial one) are there different possibilities from fixing A = 1? Is there also
possibilities that do not produce a trivial invariant?

Thinking more carefully, another possibility is to multiply the bracket polynomial
by another quantity able to balance the change of ⟨ ⟩ under R1. The quantity we
need is a generalization of the linking number that sum over all the crossings (and
not only over those involving different components).

Definition 6.1.9. Let D be an oriented link diagram. The writhe w(D) of D is
the sum of signs of all crossings.

Exercise 6.1.10. Show that the writhe is invariant under Reidemeister 2 and 3.

As the bracket polynomial, the writhe is an invariant for oriented framed links,
but not for oriented links. Indeed, independently of the chosen orientation we have

w( ) = w( ) + 1 and w( ) = w( ) − 1.

Curiosity: It is thought that nineteen-century knot tabulators believed that
the writhe of a diagram was a knot invariant, at least for reduced diagrams. That
lead to a famous error of the inclusion, in the early knot tables, of both a knot and
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its reflection, listed as 10161 and 10162 with diagrams having writhe −8 and 10. The
error was detected by Kenneth Perko in the 1970’s (search for Perko pair).

Using the writhe we can balance the change in ⟨ ⟩ due to R1. More precisely, a
straightforward computation show that the polynomial

fL(A) = (−A)−3w(D) ⟨D⟩ ∈ Z[A,A−1]

is invariant under all the Reidemeister moves and so it is an invariant of oriented
link.

Exercise 6.1.11. Check the previous statement.

This polynomial is known as Jones polynomial. To be precise, what generally
is called Jones polynomial is

VL(t) = ((−A)−3w(D) ⟨D⟩)
∣

A=t
−
1
4

∈ Z[t
1
2 , t−

1
2 ].

Before explaining the reason of this change of unknown, and why VL is an element

of Z[t 1
2 , t−

1
2 ], let’s explore some properties of fL(A).

Proposition 6.1.12. It holds

1) f∗L(A) = fL(A−1), with L∗ the mirror image of L
2) f−L(A) = fL(A), with −L the link obtained by reversing the orientation of

each component of L.
3) fK1+K2 = fK1fK2 , with K1,K2 knots.

Proof. We have w(D) = w(−D) = −w(D∗). Since ⟨D⟩ does not depend on the
orientation we got the second statement. For the first, notice that at each crossing
the resolution multiplied by A is the one that in the mirrored crossing is multiplied
by A−1 (see Remark 6.1.1). Let D1 + D2 be the diagram of K1 + K2 obtained
by ”summing” the diagrams D1 and D2 of K1 and K2: clearly w(D1 + D2) =
w(D1) + w(D2) and c(D1 + D2) = c(D1) + c(D2); moreover, there is a bijection
S(D1)×S(D2)→ S(D1+D2) that maps the couple (s1, s2) to the state s1∪s2 having
the same choices at crossings; the statement follows by observing that a(s1 ∪ s2) =
a(s1) + a(s2) and k(s1 ∪ s2) = k(s1) + k(s2) − 1. �

So if K is a knot fK does not depends on the orientation chosen to compute it.

Exercise 6.1.13. For K the trefoil knot (left or right the one you like most) com-
pute fK and use the result to prove (again) that the trefoil knot is chiral.

Now we need to take a look again to the property

⟨ ⟩ = A ⟨ ⟩ +A−1 ⟨ ⟩

Does it hold something similar for fL? The answer is yes.

Theorem 6.1.14. If L+, L− and L0 are three links having diagrams D+, D− and
D0 that differ as indicated in Figure 23 in a specific crossing we have

(1) A4fL+ −A−4fL− = (A−2 −A2)fL0 .
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D− D0 D+

Figure 23

Proof.

⟨ ⟩ = A−1 ⟨ ⟩ +A ⟨ ⟩

⟨ ⟩ = A ⟨ ⟩ +A−1 ⟨ ⟩
Hence

A ⟨ ⟩ −A−1 ⟨ ⟩ = (A2 −A−2) ⟨ ⟩ .
Using the fact that w(D+) − 1 = w(D0) = w(D−) + 1 we get

−A4fL+ +A−4fL− = (A2 −A−2)fL0

�

If we do the change of variable A = t− 1
4 equation (1) becomes

(2) t−1VL+ − tVL− = (t
1
2 − t−

1
2 )VL0

and is called skein relation of the Jones polynomial.

Vaughan Jones defined the Jones polynomial in 1984 using representation theory
of braid groups and proved that the polynomial is characterized by (2) and V = 1.

A couple of year after Luis Kauffman described the relation of the Jones polynomial
with the bracket polynomial.

Further reading. Jones described a connection between the Jones polynomial
and the Pott model in statistical mechanics, a model describing interacting spins in
a crystalline lattice. The relation could be described using Kauffman approach and
involves the dichromatic polynomial (of the Seifert graph), an important invariant
in graph theory.

Exercise 6.1.15. Using (2) and V = 1 prove that V k = (−1)k−1 (t− 1
2 + t 1

2 )
k−1

.

Hint: start with a diagram of the trivial link with one crossing and use induction
on the number of components.

Equation (2) relates three links differing from each by a cross swap and/or a
crossing resolution. Since each link can be changed to the unlink by cross swaps
(can you find an algorithm to do this?), it is possible to compute VL by recursively
apply (2) together with the formula for V k . This way to compute VL is more

efficient then our initial definition (can you see why?).

Exercise 6.1.16. Compute the Jones polynomial of the trefoil knot using (2) and
compare it with the computation done in Exercise 6.1.13.

Exercise 6.1.17. Prove that if L is a link with k components then VL(1) = (−2)k−1.
Hint: what information you get from (2) when t = 1?
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Curiosity: If you want to have a look to the Jones polynomials of prime knots
with at most 8 crossings (up to mirror images) you may look at Appendix II of
[15]. An example of two knots having the same Jones polynomial is given in [15, p.
227-228]. Whether there exists a non-trivial knot with trivial Jones polynomial is
still an open conjecture.

Further reading. A way to produce knots with the same Jones polynomial is
using the so called mutation. A famous couple of mutant knots is the Kinoshita-
Terasaka knot and the Conway knot. Look for the definition of mutant pair and
try to understand why such a couple of knots have the same Jones polynomial.

In Section 3.2 we saw that a very natural invariant for knots and links is the
crossing number: the Jones polynomial gives a way to find a lower bound for it and
a way to compute it for alternating links: more precisely it gives a way to prove
one of the Tait conjecture (see pag.14).

Proposition 6.1.18. A reduced alternating diagram D of a knot K is minimal
(i.e., c(D) = c(K)).

The above results follows at once from the following statement

Theorem 6.1.19. Let K be a knot and D a diagram of K. Then B(VK) ≤ c(D),
where B(VK) denotes the breadth of VK . Moreover if D is alternating and reduced
then the equality holds.

We recall that the breadth of a polynomial in one unknown is the difference
of degree between the monomial having maximum degree and that of minimum
degree.

Proof. First of all notice that B(VK) = 1
4
B(fK) = 1

4
B(⟨D⟩). Denote with M

(resp. m) the degree of the monomial of ⟨D⟩ having the maximum (resp. min-
imum) degree. Recall that in ⟨D⟩ each state s contributes a term of the form

Aa(s)A−b(s)(−A2 −A−2)k(s)−1, with b(s) = c(D) − a(s); the exponent of the highest
power of A in this expression is a(s)− b(s)+2k(s)−2. Let us consider the state sA
obtained by choosing at each crossing the resolution that connects A-regions. The
contribution of sA is Ac(s)(−A2 −A−2)k(s)−1 and the highest power of A occurring

in this expression is Ac(D)+2k(sA)−2. Now any state s of S(D) can be achieved by
starting with sA and changing, one a time, the resolution at the necessary crossings.
In other words there exists a sequence of states sA = s0, s1, s2, . . . , sn = s such that
each state differs from the previous one by the choice done in just one crossing in
with a resolution of A-type is replaced by the other one. Clearly a(si+1) = a(si)−1,
b(si+1) = b(si) + 1 and k(si+1) = k(si) ± 1. So the exponent of the highest power of
the term corresponding to si+1 is a(si)−b(si)−2+2(k(si)±1)−2 that is less or equal
to the highest contribution of si. It follows that M ≤ c(D) + 2k(sA) − 2. Applying
the same reasoning to the mirrored diagram D∗, we get that m ≥ −c(D)−2k(sB)+2,
where sB is the state obtained by choosing at each crossing the resolution that does
not connect A-regions. So B(⟨D⟩) ≤ 2(c(D) + k(sA) + k(sB) − 2). To obtain the
first statement it is enough to prove that k(sA) + k(sB) ≤ c(D) + 2. This could be
proved by induction on c(D): for c(D) = 0 is clearly true; given a diagram D with
n crossing, select one of its crossings: for at least one of the two resolutions the
resulting diagram D′ is connected, let’s suppose that is the A-resolution; we have
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k(sA(D)) = k(sA(D′) while k(sB(D)) = k(sB(D′) ± 1 so

k(sA(D)) + k(sB(D)) = k(sA(D′)) + k(sB(D′)) ± 1 ≤ (n − 1) + 2 ± 1 ≤ n + 2.

If D is alternating then when we place A’s and B’s around a crossing, we see that
all the vertices in any region are either all labelled A’s or all labelled B’s. So if
we consider a black and white chessboard-colouring of the diagram complement
k(sA) and k(sB) are the number of white and black regions (up to exchanging
the colours). Moreover, if in the transition from s0 = sA to s1 the number of
regions does not decrease, then some black region would touch both sides of a
crossing so the diagram wouldn’t be reduced. This means that the degree of the
terms corresponding to states different from sA are less then c(D)+2k(sA)−2 and
so M = c(D) + 2k(sA) − 2. Analogously we get m = −c(D) − 2k(sB) + 2 and so
B(⟨D⟩) = 2(c(D) + k(sA) + k(sB) − 2). To end the proof we can observe that, for
alternating knots, k(sA) + k(sB) = c(D) + 2 since this sum is equal to the total
number of region of the complement of the diagram. �

Exercise 6.1.20. Explain the last sentence of the above proof. (Hint: you can use
the fact that the Euler characteristic of the disc is one).

Exercise 6.1.21. Is it possible to generalize the above proof to links?

Further reading. In the process of discovering new polynomial invariants for
links, Jones established a connection between knot theory and statistical mechanics.
Such relation is explored in [9] using the Kauffman bracket approach and passing
through a graph theory invariant, the dichromatic polynomial.

6.2. The Alexander polynomial and (Alexander)-Conway polunomial. We
will go into the definition of another polynomial invariant, that, as the previous one,
is a Laurent polynomial in one variable with integer coefficients. Its name is Alexan-
der polynomial and it can be used to obtain a lower bound for the genus: Moreover,
it will give us the opportunity to explore the topology of the link complement, since
it is associated to a particular covering of the link complement, let’s see how.

Recall from covering theory, that, to each subgroup of the fundamental group of
(a sufficiently nice) topological space X there corresponds a covering space (if you
need a refresh on covering spaces you may look at [8, Section 1.3] or [8, Chapter
7]). The space we want to focus on is the exterior E = E(L) of a link L ⊆ S3. For
a knot, the Hurewicz map gives a surjective homomorphism π1(E) → H1(E) ≅ Z,
where the isomorphism is induced by the canonical choice for the meridian (see
Exercise 4.2.9). If we a have a link with more then one component, we can ”sum
up” the contribution of each component. More precisely, if L = K1 ∪ ⋯ ∪Kn is a
link with ncomponents we define ψ ∶ π1(E)→ Z by

[γ]↦
n

∑
i=1

ψi([γ])

where ψi ∶ π1(E)→H1(E)→H1(S3 ∖Ki) ≅ Z.

Exercise 6.2.1. Prove that if γ is a knot then ψ([γ]) = ∑ni=1 lk(γ,Ki).

Let p ∶ Ẽ∞ → E the covering associated to kerψ; since kerψ is a normal subgroup
the covering is regular and so
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Aut(Ẽ∞) = π1(E)
kerψ

≅ Z

and Aut(Ẽ∞) acts transitively on the fiber over each point. When L is a knot this
covering is called universal cyclic covering; also in the general case general let’s call
this covering (by a little abuse of notation) the cyclic covering of L.

The ring Z[t, t−1] acts over H1(Ẽ∞) as follows

k

∑
i=−h

ait
i ⋅ [c] =

k

∑
i=−h

ai(τ♯)i([c])

where τ is the generator of Aut(Ẽ∞) corresponding to 1 ∈ Z and τ♯ is the auto-
morphism induced in homology by τ .

Definition 6.2.2. The Alexander module of L is H1(Ẽ∞) endowed with its
Z[t, t−1]-module structure.

Curiosity: It is possible to define the Alexander module of a KNOT in a purely
algebraic way (without any reference to coverings). Given a group G denote with
G′ the commutator subgroup of G and let G′′ = (G′)′. Convince yourself that the
(underlying set of the) Alexander module of a knot K is G′/G′′ with G = π1(S3∖K).
How is defined the action?

Clearly the Alexander module is an invariant of the link. We can use a classical
theory developed for finitely presented module over a commutative and unitary ring
to define ”computable” and ”comparable” invariants for the link: one of those will
be the Alexander polynomial. Before that, we want to give an explicit construction
of Ẽ∞.

6.2.1. A construction for Ẽ∞. Let S be a fixed oriented Seifert surface for L. If
you cut S3 along S the resulting open manifold has ”two copies” of S: the general
idea for constructing Ẽ∞ is to take (countably many) copies of this manifold and
glue them together by identifying the positive copy of S in one manifold with
the negative copy of S in the successive one. More precisely, denote with N =
N(int(S)) ≅ int(S)×(−1,1) an open tubular neighborhood of the interior of S with
int(S) identified with int(S) × {0} and the notation chosen so that the meridian
of every component of L enters the neighborhood at int(S) × {−1} and leaves it at
int(S) × {1}. Let N− and N+ be the subset of N corresponding to int(S) × (−1,0)
and int(S) × (0,1). Let Yi and Ni copies of Y and N for i ∈ Z. The manifold Ẽ∞

is obtained by identifying N−

i ⊆ Ni ⊆ Yi with N−

i−1 ⊆ Yi+1 and N+

i ⊆ Ni ⊆ Yi with

N+

i+1 ⊆ Yi+1 and the covering map is the projection p ∶ Ẽ∞ → E that sends Yi to Y
and Ni to N .

Exercise 6.2.3. Prove that the space we constructed above is indeed the cyclic cov-
ering we were looking for: use the definition to check that the map defined above is
indeed a covering; check that the covering automorphism is infinite cyclic generated
by the map that shift all the indices by one and that kerψ ⊂ p∗(Ẽ∞) (use Exercise
6.2.1 and the interpretation of the linking number as intersection with a Seifert
surface). Conclude using the classification theorem of covering spaces.

Exercise 6.2.4. If K is the trivial knot how is Ẽ∞?



KNOT THEORY AND APPLICATIONS: LECTURE NOTES 43

6.2.2. Elementary ideals of finitely presented modules. Let R be a commutative ring
with unity. A module F over R is free with generators f1, . . . , fk if every x ∈ F is
of the form ∑ki=1 aifi for a unique choice of ai ∈ R. In this case F ≅ Rk. A module
M over R is finitely presented if it admits a finite presentation, i.e., an exact
sequence

F → E →M → 0

with E and F two finitely generated free modules over R. Essentially the generators
of E correspond, once projected to M , to generators of M , while the images in E of
the generators of F correspond to relation in M . If we fix basis for F and E, the map
F → E is represented by a matrix A ∈ Mm×n(R) with m and n the cardinality of
the basis of E and F , respectively. The matrix A is called a presentation matrix
for M . Clearly a module has many presentation matrices, the following theorem,
whose proof can be found in [13, Therem 6.1], tells us how they are related.

Theorem 6.2.5. Two matrices with entries in R present the same module M if
and only if one is obtained from the other by a (finite) sequence of the following
moves and their inverses

1) permutation of rows (or columns)
2) addition of an R-multiple of a row (or column) to another row (or column)
3) (A)↔ (A∣0)

4) (A)↔
⎛
⎜
⎝

A 0

0 1

⎞
⎟
⎠

.

The first two moves are just elementary moves involved in Gauss algorithm for
echelon form, the third corresponds to adding a trivial relation, while the last
consists in adding a new generator and a relation that kills it.

Definition 6.2.6. Let M be a finitely presented R-module and A a presentation
matrix for M with m rows. The r-th elementary ideal Er(M) of M is the ideal
in R generated by the (m − r + 1) × (m − r + 1) minors of A.

Thanks to the previous theorem and to the property of the determinant, the
definition is well posed, that is, the elementary ideal are independent of the matrix
used to compute them. By Laplace theorem (k + 1) × (k + 1) minors are linear
combinations of k×k ones, so Er(M) ⊆ Er+1(M). By convention we set Er(M) = 0
if r ≤ 0 and Er(M) = R if r >m.

Now we can go back to our topological setting of an oriented link L in S3 and
focus on R = Z[t, t−1] and M = H1(Ẽ∞), the Alexander module of L. The r-th
Alexander ideals of an oriented link L are the elementary ideal of the Alexander
module of L. The r-th Alexander polynomial of L is a generator of the smallest
principal ideal that contains the r-th Alexander ideal of L. It is defined up to units
of Z[t, t−1], that is elements of the form ±t±k. The first Alexander polynomial of
L is called the Alexander polynomial of L and is denoted with ∆L. If f, g are
polynomial in Z[t, t−1] we set f =̇g if f = ±gt±k

Exercise 6.2.7. Prove that the ring Z[t, t−1] is a U.F.D. (unique factorization
domain) but is not a P.I.D. (principal ideal domain). So the r-th Alexander poly-
nomial is the G.C.D. of the (m − r + 1) × (m − r + 1) minors of any presentation
matrix for the Alexander module.
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f1

f2

f3

Figure 24. A basis for the homology of a surface of genus 1 and
with 2 boundary components.

From Exercise 6.2.4 (did you solve it?), if K is the trivial knot then Ẽ∞ = R3.

So H1(Ẽ∞) = 0 having presentation matrix (1). As a consequence E1 = Z[t, t−1]
and ∆K(t) = 1. However, for a non trivial link the definition of the Alexander
polynomial is quite implicit, so we need to develop a strategy to compute it. To do
so, we will introduce a Z-valued bilinear form associated to a Seifert surface.

6.2.3. Seifert form and Seifert matrix. Consider an oriented Seifert surface S for an
oriented link L ⊆ S3. Denote with n the number of components of L and with g the
genus of S. By the theory of surfaces H1(S) ≅ Z2g+n−1 and a set of generators of the
homology are (the images underground the homeomorphism between a standard
surface and S of) classes of loops represented in Figure 24 (for the case g = 1 and
n = 2).

Proposition 6.2.8. It holds H1(S3∖S) ≅H1(S) ≅ Z2g+n−1. Moreover, there exists
a bilinear form

β ∶H1(S3 ∖ S) ×H1(S)→ Z
such that

β ([c], [d]) = lk(c, d)
whenever c and d are simple oriented closed curves (in S3 ∖ S and S respectively).

Proof. Let V = N(S) be a closed tubular neighborhood of S and set V ′ = S3 ∖N(S).
By representing S as a disk with (knotted bands), we can understand that V is a
(knotted) handlebody of genus 2g+n−1 with each (knotted) 1-handle coming from
each (knotted) band of S. So V ∩ V ′ = ∂V = ∂V ′ ≅ Σ2g+n−1 a closed, connected,
orientable surface of genus 2g+n−1. As a basis for H1(∂V ), we can take classes of
loops f ′1, . . . f

′

2g+n−1, e1, . . . , e2g+n−1 so that fi is homologous to f ′i in H1(V ) and ej
bounds a disk in V ”dual” to fj , i.e. intersecting fj transversally in one point and
disjoint from fk when k ≠ j. Since V ∪V ′ = S3, From the Mayer-Vietoris sequence,
we have

0 =H2(S3)→H1(V ∩ V ′) φÐ→H1(V )⊕H1(V ′)→H1(S3) = 0.
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Our choice of bases gives φ([f ′i]) = ([fi], xi) and φ([ej]) = (0, yj), for some elements
xi, yj in H1(V ′). Since φ is an isomorphism clearly the [ej]’s are a basis of H1(V ′) ≅
H1(S3 − S) and so H1(S) ≅ H1(S3 ∖ S). Fix an orientation for ej and fi so that
lk(ej , fi) = δij . Now define

β (
t

∑
i=1

aj[ej],
t

∑
i=1

bi[fi]) =
t

∑
i=1

aibi,

with t = 2g + n − 1. Clearly β is a Z-valued bilinear form, we have just to check
its behaviour on simple closed oriented curve c and d. Let [c] = ∑tk=1 ak[ek] and
[d] = ∑th=1 bh[fh].

From Exercise 6.2.1 in H1(S3 ∖ fi) we have

lk(c, [fi]) = [c] =
⎡⎢⎢⎢⎣

t

∑
j=1

aj[ej]
⎤⎥⎥⎥⎦
=

t

∑
k=1

ak lk(ek, fi) = ai.

Thus in H1(S3 ∖ c) it holds

lk(c, d) = [d] = [
t

∑
h=1

bh[fh]] =
t

∑
h=1

bh lk(fh, c) =
t

∑
h=1

bhah = β ([c], [d]) .

�

We want to use β to define a bilinear form, called Seifert form, on H1(S).
Remember, that, since S is oriented V ≅ S × [−1,1] hence we have two embeddings
i± ∶ S → S3 given by i±(x) = (x,±1). Denote by x± the image of x via the map
induced in homology by i±. The Seifert form is a Z-valued bilinear form α ∶
H1(S) ×H1(S)→ Z defined by

α(x, y) = β(x−, y).

Translating by 1 in the positive direction we have β(x−, y) = β(x, y+). Moreover if
c, d are simple closed curves in S, then α([c], [d]) = lk(c−, d) = lk(c, d+). The Seifert
form could be used to find a presentation matrix for the Alexander module.

Theorem 6.2.9. Let L be an oriented link and S a Seifert surface for L. A
presentation matrix for the Alexander module of L is tA−AT where A is the matrix
associated to the Seifert form α on H1(S) with respect to a fixed basis of H1(S).

The matrix A, which is not unique, is called Seifert matrix for L: it is possible
to define an equivalence relation on matrices connecting any two Seifert matrices
(see [15]). A proof of the above result can be find in [13].

Remark 6.2.10. Since tA−AT is a square matrix (of order 2g(S)+n(L)− 1) the

first Alexander ideal of H1(Ẽ∞) is principal and so ∆L = det(tA −AT ).

Example 6.2.11. For n ∈ Z, consider the oriented knot Kn of Figure 25 having
∣2n−1∣ crossings in the lower part of the diagram being positive (as those depicted) if
2n−1 > 0 and negative (mirrored with respect to the figure) otherwise. The grey one
is a Seifert surface Sn for Kn having genus 1: to check it either use the formula of
page 23 or observe that S retracts to a theta graph. A basis for H1(S) is ([f1], [f2])
and the associated Seifert matrix is

( 1 0
−1 n

) .
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f1

f2

Figure 25. The diagram of Kn

So,

∆Kn = det( t − 1 1
−t n(t − 1) ) = n(t2 − 2t + 1) + t.

Note that K0 is the unknot and ∆K0 = t: this result is in accord with the computation
of page 6.2.2. The knot K1 has an alternating diagram with 3 crossing so it is the
treifol knot (anyway a good exercise is to deform this diagram to a more standard
one for the trefoil). Its Alexander polynomial is ∆K1

= t2 − t + 1.

Let’s list some properties of the Alexander polynomial.

Proposition 6.2.12. Let L be a link. Then

(1) ∆L(t)=̇∆L(t−1)
(2) if K is a knot then ∆K(1) = ±1.
(3) if L is a link with at least two components then ∆L(1) = 0.
(4) ∆L=̇∆L∗

(5) ∆L=̇∆−L

(6) if K1,K2 are oriented knots then ∆K1+K2 =̇∆K1∆K2

(7) B(∆L) ≤ 2g(L) + n(L) − 1.

Proof. (1) Using the properties of the determinant and the transpose we have
∆L(t−1) = det(t−1A − AT ) = (−t−1)k det(−A + tAT ) = (−t−1)k det((−A + tAT )T ) =
(−t−1)k det(tA −AT )=̇∆L(t), with k the order of A.
(2) If K is a knot then any Seifert surface has just one boundary component and,
by considering the core of the bands, we can take a basis ([f1],⋯, [f2g]) of H1(S)
such that the fi’s are simple closed curves, f2j−1 and f2j intersect once, and there
are no intersections between other couples of curves. If A is the associated Seifert
matrix (A −AT )ij = lk(f−i , fj) − lk(f+i , fj) and this is the algebraic intersection of
fi and fj on S, so

A −AT =
⎛
⎜⎜⎜
⎝

B1 0 ⋯ 0
0 B2 ⋯ 0

⋱
0 0 ⋯ Bg

⎞
⎟⎟⎟
⎠
,

where Bi = ±( 0 1
−1 0

). As a consequence ∆K(1) = det(A −AT ) = ±1.

(3) If n(L) ≥ 2, by taking, as before, the core of the bands, we have a basis
([f1],⋯[f2g], [f2g+1],⋯[f2g+n−1]) so that the columns of A −AT corresponding to
[f2g+1],⋯[f2g+n−1] are zero, since, if i > 2g, then fi has no intersection with the
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other curves.
(4) Let r ∶ S3 → S3 be a reflection so that r(L) = L∗. If S is a Seifert surface for
L then S+ = r(S) is a Seifert surface for L∗. Moreover, if A is the Seifert matrix
associated to a basis B, then −A is a Seifert matrix associated to the basis r(B).
So ∆L∗ = ±∆L.
(5) If S in an oriented Seifert surface for L then −S (i.e., S with opposite orienta-
tion) is an oriented Seifert surface for −L. So if A is a Seifert matrix for L, a Seifert
matrix for −L is AT , since i− exchanges with i+.
(6) If A1 and A2 are Seifert matrices for K1 and K2, then

( A1 0
0 A2

)

is a Seifert matrix for K1 +K2 (with respect to a Seifert surface obtained gluing
Seifert surface for K1,K2 and to a basis of the homology that is the union of the
bases used for A1 and A2).
(7) For each Seifert surface S for L, the matrix tA−AT has order 2g(S)+n(L)−1, so
the degree in t of the Alexander polynomial is less or equal to 2g(S)+n(L)−1. �

The Alexander polynomial is defined up to units of the Laurent ring: is there
a way to normalize it? Observe that for knots, the previous proposition ensures
that it is always possible to choose a representative (that we still denote with ∆K)
such that ∆K(1) = 1 and ∆K(t) = ∆K(t−1); this two properties define uniquely the
representative and such a normalization of the Alexander polynomial is called the
Alexander-Conway polynomial (or the Conway normalization of the Alexander
polynomial).

Exercise 6.2.13. If A is a Seifert matrix for a knot, prove that det(t 1
2A − t− 1

2 ) is
its Alexander-Conway polynomial.

Despite its definition, for knots det(t 1
2A − t− 1

2AT ) ∈ Z[t, t−1]. For link with
at least two components the reasoning is different since ∆L(1) = 0. Anyway it

is possible to prove that det(t 1
2A − t− 1

2AT ) ∈ Z[t 1
2 , t−

1
2 ] does not depend on the

Seifert matrix used to compute it and, as before, it is called Alexander-Conway
polynomial. For such normalization a skein relation holds.

Theorem 6.2.14. The Alexander-Conway polynomial ∆L of a link L satisfies

1) ∆ = 1

2) ∆L+ −∆L− = (t− 1
2 − t 1

2 )∆L0

where L+, L− and L0 are three links having diagrams D+, D− and D0 that differ as
indicated in Figure 23 in a specific crossing. Moreover, from 1) and 2) it follows
that it holds ∆ k = 0 for k ≥ 2.

Proof. The first statement follows from Example 6.2.11. In order to prove the
second statement let S0 be a Seifert surface for L0 constructed via the Seifert
algorithm. We can construct Seifert surfaces for L+ and L− by adding bands at
the specific crossing. If ([f2], . . . , [fn]) is a basis for H1(S0), we obtained bases for
H1(S±), by adding the class of a loop [f1] as in Figure 26
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f1

L+

f1

L− L0

Figure 26. The curve f1.

By computing the Seifert matrices A0 and A± associated to S0 and S± with
respect to bases ([f2], . . . , [fn]) and ([f1], [f2], . . . , [fn]) we have

A+ = ( n a
b A0

) A− = ( n − 1 a
b A0

) ,

for n ∈ Z. Now

∆L+ = det (t
1
2A+ − t−

1
2AT

+
) = det

⎛
⎝
n (t 1

2 − t− 1
2 ) t

1
2 a − t− 1

2 bT

t
1
2 b − t− 1

2 aT t
1
2A0 − t−

1
2AT0

⎞
⎠
,

∆L− = det (t
1
2A− − t−

1
2AT

−
) = det

⎛
⎝

(n − 1) (t 1
2 − t− 1

2 ) t
1
2 a − t− 1

2 bT

t
1
2 b − t− 1

2 aT t
1
2A0 − t−

1
2AT0

⎞
⎠
.

So using the multilinearity of the the determinant (on the first column)

∆L+−∆L− = det( t
1
2 − t− 1

2 0

0 t
1
2A0 − t−

1
2AT0

) = (t
1
2 − t−

1
2 )det (t

1
2A0 − t−

1
2AT0 ) = (t

1
2 − t−

1
2 )∆L0 .

The last statement is a straightforward computation analogous to that of Exercise
6.1.15. �

Exercise 6.2.15. Use the above characterization to compute (again) that the Alexander-
Conway polynomial of the trefoil knot is t−1 − 1 + t.

6.3. A two variable generalization: the HOMFLY-PT polynomial. So far,
we have seen two one-variable polynomial invariants. They have some common
features (a good behaviour under the sum of knots, a skein-type relation,...), but
they are essentially different: namely there are knots having the same Alexander
polynomial and different Jones one and knots having the same Jones polynomial and
different Alexander one. Do these two polynomials have a common generalization?
The answer come from the following theorem whose proof can be found in [13,
Theorem 15.2]

Theorem 6.3.1. There exists a well-defined unique map

P ∶ {oriented links in S3}→ Z[l±1,m±1]
such that

1) P = 1

2) lPL+ + l−1PL− +mPL0 = 0

where L+, L− and L0 are three links having diagrams D+, D− and D0 that differ
as indicated in Figure 23 in a specific crossing. Moreover, conditions 1) and 2)
determine P on all links.
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σ1

σ2

σ1 σ2

Figure 27. Product of braids.

The above polynomial is called HOMFLY-PT polynomial and specializes to the

Alexander-Conway’s one for l = i and m = i(t 1
2 − t− 1

2 ), and to the Jones’ one for

l = it−1 and m = i(t− 1
2 − t 1

2 ).

Curiosity: the letters composing the name of the polynomial are the initials
of the surnames of the mathematicians that constructed the polynomial: Hoste,
Ocneanu, Millet, Freyd, Lickorish, Yetter, Przytycki, Traczyk.

Further readings. There exists another 2-variable generalization of the Jones
polynomial: the Kauffman polynomial, constructed in the bracket spirit. However,
it doesn’t contain the Alexander polynomial as a specialization.

7. Braid groups: an algebraic approach to knot theory

So far we represented links using diagrams, in this section we do a quick tour
into another possible representation of links that uses braids. Let us start with a
definition.

Let D2 × [0,1] be a solid cylinder and let P1, . . . , Pn be fixed points internal
to D2. A braid on n strands is a compact properly embedded 1-submanifold
monotonic with respect to a height function and with n components. More precisely
T ⊆D2 × [0,1] is a braid if

1) T ≅ [0,1] ⊔⋯ ⊔ [0,1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

2) ∂T ⊆D2 × {0,1}
3) π∣α ∶D2 × [0,1]→ [0,1] is monotonic for each α component of T .

As for links, we consider braids up to isotopies of D2 × I that keep fixed point-
wise the boundary and satisfies the monotonic condition at each time. The set of
braids (up to isotopy) on n strands is denoted with Bn. Also for braid we can
introduce the notion of regular diagrams and isotopy of braids becomes isotopy of
diagrams (with ends fixed) and Reidemeister moves of type 2 and 3 (why not 1?).

Since braids are essentially sequences of paths they could be composed: for
σ1, σ2 ∈ Bn the braid σ1σ2 is obtained by attaching the lower face D2 × {1} of the
first solid cylinder with the upper face D2 ×{0} of the second one and scaling [0,2]
to [0,1] (see Figure 27).

With respect to this operation, called product, the braid set is a group called
the braid group.



50 ALESSIA CATTABRIGA, STEFANO FRANCAVIGLIA

i i+ 1

Figure 28. The generator σi.

Exercise 7.0.1. Check explicitly the above statement. Hint: the inverse of a given
braid σ is obtained by taking its reflection through D2 × {0}.

There are several different equivalent definitions of Bn, we list just some of them
(for the equivalence of these definitions see [2, Chapter 9]:

● Bn = MCGn(D2), the mapping class group of a n-punctured disk: the
isotopy classes of orientation preserving homeomorphisms of D2 that keep
the boundary fixed pointwise and {P1, . . . , Pn} setwise with the operation
given by composition

● Bn = π1(Cn(D2)), the fundamental group of the configuration space of n-
points in D2: Cn(D2) is the quotient space of {(P1, . . . , Pn) ∣ Pi ∈ D2, Pi ≠
Pj if i ≠ j} under the action of the symmetric group Sn on n-letters.

The group Bn admits the following presentation ([2, Chapter 9])

Bn = ⟨σ1, . . . , σn−1 ∣ σiσj = σjσi for ∣i − j∣ ≥ 2, σiσi+1σi = σi+1σiσi+1, i = 1, . . . , n − 2⟩,

where σi is the braid depicted in Figure 28

Exercise 7.0.2. Check that σi’s are generators and that the relations hold true.

Clearly B1 is the trivial group and B2 is the infinite cyclic group.

Exercise 7.0.3. Prove that B3 isomorphic to the fundamental group of the trefoil
knot. (Hint: compute the Wirtinger presentation and play with relations)

If n ≤ m we have a natural inclusion Bn → Bm obtained adding m − n trivial
strands on the right. Moreover there is a surjection Bn → Sn that sends σi to the
transposition (i i + 1). The kernel Pn of this map is a subgroup of Bn called pure
braid group.

Exercise 7.0.4. Characterize Pn as a subgroup of MCGn(D2) and π1(Cn(D2)).
Use the map Bn →Sn to prove that Bn is not commutative for n ≥ 3.

Exercise 7.0.5. Prove that σi has infinite order (hint: use the map Sn → (Z,+))
that sends all σi’s into 1. Depict the braid (σiσ2⋯σn−1)n and prove that is central.

7.1. From braid to links. When dealing with bridge number we mentioned that
each n-bridge link admits a diagram with n maximum at level 1, n minimum at
−1 and no other critical points (see Figure 17): in other words an n-bridge link
is obtained by ”capping” with arcs the top and bottom layers of a braid with 2n
strands (see Figure 29).

Such a closure of a braid is called plat closure and is defined only for braids
with an even number of strands. The bridge number of a link L is the minimum n
so that L is the plat closure of a braid in B2n (here you are another definition of
the bridge number!).
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Ð→

Figure 29. The plat closure of a braid with an even number of strands.

Ð→

Figure 30. The ordinary closure of a braid.

Another way to close up a braid with an arbitrary number of strands is the one
depicted in Figure 30: it is defined for braids having an arbitrary number of strands
and it is called ordinary closure or just closure of the braid.

Exercise 7.1.1. Describe the links that you get as the closure of elements in B2.

As in the case of plat closure, every link is the the closure of a braid. This theo-
rem is called Alexander Theorem and a you can find a proof in [15, Theorem 10.3.1]
or [16, Section 6.5]. In the following, following [16, Section 6.5], we sketch an al-
gorithm that, given a diagram of a link L, allows to find a braid having L as closure.

Start by observing that if we orient each strand of a braid from top to bottom,
then the closure inherit a coherent orientation and the corresponding diagram has
the following property: there exists a point such that every connected component
of the diagram, seen from the point, runs from right to left (see Figure 31). We say
that the diagram winds around the point.

So, if an oriented diagram of a link L winds around a point Q, to get a braid
whose closure is L it is enough to cut open the diagram along a ray exiting from
Q and intersecting the diagram only in regular points. The general strategy is to
modify the diagram so as to obtain one that admits this point; to do so we can use
∆ moves: indeed, as Figure 32 shows, with respect to a point Q that is internal
to the triangle an edge running from left to right is replaced by a couple of edges
running from right to left.

Exercise 7.1.2. Apply the above algorithm to the diagram of the figure eight knot
depicted on the left side of Figure 3.
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Q

Figure 31. The diagram of a closed braid winds around Q.

Q

Figure 32. Changing how a segment runs with respect to Q f1.

The minimum n such that a given link is the closure of a braid in Bn is called
braid index of the link. Clearly only the trivial knot has braid index 1.

Exercise 7.1.3. Prove that the links having braid index two are (2, k) torus links,
with k ≠ 0,±1.

Generally different braids may have the same closure. The following theorem
characterize how they are related (see [3, Theorem 2.3] for a proof).

Theorem 7.1.4 (Markov 1935). Two braids β ∈ Bn and β′ ∈ Bn′ have isotopic
closures if and only if they are connected by a finite sequence of the following moves
(and their inverses)

conjugation: γ → ωγω−1, for γ,ω ∈ Bk
stabilization: Bk ∋ γ → γσk ∈ Bk+1.

Exercise 7.1.5. Prove that two braids that differ for a conjugation or a stabilization
have equivalent closures.

Exercise 7.1.6. Prove that a link with braid index n is the plat closure of a braid
with 2n strands. Conclude that Br(L) ≤ b(L).

Further readings. Also for plat closure there exists an equivalence theorem
due to Joan Birman [4]. The moves connecting two braids having the same plat
closure are a stabilization moves and moves that correspond to generators of a (non
normal) subgroup of the braid group called Hilden subgroup.
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