Abstract. OK guys, I’m going to try to convince you that any holomorphic curve in \(SL(2, \mathbb{C}) \) is parabolic, without saying what exactly this means. OK, I’ll try to show that if one has a holomorphic curve in \(SL(2, \mathbb{C}) \) that projects to a surface in \(\mathbb{H}^3 \), then such a surface has trivial tangent bundle. I’ll do it by showing that the normal bundle of the surface is “intrinsically invariant” (???).

1. Notation for \(\mathbb{H}^3 \)

We fix the disc model of \(\mathbb{H}^3 \), so that \(\partial \mathbb{H}^3 \simeq \mathbb{C}P^1 \) and the action of \(SL(2, \mathbb{C}) \) on \(\mathbb{H}^3 \) is well defined. Each time that we speak about \(\infty \in \partial \mathbb{H}^3 \) we mean that we fixed a point and we use a half-space model of \(\mathbb{H}^3 \) in which such point is \(\infty \). The same holds for \(0 \in \partial \mathbb{H}^3 \).

2. Notation for \(SL(2, \mathbb{C}) \)

We know that \(SL(2, \mathbb{C}) \) is isomorphic to the trivial bundle over \(\mathbb{H}^3 \) of orthonormal framings on \(\mathbb{H}^3 \), which is isomorphic to \(\mathbb{H}^3 \times O(3) \). The tangent bundle of \(\mathbb{H}^3 \) is isomorphic to \(\mathbb{H}^3 \times \mathbb{R}^3 \). None of such isomorphisms is canonic, so we have to fix something.

We fix once and for all a base-point \(x_0 \) in \(\mathbb{H}^3 \) and an orthonormal basis \((e_1, e_2, e_3)\) of \(T_{x_0} \mathbb{H}^3 \). We also fix a trivialisation \(TH^3 = \mathbb{H}^3 \times \mathbb{R}^3 \).

Now, the identification of \(SL(2, \mathbb{C}) \) with the bundle of orthonormal framing is given by

\[
SL(2, \mathbb{C}) \ni A \mapsto (A(x_0), \text{diff} A[e_1], \text{diff} A[e_2], \text{diff} A[e_3])
\]

Here \(\text{diff} \) means the differential of \(A \) as a diffeomorphism of \(\mathbb{H}^3 \). Why use \(\text{diff} A \) instead of \(dA \)? because later, we’ll need to use a lot of differentials, namely the ones of our holomorphic curves, and it is too much for me, I need to change notation :). Moreover, we’ll more or less never use such a differential (we need it only now, at level of definitions.)

This gives a well defined identification \(SL(2, \mathbb{C}) = \mathbb{H}^3 \times O(3) \).
we’ll use the following notation

\[\text{SL}(2, \mathbb{C}) \ni A = (s, f) \in \mathbb{H}^3 \times O(3) \]

let me explain what does it means. Suppose you have a holomorphic curve \(C \to \text{SL}(2, \mathbb{C}) \). Then if you look at her at the level of \(\mathbb{H}^3 \), you see a parameterisation of a framed surface: at each point of the surface you have a orthonormal frame. So, in \(A = (s, f) \) the \(s \) stands by surface-coordinate and \(f \) by frame-coordinate.

Suppose now that \(A(z) = (s(z), f(z)) \) is a curve. Then,

\[s(z) = A(z)(x_0) \quad \text{and} \quad f(z) = \text{diff}(A(z)). \]

Explanation: \(A(z) \) is a curve in \(\text{SL}(2, \mathbb{C}) \), so for each \(z \), \(A(z) \) is a matrix, identified via 1 with

\[(A(z)(x_0), \text{diff} \, A(z)[e_1], \text{diff} \, A(z)[e_2], \text{diff} \, A(z)[e_3]). \]

Recall that here \(\text{diff} \) is NOT the differential w.r.t. \(z \). It is, for each \(z \), the differential of \(A(z) \) as a diffeomorphism of \(\mathbb{H}^3 \).

3. Right action

\(\text{SL}(2, \mathbb{C}) \) acts on himself by RIGHT action. That is

\[\text{SL}(2, \mathbb{C}) \ni B : A \mapsto AB \]

How right action affects our identification? Simply by changing the base points and frames

\[x_0 \mapsto Bx_0 \quad e_i \mapsto \text{diff} \, B[e_i] \]

that is, right multiplications correspond to changes of our identifications.

4. Lines in \(\text{SL}(2, \mathbb{C}) \)

Let \(G < \text{SL}(2, \mathbb{C}) \) be a one-parameter subgroup of \(\text{SL}(2, \mathbb{C}) \). One-parameter means one complex parameter. So \(G = \exp_{t_0}(Cv) \) where \(v \in T_{t_0}\text{SL}(2, \mathbb{C}) \) and \(\exp \) is the usual exponential map. (don’t ask me to speak about Lie algebras!) If we want it parametrised, we can write

\[G(t) = \exp_{t_0}(tv) \]

What do we see at level of boundary? Well, since \(G \) is Abelian, it fixes a point, say \(\infty \). So we have two cases:

Parabolic. \(G(t) \) is a “translation”, that is \(G(t) : z \mapsto z + \lambda \), with \(\lambda = tv \) or something similar.

Hyperbolic. \(G(t) \) fixes also a second point, say 0, and it is a “multiplication”, that is \(G(t) : z \mapsto \lambda z \), with \(\lambda = tv \) or something similar.
In the parabolic case, the image in \mathbb{H}^3 of G, namely $s(\mathbb{C})$ (if we set $G = (s, f)$ as before) is the horosphere centred at ∞ and passing trough x_0.

In the hyperbolic case, if γ denotes the geodesic from 0 to ∞, the image of G in \mathbb{H}^3 is the level set of the function distance-from-γ passing trough x_0.

In both cases we can write

$$s(\mathbb{C}) = \{x \in \mathbb{H}^3 : d(x, \gamma) = d(x_0, \gamma)\}$$

with the convention that $\gamma = \infty$ in the parabolic case and $d(x, \infty)$ is the normalised-at-O-Busemann function $B_O(x, \infty)$.

Note that in the hyperbolic case, if $x_0 \in \gamma$ then $s(\mathbb{C})$ is a geodesic.

We call a line passing through g any set $G \subset \text{SL}(2, \mathbb{C})$ of the form

$$\exp_g(\mathbb{C}w)$$

for a $w \in T_g\text{SL}(2, \mathbb{C})$. If we want to emphasise the parameterisation we write $G(t) = \exp_g(tw)$.

If we denote by $\tau_g : \text{SL}(2, \mathbb{C}) \to \text{SL}(2, \mathbb{C})$ the RIGHT translation $A \mapsto Ag$, we have

$$\exp_g(\mathbb{C}w) = \tau_g(\exp(\mathbb{C}v))$$

for a suitable $v \in T_{Id}\text{SL}(2, \mathbb{C})$. Therefore, from the discussion in Section 3, the image of a line passing trough g is computed simply by changing the base point. In particular we have:

For any line G, the image in \mathbb{H}^3 of G is either a horosphere, a geodesic, or a level set of the function distance-from-a-geodesic.

What’s going on on the framing? Let $G(t)$ be a line of $\text{SL}(2, \mathbb{C})$ passing through g, and let S be its image on \mathbb{H}^3 (as usual, we set $G(t) = (s(t), f(t))$ and S is the image of s; t is a complex parameter.) Writing down explicitly the exponential map, one can convince ourselves that

Fact 4.1. For any $v \in T_{s(0)}\mathbb{H}^3$ which is orthogonal to S, for any $t \in \mathbb{C}$, the vector $f(t)[v]$ is orthogonal to S.

It follows that one can trivialise $T_s\mathbb{H}^3$ as a trivial tangent bundle and a trivial normal (i.e. orthogonal) bundle just by fixing a tangent-normal frame in $s(0)$ and then pushing it to any $s(t)$ using $f(t)$.
5. The Idea

The idea is that, at the first order, a holomorphic curve is a line, so the tangent-normal frames move, at the first order as in a line. This implies that the tangent (normal) frame remains tangent (normal) when pushed via the frame-coordinate of the curve. Therefore, the tangent bundle is trivial.

6. It works?

Let Ω be an open subset of \(\mathbb{C} \), and let

\[A : \Omega \to \text{SL}(2, \mathbb{C}) \]

be a holomorphic map. As now usual, we set \(A(t) = (s(t), f(t)) \), the surface and frame parameters. Up to parametrisation of \(\Omega \) and Right multiplication in \(\text{SL}(2, \mathbb{C}) \), we can (as we do) suppose that \(0 \in \Omega \) and \(A(0) = \text{Id} \in \text{SL}(2, \mathbb{C}) \) (so that \(s(0) = x_0 \) and \(f(0) = \text{Id} \in O(3) \)).

Let \(dA(t) \) be the derivative of \(A \) respect to the complex parameter \(t \). We set \(\lambda = dA(0)[1] \), so that, at the first order, \(A \) is approximated by the line

\[G(t) = \exp_{\text{Id}}(t\lambda) \]

Let \(\langle , \rangle_x \) be the hyperbolic metric of \(\mathbb{H}^3 \) at the point \(x \). Given two vectors \(v, w \) in \(T_{s(0)}\mathbb{H}^3 \), we are interesting to the variation of their scalar product

\[\langle f(t)[v], f(t)[w] \rangle_{s(t)} \]

as \(t \) varies in \(\Omega \).

\[\frac{d}{dt}|_{t=0}\langle f(t)[v], f(t)[w] \rangle_{s(t)} = \langle f'(0)[v], w \rangle_{x_0} + \langle v, f'(0)[w] \rangle_{x_0} + \text{NULL} \]

where \(\text{NULL} \) is the term counting the derivative of the metric, that should vanish because Riemannian metric are used to be parallel (it works?)

But now, at the first order, \(A \) is the same as \(G \). Therefore, if \(v \) is tangent to \(S \) and \(w \) is orthonormal to \(S \) (at the point \(x_0 \)) then, by Fact 4.1, the first variation of (2) is zero. Since we can do that for any \(t \), Fact 4.1 holds not only for lines but for a generic holomorphic curve.

It works?