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Abstract. On negatively curved compact manifolds, it is possible to
associate to every closed form a bounded cocycle – hence a bounded
cohomology class – via integration over straight simplices. The kernel
of this map is contained in the space of exact forms. We show that in
degree 2 this kernel is trivial, in contrast with higher degree. In other
words, exact non-zero 2-forms define non-trivial bounded cohomology
classes.

This result is the higher dimensional version of a classical theorem by
Barge and Ghys for surfaces [BG88]. As a consequence, one gets that
the second bounded cohomology of negatively curved manifolds contains
an infinite dimensional space, whose classes are explicitly described by
integration of forms. This also showcases that some recent results by
Marasco [Mar23, Mar22] can be applied in higher dimension to obtain
new non-trivial results on the vanishing of certain cup products and
Massey products. Some other applications are discussed.

1. Introduction

Let M be a smooth manifold. Let Ω2(M) denote the space of differential
2-forms on M and let CΩ2(M) and EΩ2(M) be the subspaces of closed and
exact forms, respectively.

Barge and Ghys in the late 80s showed that the second bounded co-
homology group of a negatively curved closed surface contains an infinite
dimensional subspace given by the space of differential 2-forms:

Theorem ([BG88]). Let Σ be an oriented closed connected negatively curved
surface. Then, there exists an embedding

Ψ: Ω2(Σ)→ H2
b (Σ;R),

where H2
b (Σ;R) denotes the second bounded cohomology group of Σ.

This classical theorem has attracted new attention after the recent results
by Marasco on the vanishing of certain cup products and Massey products:

Theorem ([Mar23, Mar22]). Let M be an oriented closed connected neg-
atively curved manifold with (possibly empty) convex boundary. Let ω ∈
EΩ2(M) be an exact form and α ∈ Hk

b (M ;R), then the cup product

Ψ(ω) ∪ α = 0 ∈ Hk+2
b (M ;R),

where Ψ is the Barge–Ghys straightening morphism (Section 2.2). Moreover,

if ω ∈ EΩ2(M), α1 ∈ Hk1
b (M ;R) and α2 ∈ Hk2

b (M ;R) with k1, k2 ≥ 1, then

also the triple Massey product 〈α1,Ψ(ω), α2〉 in Hk1+k2+1
b (M ;R) vanishes.
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In this short note we observe that the proof of Barge–Ghys’ Theorem
extends to higher dimensional manifolds, getting:

Theorem 1. Let M be an oriented closed connected negatively curved man-
ifold. Then, the Barge–Ghys straightening morphism

Ψ: CΩ2(M)→ H2
b (M ;R)

is injective. In particular, both Ψ(EΩ2(M)) and Ψ(CΩ2(M)) are infinite
dimensional subspaces of H2

b (M ;R).

This result showcases that Marasco’s result provides non-trivial informa-
tion for closed manifolds of any dimension. For instance we have:

Example 1.1. Let n ≥ 2 and M be an oriented closed connected negatively
curved n-manifold. Since M is negatively curved, we can pick a non-trivial
element α ∈ Hn

b (M ;R) (e.g. the volume form [Gro82, IY82]). By Theorem 1,
for every non-trivial ω ∈ EΩ2(M) the class Ψ(ω) ∈ H2

b (M ;R) is non-zero.
Hence we have

Ψ(ω) ∪ α = 0 ∈ Hn+2
b (M ;R),

where both classes Ψ(ω) and α are non-trivial. This can be interpreted as
the first non-trivial vanishing result for cup products of bounded geometric
classes of arbitrary dimension.

As an example of other kind of consequences of Theorem 1, we have:

Theorem 2. Let M be a manifold and let N be an oriented closed con-
nected negatively curved manifold. Suppose that there exists a continuous
map f : M → N that induces a surjective homomorphism at the level of
fundamental groups. Then, there exists a natural embedding:

CΩ2(N) ↪→ H2
b (M ;R).

Other corollaries of Theorem 1 are discussed in Section 3 (see for instance
Examples 3.7 and 3.8). Moreover, in Section 4 we prove that such kind
of results can be applied successfully also to the case of totally geodesic
boundary (see also Proposition 4.1):

Theorem 3. Let n ≥ 3 and let M be an oriented compact connected neg-
atively curved n-manifold with convex boundary. Also suppose that at least
one connected boundary component is totally geodesic. Then, Ψ(CΩ2(M))
and Ψ(EΩ2(M)) are infinite dimensional.

On the other hand, we notice that the Barge–Ghys straightening mor-
phism can be trivial for general negatively curved manifold with convex
non-empty boundary (see Section 5).
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2. Basic definitions and notations

In this section we recall the main definitions that we need in the paper.

2.1. Bounded cohomology. Let X be a topological space. We denote
by (C•(X;R), δ•) the standard real singular cochain complex. Gromov de-
fined the bounded cohomology of spaces as follows [Gro82]: given a singular
cochain ϕ ∈ Ck(X;R), the `∞-norm of ϕ is

‖ϕ‖∞ := sup{|ϕ(σ)| , σ is a singular k-simplex}.

We denote by C•b (X;R) ⊆ C•(X;R) the subspace of bounded cochains,
i.e. those cochains such that ‖ϕ‖∞ < +∞. Since the standard cobound-
ary operator sends bounded cochains to bounded cochains, we have that
(C•b (X;R), δ•) is a cochain complex.

The bounded cohomology of X (with real coefficients) is then:

H∗b (X;R) := H∗(C•b (X;R), δ•).

Similarly, since bounded cohomology is a homotopy invariant [Gro82, Iva17],
we can define the (real) bounded cohomology of a group Γ simply as

H•b (Γ;R) := H•b (BΓ;R),

for any model BΓ.

2.2. The Barge–Ghys straightening morphism. Let M be an oriented
compact connected negatively curved manifold M with (possibly empty)
convex boundary.

For every singular simplex σ : ∆ → M we can define its straightening

by lifting σ to σ̃ : ∆ → M̃ , then pulling it tight relatively to vertices, and
projecting back to M by convexity. In case of hyperbolic manifolds, this
coincides with (a suitable parametrization of) the geodesic convex-hull of the
vertices of σ̃. In general the construction is slightly different, and it is done
by recursively coning from a vertex to opposite faces [Fri17, Section 8.4].

This construction defines a map st : C∗(M ;R) → C∗(M ;R) which is ho-
motopic to the identity [Gro82, Fri17, Mar23]. We can therefore associate
to every ω ∈ CΩ2(M) a 2-cocycle cω defined as

cω(σ) =

∫
st(σ)

ω.

The following is classical:

Lemma 2.1 ([BG88, Lemma 3.1], [Mar23, Section 2.2]). The 2-cocycle cω
is bounded.

The proof of Lemma 2.1 goes as follows. SinceM is compact, ω is bounded
on orthonormal 2-frames. In the hyperbolic case then the claim follows from
the well-known bound on areas of geodesic triangles; the same being true
in negative curvature setting, where the bound now depends on curvature-
bounds [IY82].

Lemma 2.1 shows that there exists a well-defined cochain map

ψ : CΩ2(M)→ Z2
b (M ;R), ω 7→ cω
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from the space of closed 2-forms to the space of bounded 2-cocycles of M . By
passing to (bounded) cohomology on the right, we obtain the Barge–Ghys
straightening morphism

Ψ: CΩ2(M)→ H2
b (M ;R).

3. Barge–Ghys Theorem for closed negatively curved
manifolds

In this section we show how to prove Theorem 1 by combining the original
proof by Barge–Ghys with the following result of the late 90s:

Theorem 3.1 ([CS98, Corollary 1.5]). Let M be a closed negatively curved
manifold, α a (not a priori closed) smooth 1-form on M , and β a closed
1-form on M . If for every closed geodesic γ in M we have∫

γ
α =

∫
γ
β

then α is closed and [α] = [β] in H1(M ;R).

This result was only known for n = 2 when Barge and Ghys wrote their
paper, but now one can use it to extend their argument to the case of
oriented closed connected negatively curved n-manifolds. More precisely,
we have the following:

Theorem 1. Let M be an oriented closed connected negatively curved man-
ifold. Then, the Barge–Ghys straightening morphism

Ψ: CΩ2(M)→ H2
b (M ;R)

is injective. In particular, Ψ(EΩ2(M)) and Ψ(CΩ2(M)) are infinite dimen-
sional subspaces of H2

b (M ;R).

For the rest of the section we assume that M is an oriented closed con-
nected negatively curved manifold. Following Barge–Ghys’ proof, we first
show that if Ψ(ω) = 0, then ω has to be exact [BG88, Lemma 3.4]:

Lemma 3.2. Let ω ∈ CΩ2(M) be such that Ψ(ω) = 0. Then, ω is exact.

Proof. Recall that we have the following commutative diagram [Mar23, Sec-
tion 2.2]:

CΩ2(M ;R) //

Ψ
��

H2
dR(M ;R)

∼=
��

H2
b (M ;R) // H2(M ;R),

where H2
dR(M ;R) denotes the de Rham cohomology of M and the lower

horizontal arrow is the comparison map [Gro82]. Hence, if Ψ(ω) = 0, we
have that ω is mapped to the zero element in H2

dR(M ;R). This shows that
ω has to be exact. �

Remark 3.3. One standard way to prove that H2
b (M ;R) does not vanish

is to show that the kernel of the comparison map

comp2 : H2
b (M ;R)→ H2(M ;R)
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is non-trivial. In the case of bounded cohomology of groups, the kernel of
comp2, called second exact bounded cohomology and denoted by EH2

b (M ;R),
is usually studied via (homogeneous) quasi-morphisms [Fri17, Proposition
2.8, Corollary 2.11]. In this setting, the construction by Barge and Ghys
leads to the so-called de Rham quasi-morphisms [Cal09, Section 2.3.1]. From
the diagram in the proof of Lemma 3.2, it follows that Ψ(EΩ2(M)) ⊆
EH2

b (M ;R). A corollary of Theorem 1 is therefore that non-zero exact forms
are non-trivial elements in the second exact bounded cohomology group of
M .

We assume now that ω is an exact 2-form such that Ψ(ω) = 0. This
allows us to fix the following notations: ω = dα and cω = δτ , where α and
τ are a differential 1-form and a bounded 1-cochain, respectively.

Lemma 3.4. Let γ1, . . . , γs be closed oriented geodesics. Fix a base-point
on each γi and a parametrization by constant speed in order to consider each
γi as a 1-cycle. If

∑n
i=1 γi = 0 ∈ H1(M ;R), then

n∑
i=1

∫
γi

α =

n∑
i=1

τ(γi).

Proof. In the case of surfaces, this is exactly [BG88, Lemma 3.5]. Let S
be a 2-chain such that ∂c =

∑n
i=1 γi. Using the properties of st, we can

straighten each 2-simplex of S without changing the 1-skeleton and suppose
that S is made by straight simplices. Then:

n∑
i=1

∫
γi

α =

∫
∂S
α =

∫
S
dα =

∫
S
ω = cω(S) = δτ(S) = τ(∂S) =

n∑
i=1

τ(γi).

�

Lemma 3.5 ([BG88, Lemma 3.6]). Let γ1, . . . , γs be closed oriented geodesics
such that

∑n
i=1 γi = 0 ∈ H1(M ;R). Then

n∑
i=1

∫
γi

α = 0.

For the convenience of the reader, we recall the proof by Barge and Ghys:

Proof. Let us denote by γNi the N -fold concatenation of the geodesic γi with
itself, considered as a single singular 1-simplex. Since the element

∑n
i=1 γ

N
i

is clearly null-homologous, by Lemma 3.4 we have that for every N ∈ N:

N

(
n∑
i=1

∫
γi

α

)
=

n∑
i=1

∫
γNi

α = τ

(
n∑
i=1

γNi

)
.

Since τ is bounded, the last term is bounded independently of N . But N is
arbitrary, and this concludes the proof. �

All the previous results lead to the following important lemma (compare
with Barge–Ghys [BG88, Lemma 3.7]):
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Lemma 3.6. There exists a closed 1-form β such that for every closed
geodesic γ ∫

γ
α =

∫
γ
β.

Proof. By Lemma 3.5, if γ1 and γ2 are homologous, then∫
γ1

α =

∫
γ2

α.

Recall that in a negatively curved manifold each non-trivial free homo-
topy class of closed curves (and hence each homology class) contains a
geodesic representative [Kli11, Theorem 3.8.14]. Then by Lemma 3.5 the
integration of α over closed geodesics defines a map I from H1(M ;R) to
R. This map is linear: if γ1 + γ2 is homologous to γ3, then Lemma 3.5
shows that I(γ3) = I(γ1) + I(γ2). Hence, the map I defines an element in
H1(M ;R) ∼= Hom(H1(M ;R);R). By de Rham Isomorphism Theorem there
exists a closed 1-form β whose integral represent such class. This shows that∫

γ
α =

∫
γ
β,

for every closed geodesic γ. �

Theorem 1 now immediately follows.

Proof of Theorem 1. By Lemma 3.6 and Theorem 3.1, the form α is closed,
whence ω = dα = 0. �

Combining Theorem 1 with classical facts on bounded cohomology we get
the following result:

Theorem 2. Let M be a manifold and let N be an oriented closed con-
nected negatively curved manifold. Suppose that there exists a continuous
map f : M → N that induces a surjective homomorphism at the level of
fundamental groups. Then, there exists a natural embedding:

CΩ2(N) ↪→ H2
b (M ;R).

Proof. It is well known that every surjective group homomorphism induces
an injective map on second bounded cohomology groups [Bou01]. Hence,
we have that the surjective group homomorphism

π1(f) : π1(M)→ π1(N)

induces an injective map between the second bounded cohomology groups:

H2
b (π1(f)) : H2

b (π1(N);R)→ H2
b (π1(M);R).

Moreover, by Gromov’s Mapping Theorem [Gro82, Iva17] (and the homo-
topy invariance of bounded cohomology) we have the following commutative
diagram:

H2
b (π1(N);R)

H2
b (π1(f))

//

∼=
��

H2
b (π1(M);R)

∼=
��

H2
b (N ;R)

H2
b (f)

// H2
b (M ;R)
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where the vertical lines are (isometric) isomorphisms. Since H2
b (π1(f)) is in-

jective, the commutativity of the diagram shows that also H2
b (f) is injective.

The thesis now follows by considering the following composition

CΩ2(N)
Ψ−→ H2

b (N ;R)
H2

b (f)
−−−−→ H2

b (M ;R),

where Ψ is injective because of Theorem 1. �

Before discussing some applications of the previous result, let us briefly
recall what is known in the literature about the bounded cohomology of
manifolds (and groups). Computing the bounded cohomology of mani-
folds with non-amenable fundamental group is usually a hard task. In-
deed, we do not know any example of a closed aspherical manifold with
non-amenable fundamental group such that its bounded cohomology is fully
understood. Nevertheless, bounded cohomology in degree 2 and degree 3
is fairly well-studied using the technology of quasi-morphisms to construct
non-trivial bounded cohomology classes (Remark 3.3). This approach shows
that the second bounded cohomology group of a manifold with acylindri-
cally hyperbolic group (e.g. a negatively curved manifold) is infinite dimen-
sional [Bro81, EF97, Fuj98, BF02, Fuj00]. In this situation, with the help
of hyperbolic geometry [Som81, Som97, FS02] and more delicate construc-
tions with quasi-cocycles [FPS15, FFPS19], one can also prove that the
third bounded cohomology group of a manifold with acylindrically hyper-
bolic group is infinite dimensional. However, it is still not known, e.g.,
whether surfaces or hyperbolic 3-manifolds have trivial fourth bounded co-
homology or not.

Theorem 2 provides a new geometric way to describe infinite-dimensional
subspaces of the second bounded cohomology group of many non-positively
curved manifolds:

Example 3.7. Let M be a fiber bundle over an oriented closed connected
negatively curved manifold N with connected fiber, then Theorem 2 implies
that

CΩ2(N) ↪→ H2
b (M ;R).

For instance, this applies when M is the product of oriented closed connected
negatively curved manifolds.

Another interesting source of applications of Theorem 2 arises from com-
plete finite-volume arithmetic hyperbolic manifolds of simplest type [KRS18,
Section 4]. Recall that all complete finite-volume arithmetic hyperbolic man-
ifolds of simplest type contain totally geodesic immersed complete finite-
volume k-submanifolds for every 1 ≤ k ≤ n − 1 [FLMS21, Section 2.1].
This implies that if M is a complete finite-volume arithmetic hyperbolic
n-manifold of simplest type and M ′ is a finite covering of M , then for ev-
ery k ∈ {1, · · · , n − 1} there exists an immersed totally geodesic complete
finite-volume k-submanifold S of M ′ and so the inclusion of S into M ′ is π1-
injective. Hence, we have that π1(S) ≤ π1(M ′) ≤ π1(M). Using a result by
Bergeron, Haglund and Wise about closed arithmetic hyperbolic manifolds,
we obtain the following:
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Example 3.8. Let M be a closed arithmetic hyperbolic n-manifold of sim-
plest type. By Bergeron, Haglund and Wise [BHW11, Theorem 1.2] there
always exists a finite covering M1 of M with the following property: for
every k ∈ {1, · · · , n−1} and every immersed totally geodesic k-submanifold
N ⊆M1, there exists a finite covering M2 of M1 corresponding to a subgroup
π1(M2) ≤ π1(M) such that

• π1(N) ≤ π1(M2), and
• π1(M2) algebraically retracts onto π1(N), i.e. there exists a surjective

homomorphism ρ : π1(M2)→ π1(N) such that ρ is the identity over
π1(N).

Since N and M2 are aspherical manifolds, the homomorphism ρ is induced
by a continuous map r : M2 → N . Hence π1(r) : π1(M2) → π1(N) is an
algebraic retraction, whence a surjective homomorphism. We can then apply
Theorem 2 to r and conclude that

CΩ2(N) ↪→ H2
b (M2;R).

4. The case of totally geodesic boundary

In this section we prove the following more general version of Theorem 3:

Proposition 4.1. Let M be a Riemannian manifold with (possibly non-
empty) convex boundary. Suppose that M contains an oriented closed con-
nected negatively curved totally geodesic submanifold N (possibly contained
in the boundary). Then, the images of CΩ2(M) and EΩ2(M) under the
Barge–Ghys straightening morphism Ψ: CΩ2(M) → H2

b (M ;R) are infinite
dimensional.

Proof. Let i : N →M denote inclusion of N into M . We can then consider
the following diagram:

CΩ2(M)
i∗ //

ΨM

��

CΩ2(N)

ΨN

��

H2
b (M ;R)

H2
b (i)

// H2
b (N ;R).

Note that i∗ sends exact forms to exact forms. Moreover, since N admits
a tubular/collar neighborhood in M , exact forms of N are restrictions of
exact forms of M . Hence, the image of the map i∗ contains EΩ2(N) and is
infinite-dimensional.

Moreover, Theorem 1 shows that ΨN is also injective. Hence, in order
to prove the statement it is sufficient to show that the previous diagram
commutes. In fact, we are going to show that it commutes at the level of
cochains, i.e. that the following diagram commutes:

CΩ2(M)
i∗ //

ψM

��

CΩ2(N)

ψN

��

C2
b (M ;R)

C2
b (i)

// C2
b (N ;R).
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First, since N is totally geodesic in M , the inclusion map i sends straight
simplices to straight simplices, that is

i(st(σ)) = st(i(σ))

for every σ : ∆2 → N singular 2-simplex in N . Then, on the one hand we
have:

C2
b (i) ◦ ψM (ω) = C2

b (i)(cω)

=
(
σ 7→ cω(i(σ)) =

∫
st(i(σ))

ω
)
,

on the other hand,

ψN ◦ i∗(ω) = ψN (i∗(ω))

=
(
σ 7→ ci∗(ω)(σ) =

∫
st(σ)

i∗ω
)

=
(
σ 7→

∫
i(st(σ))

ω
)
.

Since i(st(σ)) = st(i(σ)), we get that the two cocycles coincide. This shows
that both the diagrams commute, whence we get the thesis. �

Theorem 3 is then an easy consequence of Proposition 4.1:

Proof of Theorem 3. It is sufficient to notice that when M is an oriented
compact connected negatively curved manifold of dimension dim(M) ≥ 3
with convex boundary and totally geodesic boundary component M0, then
M0 is an oriented closed connected negatively curved manifold. Hence, we
can apply Proposition 4.1 by setting N = M0. �

5. Non-injective examples

One can easily construct simple examples of negatively curved manifolds
with non-empty convex boundary such that the Barge–Ghys straightening
morphism Ψ is trivial (and so non-injective).

Example 5.1. Let n ≥ 2 and let M be an oriented compact connected neg-
atively curved n-manifold M , with non-empty convex boundary. In this case
CΩ2(M) is not trivial. Suppose moreover that M is homotopy equivalent to
a space X with H2

b (X;R) = 0. Since the bounded cohomology is a homo-
topy invariant [Gro82, Iva17], then H2

b (M ;R) = 0 and so the Barge–Ghys
straightening morphism Ψ is trivial.

Since the point and S1 have trivial second bounded cohomology [Gro82,
Iva17], as examples of the above classes one can take a ball in a hyperbolic
space, or a convex tubular neighbourhood of a simple closed geodesic in a
hyperbolic manifold.
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