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Abstract. We classify the possible closures of leaves of the isoperiodic foliation defined
on the Hodge bundle over the moduli space of genus g ≥ 2 curves and prove that the
foliation is ergodic on those sets. The results derive from the connectedness properties
of the fibers of the period map defined on the Torelli cover of the moduli space. Some
consequences on the topology of Hurwitz spaces of primitive branched coverings over elliptic
curves are also obtained. To prove the results we develop the theory of augmented Torelli
space, the branched Torelli cover of the Deligne-Mumford compactification of the moduli
space of curves.

1. Introduction

1.1. Overview. Let ΩMg be the moduli space of abelian differentials on compact genus
g ≥ 2 smooth curves. The period of an element (C,ω) ∈ ΩMg is the element of H1(C,C) '
Hom(H1(C,Z),C) that is defined by

(1) Per(C,ω) : γ ∈ H1(C,Z) 7→
∫
γ
ω ∈ C.

The periods of an abelian differential do not allow to recover the abelian differential itself, even
infinitesimally. Actually, it is always possible to find non trivial isoperiodic deformations of a
given abelian differential, namely an immersed complex submanifold L ⊂ ΩMg such that the
period of a form (C,ω) ∈ L is a locally constant function, when we use the local identifications
of the H∗(C,C)’s given by the Gauss-Manin connection. For instance, if ft : Ct → C is a
continuous family of degree d branched coverings over C depending on the parameter t, the
period map of the family ωt = f∗t ω is locally constant.

The case g = 2 is instructive: every genus two curve is a double cover of P1 ramified over six
distinct points, say 0, 1,∞, x1, x2, x3. An abelian differential on such a curve can be written
as the hyperelliptic integrand

(ax+ b)dx√
x(x− 1)(x− x1)(x− x2)(x− x3)

.

Picard-Fuchs theory (see [19, p.60] for details) tells us that isoperiodic deformations on ΩM2

are integral curves of the following vector field

(2)
∑
j

xj(1− xj)
axj + b

∂

∂xj
− 1

2

∂

∂a
− 1

2

(
1 +

∑
j

b(xj − 1)

axj + b

) ∂
∂b
.
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Apart from the invariant closed subsets characterized by topological properties of the set of
periods, there is an interesting family of closed invariant sets for the isoperiodic foliation in
genus two called the Hilbert modular invariant manifolds, introduced by Calta in [18] and
McMullen in [52, 53]. The set of curves of genus two whose Jacobian has real multiplication
by a quadratic order of discriminant D is a Hilbert modular surface XD, and a remarkable
fact is that the subset of the Hodge bundle ΩXD over XD consisting of eigenforms for the
complex multiplication is invariant by the isoperiodic foliation.

In any genus, the collection of all maximal isoperiodic deformations defines a holomor-
phic foliation Fg of Ω∗Mg, called the isoperiodic foliation1 (see [56] for further examples).
It has dimension 2g − 3, and it is also algebraic: its leaves are solutions of a system of al-
gebraic equations analogous to (2) with respect to the Deligne-Mumford algebraic structure
on moduli space. It admits a real analytic global first integral defined by the volume of the
flat metric induced by the abelian differential. Complex multiplication on the forms induces
isomorphisms between the restrictions of the foliation to the volume levels.

It turns out that the restriction of Fg to the volume levels carries a transverse structure
modelled on the homogeneous space

(3) Sp(2g,R)/U, with U = I2 × Sp(2g − 2,R)

with changes of coordinates acting by right multiplications by the elements of the lattice
Sp(2g,Z). There are some well known examples of closed invariant sets for the given restriction
and an integer d ≥ 2: the moduli spaces Hg,d ⊂ ΩMg of forms that are pull-back of elliptic
differentials by primitive branched coverings of degree d. The set Hg,d is saturated by the
isoperiodic foliation and each leaf there is algebraic.

The main goal of this paper is to investigate the topological properties of the isoperiodic
foliation, and derive some dynamical consequences: we prove that any dynamical property
satisfied by the action of the lattice Sp(2g,Z) on the homogeneous space (3) can be transferred
to a property satisfied by the isoperiodic foliation. This fact is what we call the transfer
principle. Using Ratner’s theory, it allows to describe explicitely the closure of each leaf and
prove that it is a real analytic subset. We also obtain the ergodicity of the isoperiodic foliation
on these sets, a fact that has been proven independently by Hamenstädt in [29].

The proof of the transfer principle is achieved by studying the topological properties of the
fibers of the period map defined on the moduli space of homologically marked genus g curves,
with values in the affine space C2g: we prove that all the fibers that do not correspond to
leaves in Hg,2 with g ≥ 4 are connected. This result provides a solution to a problem posed by
McMullen in [50, p. 2282] for genus g ≥ 4. The main idea of the proof of the connectedness
of the fibers is to show that any form can be deformed continuously and isoperiodically to
a stable form on a nodal curve, and then connect all possible stable forms obtained in this
way using an inductive argument on the genus. As for fibers formed by branched double
coverings over an elliptic differential, we generalize an invariant described by Arnold [4] for
branched double coverings over the Riemann sphere (i.e. hyperelliptic loci) to prove they are
disconnected when the genus is at least five.

1.2. Statement of results. A homologically marked genus g curve is a couple (C,m), where
C is a genus g curve and m : Z2g → H1(C,Z) is a symplectic identification. The moduli space
of marked genus g curves is the so called Torelli covering Sg → Mg. Its covering group

1In the literature, this foliation is also called the kernel foliation, or the absolute period foliation.
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Ig ⊂ π1(Mg)– called the Torelli group– is identified with the set of classes in the mapping
class group of an orientable closed surface of genus g that act trivially on the first homology
group of the surface. We denote by ΩSg the pull-back of the Hodge bundle to Sg. We analyze
the topological properties of the period map

Perg : ΩSg → Hg ∪ 0 defined by Perg(C,m, ω) = Per(C,ω) ◦m.
where Hg ⊂ Hom(Z2g,C) denotes the open subset formed by periods of non zero abelian
differentials on a homologically marked genus g curve. The isoperiodic foliation lifts to a
foliation of ΩSg whose leaves are the connected components of the level sets of the period
map.

Definition 1.1 (Primitive degree). Given p ∈ Hom(Z2g,C) we define

• its volume vol(p) = <(p) · =(p), the symplectic product on Hom(Z2g,R)
• its primitive degree, denoted deg(p) as ∞ if Λ = p(Z2g) ⊂ C is non-discrete and as

deg(p) =
vol(p)

vol(C/Λ)
if Λ ⊂ C is discrete.

When p ∈ Hom(Z2g,C) is the period of some non-zero abelian differential ω on a homo-
logically marked smooth curve (C,m), vol(p) corresponds to its volume i

2

∫
ω ∧ ω too, and is

therefore positive. When the periods of the form define a lattice Λ ⊂ C, the number deg(p)
corresponds to the topological degree of the primitive branched covering C → C/Λ defined
by integration of the form (i.e. it induces a surjection at the first homology group level). The
degree is a positive integer and it is one only if g = 1. The conditions vol(p) > 0 and either
g = 1 or deg(p) > 1 will be referred to as Haupt conditions.

Our main result is

Theorem 1.2. For g ≥ 2, the fibers of the period map Perg over points of primitive degree
at least three are connected.

Its proof, whose structure is detailed in section 1.3, will take up most of the paper.

Regarding the fibers of Perg over points of primitive degree two, it was already known that
they are connected for g = 2, 3 (see [50]). We suspect that the equivalent statement is still
true in genus four, but we were not able to prove it. Nevertheless, in higher genera we prove

Theorem 1.3. If g ≥ 5, the fibers of Perg over points of primitive degree two are disconnected.

Theorem 1.3 is proved using an adaptation of a method due to Arnold [4] based on an
invariant associated to branched double coverings. It enabled him to prove that the symplectic
representation π1(Hg,2(P1))→ Sp(2g,Z), induced by the natural inclusion Hg,2(P1)→Mg of
the Hurwitz space Hg,2(P1) of genus g branched double coverings over the Riemann sphere,
is not onto for g ≥ 3. In our case the invariant will be extended to branched double coverings
over an elliptic curve.

The connectedness of the fibers of the lift of Perg to the universal cover of ΩMg fails in
general. For example, in genus g = 3 the fibers of Per3 over points of primitive degree two
are biholomorphic to Siegel space S2, hence simply connected. Therefore there are infinitely
many components of the lift of such a fiber to the universal cover of ΩM3. In genus g = 2, the
generating family of π1(M2) given by Mess in [54] allows to prove that the lift of the generic
fiber is disconnected (see Corollary 6.20). In both cases the proof relies on the fact that the
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projection of the isoperiodic sets to Siegel space via the Torelli map, do not accumulate on
some of the components of the boundary of Torelli space.

A first application of these results concerns the topology of Hurwitz spaces of branched
coverings over elliptic curves. The connectedness of the moduli space of genus g > 1 primitive
branched coverings of degree d over an elliptic curve was proven by Berstein and Edmonds
(see [10]). Our method allows to retrieve this result, and to get some new information on the
fundamental group of these moduli spaces whenever d > 2:

Corollary 1.4. Let Hg,d(E) be the Hurwitz space of degree d and genus g ≥ 2 primitive
branched coverings over the elliptic curve E. Let p : H1(Σg) � H1(E) be the homology map
of any of its elements. For d ≥ 3 the homomorphism

(4) π1(Hg,d(C/Λ))→ Stab(p) ⊂ Sp(2g,Z) is onto.

This result is in fact more general: the fundamental group of the leaves of the isoperiodic
foliation that correspond to a period p ∈ Hg when deg(p) 6= 2 surjects onto Stab(p) ⊂
Sp(2g,Z). It is an immediate consequence of Theorem 1.2 (see Remark 3.7).

Let us mention that, by analogy with the fact that the level sets of the period map might
be disconnected in the universal cover of ΩMg, the morphism from the fundamental group
of a leaf to π1(ΩMg) – which is isomorphic to the mapping class group– has an image that
might be strictly contained in the stabilizer of its corresponding period. This is precisely
what happens in genus two (see Corollary 6.20).

A second application concerns the transfer principle: the map Perg is equivariant with
respect to the action of the covering group Sp(2g,Z) of π : ΩSg → ΩMg if we consider its action
on Hom(Z2g,C) by precomposition. This implies that to any Fg-saturated subsetB ⊂ ΩMg we
can associate the Sp(2g,Z)-invariant subset A = Perg(π

−1(B)) ⊂ Hg. Reciprocally, for each
Sp(2g,Z)-invariant subset A ⊂ Hg we can associate an Fg saturated subset B = π(Per−1

g (p)).
These correspondences are inverse one of the other if and only if the fibers of Perg over A are
connected. This correspondence is what allows to transfer properties of the Sp(2g,Z) action
on the homogeneous space (3) to properties of the isoperiodic foliation, and justifies the title
of the paper. It view of Theorem 1.2, the transfer principle can be applied on the complement
of the primitive degree two points of Hg. Using Ratner’s theory, we deduce the following

Theorem 1.5 (Dynamics of isoperiodic foliations). Let g > 2 and (C,ω) ∈ Ω∗Mg of volume

V = i
2

∫
ω ∧ ω and Λ the closure of the image of its periods. Then the closure of the leaf

L(C,ω) passing through (C,ω) is, up to the action of GL(2,R)

• (Λ is discrete) the component of Hurwitz space consisting of genus g primitive branched
coverings over (C/Λ, dz) of volume V .
• (Λ is R+iZ) the set of abelian differentials with periods contained in Λ, with primitive

imaginary part, and with volume V ,
• (Λ = C) the subset of ΩMg consisting of abelian differentials of volume V ,

If g = 2 the same statement holds, with an extra possibility occurring when ω is an eigenform
for real multiplication by a real quadratic order oD of discriminant D > 0. In this case the
closure is the Hilbert modular invariant submanifold ΩXD.

Moreover, the restriction of Fg to any of these real analytic subsets of ΩMg is ergodic with
respect to the Lebesgue class.
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Note in particular that this result classifies the algebraic leaves of the isoperiodic foliation:
the only closed leaves correspond to Hurwitz spaces and they are known to be algebraic.

1.3. Strategy of the proof of Theorem 1.2. McMullen proved that each fiber of the
period map- referred to as isoperiodic moduli space- embeds, via the Torelli map, in Siegel
space Sg. The image is a Zariski dense subset in a slice of the Schottky locus by a Siegel
space of lower genus Sg−1. In particular, in genus 2 or 3, he deduces that it is connected. In
higher genera, the complicated geometry of the Schottky locus makes it difficult to implement
this analytical approach.

Our strategy consists in analyzing the isoperiodic degenerations of abelian differentials to-
wards abelian differentials on nodal stable curves. We point out that we are merely interested
in degenerating the underlying curve, not the abelian differential (i.e. the form does not
degenerate to a zero form on any component). The first step of the proof is to prove that it is
always possible to find such degenerations. Adding the obtained nodal forms allows to define
a bordification of the isoperiodic moduli space, naturally stratified by the number of nodes of
the underlying curves. We prove that this stratification is locally homeomorphic to the pull
back by an infinite abelian covering of the stratification associated to a collection of normal
crossing divisors on a smooth manifold, ramifying along some components of the divisors. In
particular, the connectedness of the fiber is equivalent that of the bordification. For genus
at least four, we prove the connectedness of the boundary of a fiber that is not formed by
primitive double coverings of an elliptic differential by induction on the genus. This step is
essentially achieved by algebraic arguments that encode the combinatorics of the boundary
stratification.

As in other instances of this degeneration strategy – see [6, 7] for contemporary examples
with strata of differentials– the definition of the bordification requires a comprehensive theory.
In the present case the convenient ambient space is the augmented Torelli space, quotient of
the augmented Teichmüller space by the Torelli group. For lack of a comprehensive adapted
reference we include the theory in section 4 and a guideline for the proof in section 2.

1.4. Notes and references. Our strategy for the proof of the connectedness of the boundary
of a fiber of Per works for g ≥ 4 but leads to difficult algebraic problems due to Haupt’s
conditions when g = 2, 3. The description of the fibers as slices of Schottky space in those
cases, is crucial for the inductive argument to work.

The same type of difficulties were already present in the characterization of periods of
holomorphic forms on Riemann surfaces by Otto Haupt in [34], namely that those are the
periods satisfying Haupt’s conditions. Most of his work boiled down to treat the arithmetic
involved in the genus two case, caused by forms belonging to the Hilbert modular invariant
manifolds XD described above. From the point of view of slices of Schottky loci, the proof of
Haupt consists in finding, by elementary algebraic methods, a point in the intersection of the
slice with the boundary strata of Torelli space and then apply a surgery. We actually provide
a simpler proof of the result of Otto Haupt, which only differs by the remark that the genus
two case can be treated using the Torelli map. Torelli’s result (in [64]) was published two
years before his death, in 1913, shortly before the outbrake of World War One. We wonder
whether Haupt was aware of Torelli’s results.
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An alternative proof of the result of Otto Haupt with techniques that were completely out
of reach at his time was given by Misha Kapovich in [42]. Rather surprisingly, it relies on
Ergodic and Ratner’s theory.

The main observation of Kapovich is that the set of periods of holomorphic one forms on
homologically marked Riemann surfaces is invariant by the action of the integral symplectic
group. Its action on the period domain is homogeneous and can be studied through Ratner
theory. Our approach pushes the analysis of the period map a bit further to allow to transfer
properties of the action to properties of the foliation induced by the map.

At around the time our transfer principle was announced, Hamenstädt proved the ergodicity
of the isoperiodic foliation, with a different method. in [29]. She announced analogous results
for the intersection of the foliation with connected components of strata of abelian differentials
having a simple zero. Weiss and Chaika recently announced, at the Geometry and Dynamics
(online) seminar at TAU, a proof of the ergodicity of the isoperiodic foliation on any connected
component of any stratum by yet another method. They use recent ongoing research of
Eskin, Brown, Filip, Rodriguez-Hertz, etc. on generalizations of the ’Magic Wand Theorem’
of Eskin-Mirzakhani (see [24]).

The problem of connectedness of isoperiodic sets has been considered by several authors.
Martin Schmoll established in [61], among other things, connectedness of moduli spaces of
degree d coverings of a given elliptic curve.

Remark that the same statement fails at the level of the Torelli covering for genus at
least five and degree two, as stated in Theorem 3.3. We realized this fact after having pre-
published a first version of our work on the arXiv, stating erronously that those fibers were
also connected. Their disconnectedness can be established by generalizing to the context
of moduli spaces of double coverings over an elliptic curve a famous work of Arnold, who
observed that the inclusion of the hyperelliptic locus in the moduli space of genus g ≥ 3
curves is not surjective (to the integral symplectic group) at the homological level. See [4].

Fortunately, this exception did not fraud the whole (inductive!) argument, and constitute
the single exception of disconnected isoperiodic moduli spaces of abelian differentials.

A problem that arises naturally is the description of the connected components of the
intersection of the fibers of Per with the other strata and more generally the affine invari-
ant manifolds that have been brought to light in the work of Eskin and Mirzakhani [24].
Kontsevich and Zorich gave a description of the connected components of strata of abelian
differentials without any condition on the periods in [43]; they found cases with up to three
components. A direct application of our theorem shows that for generic period, the isope-
riodic sets in the stratum will have several components too. Another extreme example of
disconnected isoperiodic set: the intersection of a leaf of the isoperiodic foliation correspond-
ing to non-discrete periods with the minimal stratum forms an infinite discrete set. Such
phenomena were studied by McMullen in the genus two case [50].

The analogous approach using a transfer principle for studying the dynamical properties
of the isoperiodic foliation on strata can a priori be considered. There have been recent
advances in this direction that point towards understanding the dynamical properties that
could eventually be transferred: firstly that of determining the image of each stratum by the
period map, and secondly that of determining the monodromy representation, i.e. the image
of the symplectic representation of a connected component of a stratum. Concerning the
first, a clear obstruction in the case of elements of Hg,d is that the order at each branch point



A TRANSFER PRINCIPLE: FROM PERIODS TO ISOPERIODIC FOLIATIONS 7

cannot be larger than d− 1. In recent preprints [8], [44] the authors show that, together with
the positive volume condition, these are the only obstructions to realizing the periods in the
stratum. For the second, the monodromy in some connected components of strata has been
computed in recent works of Hamenstädt [30, 31] and Calderon and Salter [16, 17]. Recent
advances in the description and properties of the closure of strata in spaces of stable forms
were achieved by Bainbridge, Chen, Gendron, Grushevsky and Möller in [6, 7]. Nevertheless,
we point out that the techniques developed in this article do not seem to be enough to compute
the connected components of the fibers of the period map on a stratum. For the time being
it is unclear whether the transfer of properties to the isoperiodic foliation on a stratum can
be carried.

Some interesting recent works have established similar dynamical properties for the isope-
riodic foliations on strata and respectively on affine manifolds. The first contribution is by
Hooper-Weiss in [38]; they show that the leaf of the isoperiodic foliation of the Arnoux-Yoccoz
surface contained in the stratum H(g − 1, g − 1) is dense. We have been aware recently that
K. Winsor has proven that in case g = 3 such a leaf has inifinite genus. Also, Ygouf has
given an interesting criterion enabling to decide if leaves of isoperiodic foliation are dense in
certain affine invariant manifolds of rank one. The rank has been defined in the context of
affine manifolds by Wright as half of the codimension of the isoperiodic foliation [70].

We get a nice description of the isoperiodic foliation in the Hilbert invariant submanifolds
ΩXD of F2 after taking projectivisation. The foliation corresponds to the horizontal foliation
of the uniformization ofXD by the productH×H of two copies of the upper-half plane in C (see
[53]). In that paper McMullen describes precisely the GL+(2,R)-action after projectivization,
and finds some very interesting real analytic foliations by Riemann surfaces on XD, that are
not transversely holomorphic.

It follows from works of Calta (in [18]) and McMullen (in [53]) that the union of leaves of
F2 intersecting a closed GL+(2, R) -orbit in the minimal stratum H(2) has interestingly the
structure of a closed analytic subset in the generic stratum H(1, 1). In the problem paper
[40], Problem 12, the authors ask to what extent this phenomenon is general. Our theorem
shows that in the generic stratum it holds only for the closed leaves. The question remains
completely open in the other strata.

1.5. Organization of the paper. In section 3 we give the proof of the results that do
not need the bordification of spaces, and Theorem 1.5 as a consequence of Theorem 1.2. In
sections 4 to 8 we prove Theorem 1.2. Along the way, in section 6 we analyze isoperiodic sets
with one node and give a proof of Haupt‘s theorem. In the Appendix I (Section 9 we collect
the relevant proofs of the dynamical properties in [42] and extend it to the case of genus two.
In Appendix II and Appendix III we give the proofs of technical results needed along the
paper that are presumably well known, but for which we have not found specific reference.
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2. Detailed guideline for the proof of Theorem 1.2

The Deligne-Mumford-Knudsen orbifold (compact) bordification Mg,n of the moduli space
Mg,n of smooth genus g curves with n marked points by adding the moduli spaces of stable
genus g curves with n marked points. It is a compact orbifold in which the boundary forms
a normal crossing divisor. Each stratum of complex codimension k ≥ 0 of the divisor cor-
responds to a stratum of curves with k nodes. An intermediate (non-compact) bordification

Mg,n ⊂ M
c
g,n ⊂ Mg,n is obtained if we add the moduli spaces of stable curves of compact

type, i.e. only with separating nodes. Since the boundary has complex codimension one, it
cannot separate the total space.

The Hodge bundle can be naturally extended to the bundle ΩMg,n of holomorphic stable
forms. A stable form can be thought as a meromorphic form on each component of the
normalization of a stable curve, called a part, having at worst simple poles at the marked
points where they are glued and each pair of points that are glued have opposite residue. The
local isoperiodic equivalence relation can be naturally extended to ΩMg,n. As in the smooth
case, any stable form admits a non-trivial local isoperiodic deformation. However, the local
isoperiodic deformation space is not always a complex manifold, but rather a (possibly singular
) analytic set. For generic forms with zero components or residues at the nodes they are strictly
contained in the boundary. In each stratum the local isoperiodic deformation is parametrized
by a product of local isoperiodic deformations of the parts. In Section 4 we will prove that
the local space of isoperiodic deformations at a point of the subset Ω∗0Mg,n ⊂ ΩMg,n of stable
forms with zero residues at the nodes and no zero components is – at the level of the orbifold
chart– a smooth complex manifold transverse to each boundary component passing through
the point. This implies that the set of points in the local isoperiodic complex manifold that lie
on some boundary stratum of the ambient space form a normal crossing divisor. Furthermore
the local divisor has precisely one codimension one component for each boundary component
of ΩMg,n passing through the point. In particular the set of points lying on boundary strata
do not separate the isoperiodic local space in several components and are stratified by the
number of nodes in the underlying curves.

To bordify the fibers of the period map we need to consider the pull back of the bundle
of stable forms by the ramified cover Sg,n → Mg,n associated to the Torelli subgroup Ig,n.
This space can be realized as the quotient of Augmented Teichmüller space, and we call it
Augmented Torelli space. The structure and relevant properties of these spaces are detailed
in Section 4. We loose the manifold and holomorphic structure around the ramification locus,
but we still have a topological stratified space by complex manifolds that lifts the stratification
of the boundary divisor of Mg,n. The local projection has two properties that we will exploit:

over each local connected component of a stratum of the boundary divisor Mg,n it is an abelian
cover (hence a connected complex manifold of the same dimension). In particular, the open
stratum (the complement of the boundary strata) is locally connected around each point on
some boundary stratum, Moreover, as happens with the stratification of a normal crossing
divisor, every local stratum can be identified by the closures of the codimension one strata
where it belongs to or not. This last property is what allows to associate a natural simplicial
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complex C(Sg,n) to the boundary of Sg,n called the dual boundary complex. A vertex is
considered for each connected component of codimension one of the stratification, and among
k of them we attach a k − 1 simplex for each connected component of the intersection of
their closures. These simplices codify all possible connected components of the boundary
stratification.

The Hodge bundle ΩSg,n inherits the same boundary stratification by the number of nodes,

with each stratum having the same codimension as in Sg,n. A word of warning: this strati-
fication is not to be confused with the famous substratification given by the zero and polar
sets of the forms. The maximal isoperiodic deformation space on ΩSg,n is bordified by con-

sidering its closure in Ω∗0Sg,n. It coincides with the maximal isoperiodic deformation there.
The transversality of the local isoperiodic deformation space with the boundary components
show that we have a stratification of its boundary points by the number of nodes that has
similar local properties as ΩSg,n. In particular the set of boundary points does not locally
separate the isoperiodic space we can associate a similar simplicial complex to its boundary
stratification: a vertex for each connected component of the codimension one stratum and
a k − 1-simplex joining k vertices for each connected component of the intersection of the
closures of the components.

In Section 5 we will prove that any non-zero form in ΩSg can be isoperiodically deformed to

converge to a boundary point of the bordification Ω∗0Sg. The proof follows by finding families
of twin geodesics, that is, parallel geodesic paths of the singular metric defined by a non-zero
abelian differential, that start at a saddle point and have the same length. An appropriate
surgery along them– namely a Schiffer variation– provide a piece of the desired path in ΩSg.
For forms with a single zero these pairs of twins are found on the boundary of cylinders of
closed geodesics whose existence is guaranteed by Masur’s Annulus Theorem (see [47]).

To prove the connectedness of the bordification of a period fiber we just need to connect
all boundary points by isoperiodic deformations. An isoperiodic deformation in a boundary
stratum of Ω∗0Sg can be thought as a product of isoperiodic deformations of forms on Ω∗Sh,n
with h < g. This is how we will use the inductive hypothesis to reduce the proof of the
connectedness of the boundary to a combinatorial algebraic problem that we describe next.

Given p ∈ Hg, we consider the dual boundary complex Gp of the bordification of Per−1(p)

in Ω∗0Sg. The definition of the stratifications allow to define a simplicial continuous map

(5) Gp → C(Sg)

that associates to each connected component of the boundary stratum of codimension one of
the isoperiodic set, the component of the stratum of codimension one of the ambient space
where it sits. It extends to simplices in the natural way thanks to the transversality of the
local isoperiodic deformation space with boundary components. Its image tells us which
components of boundary strata of Sg admit forms of periods p without zero components.

In Section 6 we describe all vertices in the image of (5) by characterizing them algebraically
as follows: Sg can be thought as the quotient of augmented Teichmüller space quotiented by
the Torelli group Ig. For this cover the complex is the so called curve complex Cg of a surface
of genus g, introduced by Harvey in [35] (see (see [25, Chapter 4.1] for further details). It has
a vertex for each homotopy class of essential simple closed curve on a genus g surface and a
k − 1 simplex joining k given vertices if the corresponding classes can be realized disjointly
by simple closed curves. The subcomplex generated by separating curves is denoted by C

sep
g .
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The mapping class group of the surface with marked points at the punctures acts naturally
on both complexes and we have

C(Sg) ' Cg/Ig and C(S
c
g) ' Csep

g /Ig

The vertex of Cg/Ig corresponding to a Torelli class of a simple closed curve c is char-
acterized either by the primitive rank one submodule Z[c] in the first homology group of
the surface Z2g if this class in non-trivial, or by a splitting of Z2g = V1 ⊕ V2 into a direct
sum of orthogonal symplectic submodules otherwise (i.e. c is separating). Some simplexes
connecting those vertices can be identified by simply using this algebraic information. As
an instance, a splitting of Z2g into three factors V1 ⊕ V2 ⊕ V3 that are pairwise orthogonal
symplectic submodules, allows to construct a marked stable curve with two separating nodes
that induces the given splitting. It determines at least an edge in Cg/Ig joining the vertex

V1 ⊕ V ⊥1 and the one corresponding to V ⊥3 ⊕ V3.

A vertex of non-separating type lies in the image of (5) if and only if [c] ∈ ker p \ 0 and the
map induced by p on [c]⊥/Z[c] is the period of some non-zero abelian differential on a smooth
curve. We say that [c] is pinched by p. A vertex of the second type belongs the image of (5)
if and only if p|Vi is the period of some non-zero abelian differential on a smooth curve for
i = 1, 2. We say that V1⊕V2 is a p-admissible decomposition. Haupt conditions is what allows
to algebrize the problem, even for other simplexes. We will exploit the following dichotomy
to identify vertices: either the image of p has large rank – and we can identify enough p-
admissible splittings — or p has large kernel – and we can find enough classes pinched by
p.

In Section 7 we find, by using normalization of the node, a homeomorphism of the isope-
riodic set of period p in a boundary component of ΩSg of codimension one with a product of
isoperiodic sets of forms (with marked points!) on lower genera. Using the inductive hypoth-
esis and the cases of genera two and three it allows to determine a family of codimension one
boundary components of Ω∗0Sg (or vertices of Cg/Ig), called p-simple, that contain a single
isoperiodic connected component of period p ( i.e. have a single vertex in the preimage by
(5)).

When p is injective every boundary stratum of codimension one of ΩSg has at most one
isoperiodic component of period p. In fact, all boundary points of Per−1(p) are of compact
type, the bordification is a complex manifold and the boundary a normal crossing divisor in it
whose dual complex is Gp. On the other hand, in subsection 8.1 we prove the connectedness of
the image of (5) which actually lies in C

sep
g /Ig by analyzing the problem in terms of splittings

and the volumes of the parts Haupt’s conditions on the factors of a splitting are reduced to
a condition on the volume in this case.

When p is not injective, it is not always true that the boundary divisor of compact type
is connected. Examples can be constructed in high genus by taking stable curves with one
separating node that have double covers over distinct elliptic curves on each side. When
they are double covers of the same elliptic curve and the total degree is two, the curve has
necessarily genus two. This is due to the fact that the sum of the degrees is at most two, and
the degree of each part is at least one. Therefore both parts have genus one. Hence the need
of introducing the boundary components of non-compact type.

Whenever deg(p) ≥ 3, we show that the restriction of (5) to a subcomplex G′p of Gp spanned
by simple vertices has connected image. Here we need to deal with both of Haupt’s conditions.
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On the other hand, non-simple vertices of Gp are always related to degree two coverings of
elliptic curves and can be isoperiodically degenerated to pinch enough different non-separating
curves to be able to connect them to some p-simple component of the boundary. This implies
that Gp is connected finishing the proof of the inductive step of Theorem 1.2.

The boundary components of ΩSg with precisely one non-separating node play a funda-
mental role in the proof of the general case. One of the main technical difficulties of the paper
is to control the number of connected components of the intersection of one of them with the
closure of a fiber of Per−1(p). This is done in Section 7. Here we use once again the bordifi-
cation strategy, but this time we need to add some strata of the boundary of ΩSg where the
forms of period p ∈ Hg have zero components –of genus one– and where the local isperiodic
deformations have, potentially, wilder singularities. The bordification is best described by
normalizing the non-separating node. It is carried in subsections 4.11 and 4.20.

q r

b

normalize node

attach q to r

b'

genus g with one node genus g-1 smooth curve with two marked points

Figure 1. The closed cycle b becomes a relative homology class b′ after normalization

The normalization map – normalizing the nonseparating node– sends the given set home-
omorphically to a subset of ΩSg−1,2 that lies in a fiber F of the composition

(6) ΩSg−1,2
For→ ΩSg−1

Perg−1−→ Hg−1.

In fact this subset is precisely an analytic hypersurface of F , defined by the zeros of a
holomorphic function

h : ΩSg−1,2 → C
also given by integration– on a relative cycle joining the two marked points as b′ in Figure
1. The map h extends holomorphically to the Hodge bundle over a smooth bordification
Ug−1,2 ⊂ Sg−1,2 of Sg−1,2 described in subsection 4.11. There is a particular isoperiodic
deformation in ΩSg−1,2 that consists in fixing the underlying marked form (C,m, ω) on a
smooth genus g − 1 curve and moving the marked points in C by preserving the value of the
integral along the class b′. If this integral lies in the image of the periods of ω it might happen
that both marked points tend to the same point q in C along the isoperiodic deformation.
We are then approaching a point in a boundary stratum of ΩS

c
g−1,2 whose normalization has

a zero component of genus zero with three marked points that is glued to (C,m, ω) at a point
q ∈ C where ω(q) = 0 (see Figure 2 for a representation). Those are the boundary points
we add to bordify the isoperiodic set (in subsection 4.11). Each of them has singular local
isoperiodic deformation space (see subsection 4.20). Indeed, by varying the point of gluing
in the neighbourhood of q we obtain another isoperiodic deformation lying on the boundary.
However, as the zeros of ω are isolated, the neighbouring isoperiodic boundary points do not
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Figure 2. Example of a (singular) point of normal crossing of two regular
local isoperiodic components in ΩU2,2: the marked points lie in a zero com-
ponent of genus zero that is glued to a simple isolated zero of a genus two
component.

have local isoperiodic deformations that leave the boundary. We will need to consider those
isoperiodic boundary components to deduce the connectedness of the bordification too.

The problem of relating the topology of a space with that of a hypersurface in it is rem-
iniscient of Lefschetz hyperplane section Theorem. In the present context the lack of an
algebraic setting for F and h do not allow to use it directly. However, an application of
Simpson’s Theorem in [62] –a generalization of Lefschetz theorem for functions defined via
integration of a holomorphic one-form– we prove that the hypersurface defined by h on the
generic (two dimensional) fiber of the forgetful map ΩS

c
g−1,2 → ΩSg−1 is connected. Moreover

it is a nodal curve whose singular points lie in the boundary and have a local irreducible
component completely contained in the boundary and the other transverse to the boundary.
Each of those nodal points corresponds the stable forms with a zero component defined above.
When the fiber F of the map (6) is over a homomorphism of degree at least three, we can
use the inductive hypothesis and the fibration For to deduce that the constructed bordifi-
cation is contained in a connected analytic set in ΩS

c
g−1,2 having possibly some additional

smooth irreducible components contained in the boundary. The intersection of each of those
boundary components with the other components can be parametrized by a set of isoperiodic
forms of genus g − 1 with a marked simple zero. By analyzing how the zeros of a form can
be permuted in the isoperiodic set we deduce that this intersection is connected. This allows
to take the boundary irreducible components one by one without changing the total number
of connected components, to deduce that the fiber of h in F is connected.

3. The period map on the Hodge bundle over Torelli space

3.1. Torelli map and period fibers. Fix a reference closed connected and oriented surface
Σg of genus g with n ≥ 0 ordered marked points Σg,n = (Σg, q1, . . . , qn). A homotopical
marking of a smooth genus g compact complex curve C with n pairwise distinct ordered
marked points, P = (p1, . . . , pn) is a homeomorphism f : Σg,n → (C,P ) sending qi to pi. Two
such markings f, f ′ of (C,P ) and (C ′, P ′) are equivalent if there exists a biholomorphism



A TRANSFER PRINCIPLE: FROM PERIODS TO ISOPERIODIC FOLIATIONS 13

ϕ : (C,P )→ (C ′, P ′) such that ϕ ◦ f is isotopic to f ′. The Teichmüller space Tg,n = T(Σg,n)
for (g, n) satisfying k = 3g − 3 + n > 0 is the set of equivalence classes of homotopically
marked genus g smooth complex curves with n ordered distinct points endowed with the
Teichmüller topology, i.e. the weakest topology for which the length function associated to
a homotopy class of closed curve on Σg,n is continuous. A point in Tg,n will be denoted by
[f : Σg,n → (C,P )].

The mapping class group of Σg,n is the group Mod(Σg,n) of isotopy classes of orientation
preserving diffeomorphisms that fix each marked point. It acts on Tg,n by precomposition on
the marking.

Bers ([13], Section 16) showed that whenever k > 0, the space Tg,n can be embedded in

Ck as a bounded open domain, inheriting a complex structure. Following Ahlfors [2], this
complex structure is the only over the given topology for which the coordinate functions of
the period matrices of curves depend holomorphically on the curve. In more detail, given a
symplectic basis a1, b1, . . . , ag, bg of H1(Σg,Z) (i.e. the only non-zero products of the cycles
are ai · bi = 1 and bi · ai = −1) we can choose, for each marked curve f : Σg,n → (C,P ) of
genus g the unique basis ω1, . . . , ωg of Ω(C) such that∫

f∗ai

ωj = δij .

The maps τij : Tg,n → C defined by

(7) τij [f : Σg,n → (C,P )] =

∫
f∗bi

ωj

are well defined and holomorphic. Let Sg denote the Siegel space of genus g, i.e. the set
of symmetric g × g matrices with complex entries whose imaginary part is positive definite.
Riemann showed that the squared matrix of functions (τij) defines a holomorphic map Tg,n →
Sg that is invariant by the action of the Torelli group Ig,n, kernel of the representation

Mod(Σg,n)→ Aut(H1(Σg, q1, . . . , qn,Z)).

It induces the Torelli map on the Torelli space Sg,n := Tg,n/Ig,n,

(8) Sg,n → Sg.

In the case of n = 0 it was shown to be injective by Torelli([64]). Each point in Sg,n is charac-
terized by a triple (C,P, f∗) where f∗ is the isomorphism induced by f in homology. Therefore
we will denote a point in Sg,n simply as (C, p1, . . . , pn,m) where m : H1(Σg, q1, . . . , qn,Z) →
H1(C, p1, . . . , pn,Z) is an isomorphism. The quotient Tg,n/Mod(Σg,n) is the moduli space
Mg,n of genus g curves with n marked points and the holomorphic structure induces an orb-
ifold structure on Mg,n. The Hodge bundle is a holomorphic vector bundle ΩMg,n → Mg,n

whose fiber over a point (C,P ) is the set of abelian differentials ω ∈ Ω(C). It can be pulled
back to a holomorphic bundle ΩSg,n → Sg,n.

Definition 3.1. The period map on ΩSg,n is the holomorphic map

Perg,n : ΩSg,n → Hom(H1(Σg, q1, . . . , qn,Z),C)

defined by Perg,n(C, p1, . . . , pn,m, ω) = {γ 7→
∫
m(γ) ω}. When n = 0 we write Perg = Perg,0.

When there is no risk of confusion we omit all subindices and write Per.
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For instance given a homomorphism p : H1(Σg, q1, . . . , qn,Z)→ C we denote Per−1(p) the
fiber of Perg,n over p.

Multiplying forms by a non-zero constant induces a biholomorphism between fibers of
Perg,n.

In the case n = 0 the properties of the Torelli map and of the intersection form in H1(Σg,Z)
have a nice consequence:

Theorem 3.2. [50] Let g ≥ 2 and p : H1(Σg,Z) → C be a homomorphism with vol(p) > 0.
Then Per−1

g (p) is biholomorphic to the intersection of a linear Siegel space Sg−1 ⊂ Sg and
the image of the Torelli map – the so-called Schottky locus.–

Proof. We take the choices and notations of the definition of (7). Let (C,m, ω) ∈ Per−1(p).
Its expression in the chosen basis reads ω = p(a1)ω1+. . .+p(ag)ωg and the following equations
are satisfied:

(9) mij = τij(C,m) for i, j = 1, . . . , g

(10) p(bi) = p(a1)mi1 + . . .+ p(ag)mig for i = 1, . . . , g.

A point Z = (mij) ∈ Sg that satisfies (9) is said to belong to the Schottky locus in Sg.
If it furthermore satisfies (10), then ω :=

∑
p(aj)ωj is the unique abelian differential on

(C,m) having periods p. This proves that Per−1(p) is biholomorphic to the intersection of
the Schottky locus with the set of solutions of (10).

It remains to show that the condition vol(p) > 0 implies that the set of all solutions
Z = (mij) ∈ Sg of (10) (that we call the set of matrices that admit p as a period) is
biholomorphic to Sg−1. Up to multiplying all forms in Per−1(p) by a constant we can suppose
that all forms have volume one, i.e. vol(p) = 1.

The symplectic automorphism group of H1(Σg,R) acts on Siegel space (by changing the
marking) . Direct calculation shows that, writing T ∈ Sp(2g,R) in the basis {ai, bi} as block
g × g real matrices with two lines A,B and C,D the action is defined by

Z ′ = T ? Z = (AZ +B)(CZ +D)−1.

Moreover denoting pR : H1(Σg,R) → C the natural extension of p : H1(Σg,Z)) → C, the
given action preserves the condition pR is a period of the matrix.

By definition, <(pR) · =(pR) = <(p) · =(p) = vol(p) = 1. On the other hand, by duality
there exist elements a1, b1 ∈ H1(Σg,R) such that a1 · b1 = 1, a∗1 = <pR and b∗1 = =pR. Now,
ker pR = ker<(pR)∩ker=pR and contains the rank 2g−2 symplectic orthogonal of Ra1⊕Rb1.
We deduce ker p is symplectic of rank 2g − 2. Choose a symplectic basis a2, b2, . . . , ag, bg of
ker pR. The matrix in Siegel space associated to the real basis {ai, bi} has two diagonal blocks:
1 ∈ C and a matrix in Sg−1. Every such matrix admits pR as period, trivially. Therefore the
set of solutions of (10) is also a linear Siegel subspace Sg−1 ⊂ Sg. �

Theorem 3.3. Let g = 2, 3 and p ∈ H1(Σg,C) with vol(p) > 0 and deg(p) > 1. Then
Per−1(p) is non-empty and connected.

Proof. The Schottky locus is Zariski dense in Sg for g = 2, 3. Its complement corresponds
to period matrices of curves of compact type. By Theorem 3.2 we have that Per−1(p) is
biholomorphic to a Zariski open set of Sg−1, hence connected.
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Suppose Per−1(p) is empty. Then, the linear subspace of Theorem 3.2 is completely con-
tained in the complement of the Schottky locus. The same construction of forms of the proof
of Theorem 3.2 (solutions of (9) and (10)) can be carried on Jacobians of curves of compact
type to construct stable forms of periods p.

From a stable form of compact type that has no zero component we can obtain a form on
a smooth curve having the same periods. Indeed by taking parallel slits instead of points to
glue the different components we smoothen the curve, without changing the period map.

If g = 2, the curve has two components of genus one and we know that one of the compo-
nents of the form is zero. This implies deg(p) = 1. A contradiction.

If g = 3 the curve has either a part of genus two and a part of genus one or three parts
of genus one and the stable form is zero in one of the parts. If it it is zero on a genus two
part, it implies deg(p) = 1, contrary to assumption. If it is zero in just one part of genus
one we can suppose that we have a form ω 6= 0 on a smooth curve of genus two. It has at
least one zero z1. Consider the local map z 7→

∫ z
z1
ω and the pre-image γ of a small segment

[0, ε]. It is a path with distinct endpoints satisfying
∫
γ ω = 0. Gluing the endpoints produces

a stable form on a curve that is not of compact type. If we take parallel slits at the endpoints
instead, the gluing produces a stable form on a smooth curve of genus three. Marking the
curve appropriately we obtain that its period is p . A contradiction. �

For g ≥ 4 the image of the Torelli map is an analytic set of positive codimension (as an easy
dimension count shows) and determining it is known as the Schottky problem. In fact, as
stated in Theorem 1.3, there are some of the intersections given by Theorem 3.2 that will not
be connected. As for the non-emptiness of the fiber of Per over points of positive volume and
primitive degree at least two, we will show inductively that they can be realized as period of a
stable form without zero components as in the proof of Theorem 3.3 and apply the surgeries.
These surgeries will be extensively developed in Section 5 to produce continuous isoperiodic
deformations of stable forms.

3.2. Strata of holomorphic forms on smooth curves and isoperiodic foliations. It
is well known that the spaces Ω∗Mg,n and Ω∗Sg,n are stratified by the properties of the zero
sets of forms. Two points (C,P, ω), (C ′, P ′, ω′) lie in the same stratum if there exists a
homeomorphism (C,P ) → (C ′, P ′) sending the zero divisor (ω) to the zero divisor (ω′). In
other words, each marked point is sent to a marked point, each zero to a zero, and the orders
of the zeros are preserved. The generic stratum ΩSZSg,n is formed by forms with (2g − 2)
simple zeros, none of which is a marked point. The minimal stratum ΩSg,n(2g− 2) is formed
by abelian differentials with a single zero (at some marked point if there are any). Veech
([65]) and Masur ([49]) showed that there are local holomorphic coordinates defined on the
stratum of a point (C,P, ω), with coordinates in

Hom(H1(C,Z(ω) ∪ P,Z),C),

defined by integration. As a consequence, the period map restricted to any stratum is a
linear projection in the coordinates, and is therefore submersive and open. This implies
that the fibers of the map Perg,n are regular and transverse to all strata different from the
generic stratum. In particular, in restriction to ΩSg,n(2g − 2), the map Perg,n is a local
biholomorphism. On the other hand it also proves that the restriction of the map Perg,n to
each stratum of stable forms defines a regular holomorphic foliation of codimension 2g.
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The natural action of Mod(Σg,n) on ΩSg,n preserves each stratum, and the map Perg,n is
equivariant with respect to the corresponding action on Hom(H1(Σg, q1, . . . , qn;Z),C).

Definition 3.4. The regular foliation induced by Perg,n on Ω∗Sg,n (and its restriction to
each stratum) descends to Ω∗Mg,n as a regular holomorphic foliation called the isoperiodic
foliation and denoted Fg,n (or Fg = Fg,0 when there are no marked points).

If L ⊂ ΩMg is the leaf of Fg corresponding to the periods p ∈ Hg, the restriction of the
Torelli cover to the fiber

(11) Per−1(p)→ L

is a Galois covering. We can give some information about the covering group.

Definition 3.5. Given a symplectic module M over a ring and a homomorphism p : M → C,
the stabilizer of p is the subgroup of the group of symplectic automorphisms of M defined by

Stab(p) = {h ∈ Aut(M) : p ◦ h = p}
When we want to stress the group it sits in we denote it StabAut(M)(p).

Remark 3.6. Let p = Per(C,m, ω) be the period map of a marked abelian differential
(C,m, ω) ∈ ΩSg,0. Then the group Stab(p) also stabilizes the fiber Per−1(p). The isotopy
class of a Dehn twist around any simple closed curve in C defining a primitive element
a ∈ ker p \ 0, induces a non-trivial element δa ∈ Stab(p) whose action fixes no point.

Remark 3.7. The covering group of the map (11) is Stab(p). In particular, if Per−1(p) is
connected, the image of π1(L) in Sp(2g,Z) is precisely Stab(p), which is non-trivial as soon
as ker(p) 6= 0.

3.3. Disconnected fibers: proof of Theorem 1.3. Let p ∈ Hg with deg p = 2. We will
define an invariant that is constant on each component of Per−1(p). On the other hand we
will prove that if g ≥ 5, the stabilizer of p in the symplectic group Aut(H1(Σg,Z)) is large
enough to guarantee that the invariant takes at least two values on any orbit of its action on
Per−1(p).

Consider the elliptic curve E := C/Im(p). To any (C,m, ω) ∈ Per−1(p) we can associate
a double branched covering π : C → E defined as the integral of ω based at some point. It
is well-defined up to post composition by a translation in E. Denote by C(π) (resp. V C(π))
the set of critical points (resp. critical values) of π.

As observed by Arnold, see [4], the map π∗ : H1(C \C(π),Z/2Z)→ H1(E \ V C(π),Z/2Z)
extends as a homomorphism

(12) Π : H1(C,Z/2Z)→ H1(E \ V C(π),Z/2Z).

This is due to the fact that any cycle turning once around a critical point of π is mapped
to a cycle turning twice around a critical value of π. The image of Π is the kernel of the
monodromy representation ε : H1(E \ V C(π0),Z/2Z)→ Z/2Z of the covering π.

To define an invariant that does not depend on the choices made so far, we need to choose
a reference for the homology and the critical values. Fix a reference subset V C0 ⊂ E of
cardinality 2g − 2. There exists a homeomorphism ϕ of E sending V C(π) to V C0, that is
homotopic to the identity. Two such choices differ by post-composition by an element of the
braid group of the pair (E, V C0). We define Arnold’s invariant of (C,m, ω) as the map

Ar(C,m, ω) := ϕ∗ ◦Π ◦m ∈ Hom(H1(Σg,Z/2Z), H1(E \ V C0,Z/2Z))/G,
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where ϕ∗ : H1(E \ V C(π),Z/2Z) → H1(E \ V C0,Z/2Z) is the natural map induced by
ϕ, and where G ⊂ Aut(H1(E \ V C0,Z/2Z)) is the image of the natural representation of
the braid group of the pair (E, V C0) in the homology group H1(E \ V C0,Z/2Z), acting on
Hom(H1(Σg,Z/2Z), H1(E \ V C0,Z/2Z)) by post-composition. By construction the Arnold
invariant is constant on every connected component of Per−1(p).

The group Aut(H1(Σg,Z/2Z)) of linear automorphisms preserving the symplectic structure
acts on Hom(H1(Σg,Z/2Z), H1(E \ V C0,Z/2Z))/G by precomposition. Now, if the image of
the stabilizer of p in Aut(H1(Σg,Z)) by the mod 2 reduction homomorphism

Aut(H1(Σg,Z))→ Aut(H1(Σg,Z/2Z))

does not stabilize the Arnold invariant of an element, it means that there are at least two
values of the invariant in the orbit. We will compare the sizes of the stabilizer and the image
to conclude.

Lemma 3.8. For any (C,m, ω) ∈ Per−1(p) the stabilizer of Ar(C,m, ω) in Aut(H1(Σg,Z/2Z))
has order at most 24g−5(2g − 2)!, i.e.

|StabAut(H1(Σg ,Z/2Z))(Ar(C,m, ω))| ≤ 24g−5(2g − 2)!

Proof. Let ϕ be a homeomorphism of E sending V C(π) to V C0, that is homotopic to the
identity, and define A := ϕ∗ ◦Π ◦m, where ϕ∗ : H1(E \ V C(π);Z/2Z)→ H1(E \ V C0,Z/2Z)
is the map induced by ϕ on homology. The Arnold’s invariant is the class of A modulo
post composition by an element of G. We need to count the number of elements M ∈
Aut(H1(Σg,Z/2Z)) such that there exists an element g ∈ G satisfying

A ◦M = g ◦A.

The map g preserves the image of A, and g|Im(A) is determined by M . So we have a
well-defined representation

ρ : StabAut(H1(Σg ,Z/2Z))(A)→ End(Im(A)) given by ρ(M) := g|Im(A).

To bound the cardinality of StabAut(H1(Σg ,Z/2Z))(A) we proceed to bound the cardinality of
the image and kernel of ρ.

To bound the cardinality of the image of ρ, let us analyze the action of G on H1(E \
V C0,Z/2Z). Consider the natural map i∗ : H1(E \ V C0,Z/2Z) → H1(E,Z/2Z) given by
the inclusion. Its kernel can be identified with the space (⊕v∈CV0(Z/2Z)v) /(Z/2Z)σ, with
σ =

∑
v∈CV0 v, where v ∈ CV0 corresponds to the cycle turning once around v. We have the

exact sequence

(13) 0→ (⊕v∈CV0(Z/2Z)v) /(Z/2Z)σ → H1(E \ V C0,Z/2Z)
i∗→ H1(E,Z/2Z)→ 0.

The group G preserves ker i∗ and acts on it by permutations. Moreover, it acts trivially on the
quotient H1(E \ V C0,Z/2Z)/ ker i∗ ' H1(E,Z/2Z) because any element of the braid group
is isotopic to the identity once marked points are forgotten.

Since the image of Π is the kernel of the monodromy representation of the branched covering
π : C → E, the subspace Im(A) ⊂ H1(E\V C0,Z/2Z) is a hyperplane, whose intersection with
ker i∗ is the (2g−4)-dimensional vector space ker i∗∩(Im(A)) '

(
⊕v∈CV(π)(Z/2Z)v

)even
/(Z/2Z)σ
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(i.e. the formal sums of an even number of critical values of π). Moreover, i∗(Im(A)) =
H1(E,Z/2Z). So the exact sequence (13) induces an exact sequence

(14) 0→ (⊕v∈CV0(Z/2Z)v)even /(Z/2Z)σ → Im(A)
i∗→ H1(E,Z/2Z)→ 0.,

which is invariant by ρ, the action of this latter on the left-hand module being made by
permutations.

Since the group of automorphisms of the exact sequence (14) acting on its left hand side

by permutations has cardinality at most (2g − 2)!× 22(2g−4), we get the bound

(15) |Im(ρ)| ≤ (2g − 2)!× 22(2g−4).

Let us now bound the number of elements of the kernel of ρ. Let M ∈ ker(ρ), which means
that A ◦M = A. Write M = I + ψ where ψ : H1(Σg,Z/2Z)→ ker(A).

Claim: ker(A) is a two-dimensional isotropic subspace of H1(Σg,Z/2Z).

Proof of the claim. From [10] we deduce that, up to composition by homeomorphisms in
source and target, there is only one double branched covering from a genus g closed oriented
connected surface to E. It is therefore sufficient to verify the statement on an example that
we depict in Figure 3.

180◦

ag

bg

ag−1

bg−1

Figure 3. Example of double cover with bi-dimensional isotropic kerA

First we construct a 2 : 1 branched covering π′ : Σ′ → P1 on a connected closed oriented sur-
face of genus g−2, whose associated Arnold’s map A′ : H1(Σ′,Z/2Z)→ H1(P1\V C(π′),Z/2Z)
is injective. Let z1, z2, . . . , z2g−2 ∈ P1 be distinct points in the Riemann sphere, and let
I0, . . . , Ig−2 ⊂ P1 be pairwise disjoint segments, such that ∂Ik = {z2k+1, z2k+2}. Slit two
copies of P1 \ (∪kIk) and glue them together by the usual rule: the right side of Ik in one
copy is glued to the left side of Ik in the second, and vice versa. We get a branched double
cover π′ : Σ′ → P1 whose critical values are the zk’s. We let α1, . . . , αg−2 be simple closed
curves that are boundaries of small neighborhoods of the Ik’s. Let {Jk}k=1,...,g−2 be a disjoint
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family of embedded segments in the Riemann sphere, the boundary of Jk intersecting the
union ∪Il only in its extremities z2k and z2k+1. We denote by βk the boundary of a small
neighborhood of Jk. The curves α1, β1, . . . , αg−2, βg−2 lift to curves a′1, b

′
1, . . . , a

′
g−2, b

′
g−2 ⊂ Σ′

forming a symplectic basis of Σ′. Notice that the homology of P1 \ {z1, . . . , z2g−2} with coef-
ficients in Z/2Z is generated by the cycles associated to small simple closed curves c′k turning
around zk, the only relation being that the sum of these cycles is zero. By construction we
have A′(a′k) = c′2k+1 + c′2k+2 and A′(b′k) = c′2k + c′2k+1. From this we easily prove that A′ is
injective.

Now, take an open disc ∆ in the Riemann sphere that contains the union of the intervals
Ik and Jk, and the curves αk, βk, ck, for k = 1, . . . , g. The surface Σ \ (π′)−1(∆) is a union of
two discs corresponding to lifts of P1 \∆. Consider a torus E, and an embedding i : ∆→ E.
Attach to (π′)−1(∆) two copies of E\i(∆) along the identification of their boundaries given by
the maps i and π. We get a surface Σ of genus g, and a branched covering π : Σ→ E defined
by π′ in (π′)−1(∆) and by the natural identification of the two components of Σ \ (π′)−1(∆)
with E \ i(∆). Denoting by α, β ⊂ E oriented simple closed curves that do not intersect
i(∆) and that form a symplectic basis of H1(E,Z), we let ag−1, bg−1 ⊂ Σ and ag, bg ⊂ Σ the
corresponding cycles in the two copies of E \ i(∆). We denote by a1, b1, . . . , ag−2, bg−2 ⊂ Σ
the simple closed curves equal to the curves a′1, b

′
1, . . . , a

′
g−2, b

′
g−2 in (π′)−1(∆). The cycles

a1, b1, . . . , ag, bg in H1(Σ,Z/2Z) form a symplectic basis, and we have

A(ak) = c2k+1 + c2k+2, A(bk) = c2k + c2k+1 if k ≤ g − 2

and
A(ag−1) = A(ag) = a,A(bg−1) = A(bg) = b,

where, in these formula, we denote by ck = i(c′k). The kernel of A is then the space generated
by ag−1 − ag and bg−1 − bg, which is isotropic modulo 2. The claim follows. �

Since M is symplectic and kerA isotropic of dimension two, ψ satisfies ψ + ψ∗ = 0, and
induces an anti-symmetric map H1(Σg,Z/2Z)/ker(A)⊥ → ker(A) (here the anti-symmetric

character is relative to the natural duality between ker(A) and H1(Σg,Z/2Z)/ker(A)⊥ given
by the intersection form). Since ker(A) is two dimensional, there is a 3-dimensional space of
such maps ψ over Z/2Z. In particular, we have

(16) |ker(ρ)| ≤ 23.

The lemma follows immediately from bounds (15) and (16). �

We denote by p[2] the reduction of p modulo two, namely the map

(17) p[2] : H1(Σg,Z/2Z)→ Im(p)/2Im(p) ' H1(E,Z/2Z).

More geometrically, for an element (C,m, ω) ∈ Per−1(p), we have p[2] = i∗ ◦ϕ∗ ◦Π◦m, where
i∗ : H1(E \ V C0,Z/2Z)→ H1(E,Z/2Z) is the map induced by inclusion.

To conclude the proof of Theorem 1.3, we use an algebraic result whose proof can be found
in Appendix II (see section 10).

Lemma 3.9. If g ≥ 3, the image of the mod 2 reduction map

StabAut(H1(Σg ,Z))(p)→ Aut(H1(Σg,Z/2Z))

is StabAut(H1(Σg ,Z/2Z))(p[2]). Its cardinality is 22g−2× 22g−3× (22g−4− 1)× 22g−5× . . .× (22−
1)× 2.
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The combination of Lemma 3.8 and Lemma 3.9 show that Arnold’s invariant takes at least

22g−2 × 22g−3 × (22g−4 − 1)× 22g−5 × . . .× (22 − 1)× 2

24g−5(2g − 2)!

distinct values on any orbit of StabAut(H1(Σg ,Z))(p) in Per−1(p). This number is strictly larger
than 1 if g ≥ 5, hence the proof of Theorem 1.3 is complete.

In the case of genus g = 4, a more detailed study allows to show that the Arnold’s invariant
takes only one value on the isoperiodic spaces of degree two (and actually, realizes another
instance of the exceptional isomorphism between Sp(4,Z/2Z) and S6). It is plausible that
these isoperiodic sets are connected indeed, but we could not prove it by using this invariant.

3.4. Dynamics of the action of Sp(2g,Z) on Hg. In this subsection, we state the extension
of the analysis of the linear action of Γ = Sp(2g,Z) on the set of periods of positive volume,
that were presented by Kapovich in [42] for the cases g ≥ 3 to the case of genus g = 2. For
the sake of completeness we include the proof in Appendix I (see section 9). This will enable
us to derive Theorem 1.5 from Theorem 1.2.

The closure of the orbit of a period p depends heavily on the rationality properties of the
real two dimensional symplectic subspace

(18) W = R<p+ R=p ⊂ R2g

defined over smaller fields. Except for the case where W is defined over a quadratic field and
W σ = W⊥ for the Galois involution, the different cases can be characterized by the dimension
of the maximal subspace of W defined over the rationals. This dimension can also be detected
by the topological properties of the closure of the Z-submodule Λ(p) of C generated by the
entries of p ∈ C2g. It is two if Λ(p) is discrete, one if it is isomorphic to R+ iZ and zero if it
is dense. Notice that this submodule is invariant under the action of Γ on X. The different
possibilities in Theorem 1.5 arise from this analysis at the level of this submodule. We resume
the analysis in the following

Proposition 3.10. Assume g > 2. For any p ∈ C2g of positive volume, we have the tri-
chotomy for W = R<p+ R=p

• W is defined over Q. In this case, Λ(p) is discrete and either p is the period of a finite
branched covering of the elliptic differential (C/Λ(p), dz) or it is a collapse of g − 1
handles. The set Γ · p is the set of periods q ∈ C2g of volume V (q) = V (p) such that
Λ(q) = Λ(p).
• W is not rational but contains a rational line. In this case, up to the action of

GL(2,R), the set Λ(p) is R + iZ, and Γ · p is the set of periods q ∈ C2g of volume
V (q) = V (p) whose imaginary part are integer valued and primitive.

• W does not contain any rational subspace of positive dimension. In this case, Λ(p) =
C, and Γ · p is the set of periods q ∈ C2g such that V (q) = V (p).

In genus g = 2, there is another possibility:

• W is defined over a quadratic field K, and W⊥ = W σ, where σ is the Galois involution
of K. In this case Γ · p is the set of periods q which differ from p by post-composition
by an element of GL(2,R), and by pre-composition by an element of Sp(4,Z).

In any case, the action of Γ is ergodic in Γ · p.
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3.5. Proof of (Theorem 1.2)g ⇒(Theorem 1.5)g. We suppose that we know that Theo-
rem 1.2 is true for some genus g ≥ 2 and hence by the Transfer Principle, invariant sets of the
isoperiodic foliation Fg := Fg,0 correspond bijectively to invariant sets of the Sp(2g,Z) action
on Hg. We want to deduce Theorem 1.5 for genus g. For the sake of simplicity we omit the
sub-index of Perg,0 and write Per.

The closure L of the leaf L = L(C,ω) of Fg through (C,ω) ∈ ΩMg is a closed Fg-invariant
set. By the Transfer principle (see Theorem 1.2), after choosing a marking m of C, it corre-
sponds to the projection from ΩSg to ΩMg of all marked abelian differentials having periods
in the closure of the Sp(2g,Z)-orbit of p = Per(C,m, ω) ∈ Hg. The final ergoditicy part of
the statement of Theorem 1.5 follows from the final statement in Proposition 3.10.

Case 1 : If ω is a genus two eigenform for real multiplication by a real quadratic order oD
of discriminant D > 0. Then the closure of L is one of the Hilbert modular manifolds ΩXD

(see [18] or [52]). As shown in [52, Case 3. of Theorem 5.1] this case occurs if and only if p
has the properties described in the last possibility of Proposition 3.10.

In what follows we suppose that p does not satisfy the last condition of Proposition 3.10.
The other possibilities can be characterized in terms of the closure of Λ(p) in C:

Case 2 : Λ(p) is discrete. The image of the periods of any (C ′, ω′) ∈ L are precisely Λ(p).

Each element in the fibre Per−1(p) ⊂ ΩSg corresponds, by integration, to a unique prim-
itive branched covering over C/Λ(p) of volume V . If we find a marking m′ of C ′ where
Per(C ′,m′, ω′) = p, then by Theorem 1.2 we have (C ′, ω′) ∈ L. Therefore the leaf L is closed.
The first item of Proposition 3.10 (or equivalently Lemma 9.1) shows that such a marking m′

on (C ′, ω′) exists.

In particular this provides an alternative proof of the connectedness of the Hurwitz space
of primitive branched coverings over C/Λ(p) of volume V (see [10] for the original proof).

Case 3 : Λ(p) is neither discrete nor dense in C. Then its closure is an infinite union of
parallel real lines and we fall in the second case of Proposition 3.10. The conclusion is that in
the closure L we find all pairs (C ′, ω′) of volume V whose periods belong to Λ(p) and contain
elements in every real line where Λ(p) is dense.

Case 4 : Λ(p) is dense in C. We fall in the third case of Proposition 3.10. In L we find all
pairs (C ′, ω′) of volume V .

3.6. Remark on the transfer principle on strata. The generic stratum is the complement
of an analytic subset, and therefore its intersection with each fiber of Perg has the same number
of connected components as the whole fiber. We can thus apply the Transfer principle to the
generic stratum as well. On the other strata, the question seems to be much more delicate (see
the discussion in section 1.4). At the other extreme, on the minimal stratum, the isoperiodic
foliation has dimension zero, so we cannot expect to transfer dynamical properties of the
symplectic group on the period domain to dynamical properties of the isoperiodic foliation.
We even show here that

Proposition 3.11. The intersection of a fiber of Perg with the minimal stratum is either
empty or infinite discrete.

The connectedness of the intersection of the fibers of Perg with the connected components
of all other strata remains open.
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Proof. The restriction of the map Perg to the minimal stratum is a local diffeomorphism onto
an open set in Hg. Hence its fibers are discrete. Let (C,m, ω) ∈ ΩSg be a point in the minimal
stratum and p = Per(C,m, ω). Remark that the image of Aut(C,ω) → Sp(H1(C,Z)) is a
finite subgroup G.Therefore the group

Stab(C,m, ω) = {M ∈ Sp(H1(Σg,Z)) : (C,m ◦M,ω) ∼ (C,m, ω)}

is finite. If p has discrete image, then StabSp(H1(Σg ,Z))(p) is infinite and contains G. Hence
there is an infinite number of points in the orbit of (C,m, ω) under this group. All of them
lie in Per−1(p), so the result follows in this case.

Next suppose p has non-discrete image. By Proposition 3.10 there exists an infinite se-
quence of Mn ∈ Sp(H1(Σg,Z)) such that pn = p ◦ Mn is a sequence of pairwise distinct
points converging to p in Hg. Up to taking a subsequence, these points correspond to points
(Cn,mn, ωn) in the minimal stratum via Perg, that project to an infinite family of pairwise
distinct points (Cn, ωn) ∈ ΩMg. By construction, all points (Cn,mn ◦M−1

n , ωn) belong to the
intersection of Per−1(p) with the minimal stratum and are pairwise distinct in ΩSg. �

3.7. Monodromy of zeros along a fiber of Perg,n in the generic stratum.

Definition 3.12. Given a connected component K of the intersection of a fiber of Perg,n with
a stratum of ΩSg,n having l distinct zeros, define the monodromy group of zeros associated
to K as the conjugacy class of the image group GK of the representation

π1(K, (C0, P0,m0, ω0))→ Sl

that associates to each loop in K the permutation induced on the zero set z1, . . . , zl of ω0.

Our main interest will be the monodromy group of the zeros in the generic stratum. Recall
that it is a Zariski open set in the fiber of the isoperiodic map and is therefore connected if
and only if the fiber is. Turning around the divisors associated to other strata in the fiber
already produces some monodromy of the zeros:

Lemma 3.13. Let g ≥ 2 and L be a connected component of a fiber of Perg,n. Suppose it
contains a point whose zero divisor is d1p1 + . . . + dlpl. Then, the monodromy group of the
zeros in the generic stratum LSZ of L, contains all transpositions of pairs of elements that
belong to the same part of a partition Z1t · · ·tZl of the set of 2g−2 elements with |Zi| = di.

Before we proceed to the proof we recall the interpretation of an element (C, p1, . . . , pn, ω)
in ΩMg as a branched projective structure (see [15] for more details), or, more precisely,
a branched translation structure. Indeed, around any point q ∈ C we can define a local
branched covering of degree ordq(ω) + 1 by φq(z) =

∫ z
q ω. At the intersection of domains

of two such branched coverings differ by a translation, and therefore define a branched atlas
on the topological curve C with transitions in the set of translations (which are actually
holomorphic). The branch points correspond to the zeros of the form. Reciprocally, if we are
given an atlas {Dq, φq} on a compact topological surface of genus g of (topological) branched
coverings φq : Dq → C with a finite number of branch points whose transition maps are
translations, it defines a complex structure on the surface and the form defined locally by
ω := dφq is globally defined. In section 5.1 we will exploit this interpretation further. For the
moment we will use it to deform a given point without changing the corresponding periods
by changing a given atlas locally around a branched point.
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Proof of Lemma 3.13: Let (C, r1, . . . , rn,m, ω) be the point satisfying (ω)0 = d1p1 + . . .+dlpl.
If all di = 1 there is nothing to prove. Otherwise, LSZ is the complement of a normal crossing
divisor in L (see section 3.2). Choose a local chart φi : Di → C of degree di + 1 of the
translation structure of ω around pi. We can suppose that none of the zeros of ω is a marked
point ri and take discs Di not containing any marked point.

Recall from the appendix in [15] that we can construct a germ of continuous map(
H(φ1)× · · · ×H(φdl), (φ1, . . . , φl)

)
→ (L, ω)

where each H(φi) is a Hurwitz space of coverings of degree di over a disc φi(Di) up to an
equivalence in the boundary that allows to glue each element with the translation surface
defined by ω on C \ (∪Di) to obtain a branched translation structure on a closed marked
surface of genus g. Since we can keep the marked points and a marking of the homology by
avoiding the discs Di, the gluing preserves all integrals over cycles of H1(Σg, q1, . . . , qn;Z).

By [15][Lemma A7, p. 439], each H(φi) can be parametrized by the space of polynomials
Pa(z) = zdi + adi−1z

di−1 + . . .+ a0 with
∑
aj = 0 having critical values in the unit disc. The

point with all coordinates aj = 0 corresponds to the initial point. Any choice on each Hurwitz
space of a point that has di distinct critical values {v1, . . . , vdi} (therefore determining simple
critical points on some set Zi) has as image in L a point with simple zeros. On the other
hand, the set of critical values determines the values of the ai’s in the parameter space.
Choose one such point (C0, ω0) ∈ LSZ . Since the germ of Ddi \ {(z1, . . . , zdi) : with zj =
zk for some j 6= k} at the origin is connected, there exists a path in it joining (v1, . . . , vdi) to
any point obtained by permuting the order of the coordinates. Such a path will determine a
closed path in the parameter space whose image in LSZ will permute the zeros of ω0 in each
part Zi as desired.

�

Lemma 3.14. Let g ≥ 3 and p ∈ Hg such that Per−1(p) is connected. Then, the monodromy
group of the zeros in the generic stratum of Per−1(p) is S2g−2 if deg(p) ≥ 3 and trivial if
deg(p) = 2.

Proof. Assume first that p has infinite primitive degree, or equivalently non discrete image.
In this case we claim there exists a form in Per−1(p) in the minimal stratum, namely having
a unique zero of multiplicity 2g−2. From Lemma 3.13 we deduce that the whole group S2g−2

is in the image of the representation. To prove the claim, observe that up to the action of
the group GL+(2,R), we can assume that the closure of the orbit of p under the action of
the group Aut(H1(Σg,Z)) contains the set P of all periods q : H1(Σg,Z)→ R+ iZ of volume
vol(q) = vol(p) (see Proposition 3.10). Since the period map restricted to the minimal stratum
is a local biholomophism (see subsection 3.2), its image is an open set. It therefore contains
points with discrete values in Q+ iQ that necessarily have finite degree. Up to the action of
GL(2,R) we can find one whose periods lie in P . Moreover, there is a neighborhood of P in
Hom(H1(Σg,Z),C) which consist of periods of forms in the minimal stratum. In particular,
the orbit of p under Aut(H1(Σg,Z)) intersects this neighborhood, and thus p itself is the
period of a form in the generic stratum. Hence the result follows in the case deg(p) =∞.

Assume now that deg(p) < ∞. In this case, consider the map R : Per−1(p) → Hg,d(E)
taking values in the Hurwitz space Hg,d(E) of equivalence classes of primitive branched cov-
erings over the elliptic curve E = C/Im(p) of primitive degree d = deg(p), the equiva-
lence being the pre- and post-composition by automorphisms. The map R sends a form
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(C,ω,m) ∈ Per−1(p) to the equivalence class of the covering from C to E given by integrat-
ing ω. Denoting by U ⊂ Per−1(p)SZ the Zariski open subset consisting of forms with simple
zeros whose integral between any pair of distinct zeros does not belong to the lattice Im(p),
and by Hg,d(E)DC ⊂ Hg,d(E) the Zariski open subset consisting of coverings with 2g − 2

distinct critical values, the map R induces a Galois covering U → Hg,d(E)DC with group
Aut(H1(Σg,Z)). Consider the representation of permutations of the critical values

(19) π1(Hg,d(E)DC)→ S2g−2.

It is well-known that this representation is surjective, but by lack of references we reproduce
a proof in the following paragraph. With this at hand, let H ⊂ S2g−2 be the normal subgroup
corresponding via (19) to the image of the Galois covering π1(U) → π1(Hg,d(E)DC). We
claim that if deg(p) ≥ 3, and g ≥ 3, then H contains a transposition, and hence H = S2g−2.
We will find a transposition by applying Lemma 3.13 to a particular form with a double
zero. By the first item of Proposition 3.10, or equivalently Lemma 9.1 , it suffices to prove
the existence of primitive genus g and degree d branched covering over E, branched over a
set {e1, . . . , e2g−3} of 2g − 3 elements with transitive (covering !) monodromy representation
π1(E \ {e1, . . . , e2g−3}) → Sd taking one of the peripherals to a cycle of order three (which
corresponds to the local monodromy of the branched cover defined by integration around
a double zero of a holomorphic form) and every other peripheral to a transposition (which
corresponds to the local monodromy generator of the branched cover defined by integration
around a simple zero of a holomorphic form). This is certainly possible if d ≥ 3 and 2g−3 ≥ 2,
i.e. g ≥ 3.

Let us now prove that the representation (19) is onto. Let c : E′ → E be a non ramified
cyclic d : 1 covering of E. We denote by τ ∈ Aut(E′) a generator of the Galois group
of c. Given g − 1 smooth curves s1, . . . , sg−1 in E′, diffeomorphic to closed intervals, such
that all the intervals c(s1), . . . , c(sg−1) are disjoint we can construct an associated element in
Hg,d(E)DC . Indeed, all curves in the family s1, . . . , sg−1, τ(s1), . . . , τ(sg−1) are disjoint, and
we can slit E′ along all the curves of this later family, and glue the right side of sk to the left
side of τ(sk), and vice versa, for every k = 1, . . . , g − 1. We obtain a Riemann surface C of
genus g, on which the map c induces a well-defined degree d branched covering r : C → E,
which is primitive. Observe that the critical values of r are the 2g − 2 points lying at the
extremities ιk, ek of the curves c(sk) for k = 1, . . . , g − 1.

The previous construction can be used to describe paths in Hg,d(E)DC by deforming the
chosen smooth curves continuously. Take a choice of g − 1 smooth curves s1, . . . , sg−1 in E′

and consider the associated covering r : C → E . Observe, for instance, that moving the curve
sk in E without touching the other curves, and returning back to the same curve sk but with
opposite orientation, we draw a closed loop in Hg,d(E)DC based at r, and the permutation
on the critical values is the transposition exchanging ιk and ek. It remains to show that
transpositions of critical values, involving endpoints of distinct segments are also possible.
Now, since the elements of Hg,d(E)DC have 2g − 2 critical values, all critical points of r are
simple and there is a one–to–one correspondence between critical values and critical points
of r. Each critical point corresponds to a zero of ω = dr, so if for each pair of distinct k, l
we manage to find a loop in U with base point ω whose associated monodromy of the zeros
exchanges the zero associated to the endpoint ιk of sk with the zero associated to an endpoint
el of sl and fixes every other zero, we will be done. As before, we will invoke Lemma 3.13
which allows to deduce the property if we manage to find a path in Per−1(p) starting at ω
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and finishing at a point in a stratum of forms with precisely 2g−4 simple zeros corresponding
to the endpoints distinct from ιk and el and a double zero. This path can be constructed in
Hg,d(E)DC by deforming sk in such a way that it does not touch any other sh, apart at the
very end of the movement where the only two points of distinct segments that coincide are ιk
and el. The set of permutations constructed in this way generate the whole symmetric group
of the set {ι1, e1, . . . , ιg−1, eg−1}.

It remains to prove the last statement, namely that if p has primitive degree two, the
monodromy of the zeros on Per−1(p) is trivial. Remark that all forms in that set have simple
zeros. We can use done using the invariant of Arnold’s introduced in the proof of Theorem
1.3. Consider the (locally flat) fiber bundle E→ Per−1(p) by Z/2Z-vector spaces, whose fiber
over an element (C,m, ω) is the Z/2Z vector space generated by the zeros of ω, the only
relation being that the sum of all zeros is trivial. Since the number of zeros of ω is 2g−2 ≥ 4,
we need to prove that the monodromy of E is trivial when the primitive degree of p is equal
to two.

The fiber bundle E embeds naturally in the locally flat Z/2Z-vector bundle G over Per−1(p)
whose fiber over a point (C,m, ω) is the space H1(E \VC(π),Z/2Z); the embedding sends a
zero of ω to the peripheral cycle turning around its π-image in E.

Fiberwise, the family of maps Π ◦m, where (C,m, ω) varies in Per−1(p) and Π is the map
(12), induce a map from the constant bundle H1(Σg,Z/2Z) over Per−1(p) to the bundle G.
The image of the constant subbundle Ker(p[2]) of H1(Σg,Z/2Z) over Per−1(p) (recall that
p[2] is the reduction of p modulo two, see (17)) fall inside the subbundle E of G. Moreover, it
consists fiberwise of the subspaces of formal sums of an even number of peripheral cycles in
H1(E \VC(π),Z/2Z).

We infer that the monodromy of E acts trivially on this subspace. Since a permutation of
a set of at least three elements is determined by its action on the subsets of an even number
of elements, we are done. �

4. Augmented Torelli space and extension of the period map

In this section we review the topological and analytical properties of moduli spaces of
curves and some of their coverings and (partial) bordifications. We will adopt the analytic
point of view first developed by Abikoff in [1]. It is based on the Augmented Teichmüller
space (see [3, 13, 11, 12, 26, 32, 36, 39, 48, 67, 68, 69, 71] for details and further references)
and the bundles of stable forms over it (see the two recent papers [6, 7]). Most of the section
will be devoted to describe the properties of the quotient of Augmented Teichmüller space by
the Torelli group, the so-called Augmented Torelli space. We will also analyze the extension
of the period map to the points lying in the closure of fibers of Perg,n.

4.1. Marked stable curves.

Definition 4.1. A connected complex curve C with n marked distinct points r1, . . . , rn ∈ C
is said to be stable if its singularities are nodes and do not coincide with any of the marked
points, and the closure Ci of each component of C∗ := C \ Sing(C), called a part of C, has
a group of automorphisms that fix the marked points and the boundary points that is finite.
The normalization of C is the smooth curve Ĉ = tCi. A stable curve C is said of compact
type if every node separates C in two components. Otherwise C is said to be of non-compact
type.
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The arithmetic genus of a stable curve is g = h1(C,O). When C has δ nodes and its
normalization has ν components of genera g1, . . . , gν , the arithmetic genus satisfies (see [32][p.
48])

g =
ν∑
i=1

(gi − 1) + δ + 1

As in section 3.1, for g, n ≥ 0 we fix a reference surface with marked points Σg,n =
(Σg, q1, . . . , qn): a closed connected oriented surface Σg of genus g with a set of n distinct
ordered marked points Q = (q1, . . . , qn) ∈ Σg. When n = 0 we omit the subindex and write
Σg = Σg,0.

Definition 4.2. A homotopical marking (or sometimes a collapse) of a connected genus g
stable curve C with n ordered pairwise distinct marked points R = (r1, . . . , rn) ∈ C∗ is a
continuous surjection f : Σg,n → (C, r1, . . . , rn) such that f(qi) = ri, the preimage of each
node is a simple closed curve on Σg \Q and on each component of Σg \f−1(N) where N is the
set of nodes, the map f is a homeomorphism onto a part of C that preserves the orientation.

When C is non-singular a collapse is a homeomorphism and the definition coincides with
the one given in subsection 3.1.

Definition 4.3. A homotopically marked stable curve with n marked points is a marked sta-
ble curve (C, r1, . . . , rn) together with a homotopical marking f : (Σg, Q)→ (C,R). Two ho-
motopically marked stable curves fi : (Σg, Q)→ (Ci, Ri) for i = 1, 2 are said to be equivalent
if there exists a conformal isomorphism g : C1 → C2 such that g◦f1 is homotopic to f2 relative
to Q. The class of a Σg,n marked stable curve will be denoted by [f : Σg,n → (C, r1, . . . , rn)].

Remark 4.4. If ∆ : Σg,n → Σg,n is a Dehn twist around a curve in Σg that is collapsed by
the marking f1 : (Σg, Q) → (C,R) to a point, then (C,R) marked by f1 ◦∆ is equivalent to
the same curve marked by f1.

4.2. Augmented Teichmüller space and its stratification.

Definition 4.5. The augmented Teichmüller space Tg,n is the set of all homotopically marked
stable genus g curves with n marked points up to equivalence.

The Teichmüller space Tg,n is the subset of Tg,n formed by curves without nodes. Its

complement, denoted by ∂Tg,n = Tg,n \ Tg,n is called the boundary.

Definition 4.6. A curve system c = tci in Σg,n = (Σg, q1, . . . , qn) is a disjoint collection of
simple closed curves ci on Σg \ {q1, . . . , qn} none of which is isotopic to any other, to a point
or to a cylinder in Σg \{q1, . . . , qn}. To a curve system c we can associate the subset Bc ⊂ ∂Tg
of the boundary consisting of homotopically marked stable curves topologically equivalent to
a collapse Σg → Σg/c obtained by identifying each curve in c to a point.

Given a curve system c, for each component Σi of Σg \c we define (Σgi , Qi) to be the closed
surface of genus gi with a set of marked points Qi obtained by collapsing each boundary
component of Σi to a (marked) point and keeping the marked points of Σg lying on Σi in Qi.
As we will see in subsection 4.10 there is a natural identification

(20) Bc ∼= ΠiTgi,ni .
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The boundary ∂Tg,n is the disjoint union of all boundary strata tcBc where c varies in the
set of nonempty curve systems. Tg,n corresponds to the empty curve system. Each stratum
Bc has a topology and complex structure given by the bijection (20). All the curves that
appear in a stratum have the same number of separating and non-separating nodes. When
all the nodes are non-separating we say that the stratum is of compact type.

Given a simple closed curve c′ ⊂ Σg,n we denote by

Dc′ =
⊔
c′⊂c

Bc

the union of all strata that collapse c′ to a node.

Definition 4.7. Given K ⊂ Tg,n, a stratum of K is, by definition, the intersection K∩Bc of

K with a stratum Bc ⊂ Tg,n. If the stratum lies in the boundary of Tg,n we call it a boundary
stratum. The boundary strata of K is the set ∂K := K ∩ ∂Tg,n.

4.3. Topology and stratification of Tg,n. For a detailed description of the topology we
refer to [3, pp. 485-493] and references therein.

The restriction of the given topology to Tg,n produces the so-called conformal topology.
Abikoff showed (in [1][Theorem 1]) that this topology is equivalent to the Teichmüller topology
introduced in subsection 3.1.

The restriction of the topology to the boundary stratum Bc corresponding to a curve system
c is equivalent to the product topology obtained from (20).

The topology is not locally compact around any boundary point. Indeed, if U is a neigh-
bourhood of a point in Bc, the action of the Dehn twist ∆a : Σg → Σg around a simple
closed curve a ∈ c fixes all the points in U for which the marking collapses a to a point, but
has infinite orbits at any other point in U . Therefore, there is no manifold structure in Tg,n
compatible with the given topology.

Definition 4.8. Given a curve system c the distinguished neighbourhood of the stratum Bc
is the set

Uc =
⊔
c′⊂c

Bc′ .

4.4. Local stratification and Deligne-Mumford compactification. The mapping class
group of Σg,n, i.e. the group Mod(Σg,n) of isotopy classes of orientation preserving diffeo-

morphisms that fix each marked point, acts on Tg,n by homeomorphisms that preserve the
stratification and are holomorphic in restriction to any stratum. The action is defined by
pre-composition on the marking. The quotient

Mg,n = Tg,n/Mod(Σg,n)

is a compact topological space. It can be endowed with a complex orbifold structure.

Consider a curve system c and define Γc the abelian group generated by Dehn twists around
the curves in c. Following [13], the quotient Uc/Γc is equivalent to a bounded domain in C3g−3.
Under this equivalence, each stratum Bc′ associated to a simple closed curve c′ ⊂ c has image
contained in a regular divisor Dc′ . These divisors intersect normally and their intersections
define the other different strata: the stratum associated to c′ ⊂ c is the intersection of all the
divisors associated to the simple curves in c′. The complement of this divisor is the stratum
B∅ = Tg,n formed by smooth marked curves. The union of all natural maps Uc/Γc → Mg,n
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induce a system of (orbifold) charts with holomorphic transition maps on Mg,n. A a more
precise local description of the quotient map Uc → Uc/Γc in the neighbourhood of a point of
Bc up to local homeomorphisms on source and target that can be found in [3, pp. 485-493].
We recall the model here because it will be useful to determine the local properties of the
isoperiodic deformations of stable forms.

Consider the set X = R+×R
0×R endowed with the (non-locally compact, first countable, Haus-

dorff) topology whose basis of open sets around [0, 0] are the sets of the form {[ρ, θ] : ρ < ε}
with ε > 0 and the usual round discs around any other point. Let n ≥ 2 and 0 ≤ l ≤ n and
the the normal crossing divisor

Dl = {(z1, . . . , zn) ∈ Cn : z1 · · · zl = 0}.
Consider the map with infinite ramification on Dl

(21) ϕl,n : X l × Cn−l → Cn defined by

(ρ1, θ1, . . . , ρl, θl, zl+1, . . . , zn) 7→ (ρ1e
2iπθ1 , . . . , ρle

2iπθl , zl+1, . . . , zn). It is a continuous map
with respect to the product topologies on source and target. On the complement of the
preimage of Dl the map ϕl,n is a topological cover with free abelian covering group– that

corresponds to the action of Zl on the θ variables by translations, componentwise. This
implies that it is a connected complex manifold. Given a subset I ⊂ {1, . . . , l} with k elements,
the restriction of ϕl,n to the set {ρj = 0 : j ∈ I} produces map that is equivalent to some
other ϕl′,n′ , so the set {ρj = 0 : j ∈ I} ∩ {ρj 6= 0 : j /∈ I} is a connected complex manifold of

codimension k accumulating the origin. They fit together to form a stratification of X l×Cn−l.
The action of Zl leaves each connected component of a stratum invariant.

Remark 4.9. Each connected component of a local stratum of positive codimension close to
the origin is characterized by the set of local components of codimension one that accumulate
to it. This property persists under quotients of X l × Cn−l by subgroups H ⊂ Zl.

Coming back to the local descriptions of the map Uc → Uc/Γc, around a point of the curve
system c with l elements, it is locally equivalent to ϕl,3g−3 at the origin.

Definition 4.10. A stratified space is a local abelian ramified cover of a normal crossing
divisor if the stratification is locally homeomorphic to a quotient stratification of X l × Cn−l
by some subgroup H ⊂ Zl for some n and l ≤ n at the origin.

Definition 4.11. To any stratified space X that is a local abelian ramified cover of a normal
crossing divisor on some fixed dimension n ≥ 2 we can associate a boundary complex C(X)
having a vertex for each connected component of the codimension one stratum and a simplex
joining k vertices for each connected component of the stratum of codimension k contained
in the closure of the corresponding components.

By the description of connected component of strata by classes of curve systems, we get
an isomorphism of this dual boundary complex with the curve complex C(Tg,n) ' Cg,n (see
subsection 1.3) for the definition . The group Mod(Σg,n) acts on Tg,n ( resp. Cg,n) preserving
strata (resp. the simplicial structure).

4.5. Augmented Torelli space: a ramified covering of Mg,n. The map induced in
homology by an element of Mod(Σg,n) provides an exact sequence

0→ Ig,n → Mod(Σg,n)→ Aut(H1(Σg, q1, . . . , qn;Z))



A TRANSFER PRINCIPLE: FROM PERIODS TO ISOPERIODIC FOLIATIONS 29

where Ig,n is the Torelli group of Σg,n formed by isotopy classes of diffeomorphisms that act
trivially on relative homology. The Augmented Torelli space is the topological quotient

Sg,n = Tg,n/Ig,n.

Again, Sg,n contains the Torelli space Sg,n = Tg,n/Ig,n as a proper set. Its boundary is

the set ∂Sg,n = Sg,n \ Sg,n. Two strata Bc and Bc′ lie on the same class if and only if there
exists an element in the Torelli group that sends the curve system c to the curve system c′.
Therefore, the boundary inherits a stratification

Definition 4.12. The equivalence class under the action of the Torelli group of a curve
system c in Σg,n will be denoted by c.

The boundary inherits a partition induced by the stratification

∂Sg,n =
⊔
c 6=∅

Bc

where c runs over all equivalence classes of non-empty curve systems c under the action of
the Torelli group Ig,n.

The complex structure in restriction to the stratum Bc induces a complex structure on Bc.
However, the action of the Dehn twist around a simple closed curve of non-trivial class in
H1(Σg,n) can act non-trivialy on H1(Σg,n). For instance, in the case where n = 0 and the
simple closed curve is non-separating of class a ∈ H1(Σg) \ 0 the action is on homology is the
non-trivial isomorphism δa : H1(Σg,Z)→ H1(Σg,Z) given by

δa(b) = b+ (a · b)a.

The topology of Sg,n is still non-locally compact around such points. Therefore, Sg,n does
not admit a compatible manifold structure.

Lemma 4.13. (Local structure around a stratum Bc and boundary complex of Sg,n) The

stratification of Tg,n induces a stratification of Sg,n that is a local abelian ramified covering of

a normal crossing divisor. The dual boundary complex of Sg,n is

C(Sg,n) ' Cg,n/Ig,n.

A neighbourhood of a stratum Bc in Sg,n admits a (compatible complex) manifold structure if
and only if Γc ⊂ Ig,n, i.e. the Dehn twist around any simple closed curve of c acts trivially
on H1(Σg,n).

Proof. The stratification of the open set Uc ⊂ Tg,n is invariant under the action of the sub-
group Γc∩Ig,n ⊂ Γc and a local abelian ramified cover of a normal crossing divisor. Therefore,
the quotient on Uc/(Γc ∩ Ig,n) has the same local property. On the other hand, as a conse-
quence of the fact that any automorphism of a stable curve that acts trivially on homology is
equivalent to some Dehn twist around the pinched curves, Uc/(Γc ∩ Ig,n)→ Uc/Ig,n ⊂ Sg,n is
a local homeomorphism at every point of the stratum Bc. This proves all statements about
the local structure around a stratum.

A connected component of a stratum of Sg,n corresponds to one orbit of connected compo-

nents of a stratum of Tg,n under the action of Ig,n. The result follows from the isomorphism

C(Tg,n) ' Cg,n.

�
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Given a simple closed curve c1, there might be distinct strata in the boundary component
Dc1 of Tg,n that are identified in the quotient. For instance, suppose c2 is a non-separating
curve determining the same homology class as c1 but distinct homotopy classes in Σg,0. By
[9][Section 1.3] there exists an element φ in the Torelli group Ig,0 sending c2 to c1. The two
curve systems c = c1 t c2 and c′ = φ(c) = c1 t φ(c1) are equivalent and define two distinct
strata contained in Dc1 provided φ(c1) and c2 define distinct isotopy classes in Σg,0. In terms
of the dual boundary complex this means that there are edges that join the same vertex.

4.6. Extension of the Torelli map Sg → Sg. The holomorphic orbifold structure of Mg

can be pulled back to a complex manifold structure in the open dense subset S
c
g of marked

curves of compact type in Sg. Indeed, all the Dehn twists around the curves that are collapsed
to the nodes lie already in the Torelli group and the ramification disappears.

The definition of the coordinate functions via (7) can be done word by word for stable

curves of compact type. In this manner we define an extension of (8) to a map S
c
g → Sg

that is still holomorphic. Its image is the so-called Schottky locus, an analytic set that has
positive codimension as soon as g ≥ 4. For g ≥ 3 the extended Torelli map has fibers of
positive dimension over boundary points.

Remark 4.14. In genus g = 2 the added points S
c
2\S2 correspond to products of two marked

elliptic curves. The extension of the Torelli map (8) in this case is a biholomorphism (see
[54]).

4.7. Homological markings. Given [f : Σg,n → (C, r1, . . . , rn)] ∈ Sg,n we can associate a
surjective homomorphism

f∗ : H1(Σg, q1, . . . , qn;Z)→ H1(C, r1, . . . , rn;Z).

When ker f∗ = 0, any element φ ∈ Mod(Σg,n) such that (f ◦ φ)∗ = f∗ satisfies φ∗ = Id.
Therefore f∗ determines the Torelli class of the marking f . In particular this is the case when
each node of C is separating. When there is at most one node that is non-separating we have
a similar result:

Lemma 4.15. Let f : Σg → C be a homotopical marking that pinches a simple closed, non-
separating curve γ and some separating simple closed curves. Let φ ∈ Mod(Σg,0) such that
(f ◦ φ)∗ = f∗ : H1(Σg;Z) → H1(C,Z). Then, up to Dehn twists along γ, φ∗ = id, that is to
say, it belongs to the Torelli group of Σg.

Proof. Set a = [γ], then ker f∗ = Za. Fix a = a1, b1, a2, b2 . . . ag, bg a symplectic basis of
H1(Σg). Since f∗ ◦ φ∗ = f∗ we have f∗(φ∗ − id) = 0. Therefore ψ = φ∗ − id is a morphism
from H1(Σg,Z) to ker f∗ = Za. So we have ψ(bi) = λia1, ψ(ai) = µia1 for some λi, µi ∈ Z.
From the fact that φ is symplectic, we deduce µi = 0 for all i and λi = 0 for all i 6= 1.
(δi1 = ai · b1 = φ(ai) · φ(b1) = δi1 + µi and 0 = bi · b1 = φ(bi) · φ(b1) = λi). Up to Dehn twist
along γ we may assume λ1 = 0, so ψ = 0 and φ∗ = id, that is to say φ ∈ Ig,0 is a Torelli
mapping class. �

An equivalent statement fails in general for curves C with more than two non-separating
nodes. Indeed, suppose f is a marking that collapses two elements a1 and a2 of a symplectic
basis a1, b1, a2, b2, a3, b3, . . . ag, bg of H1(Σg). Define a morphism ψ : H1(Σg) → ker f∗ by
ψ(b1) = a2 and ψ(b2) = a1 and ψ(ai) = ψ(bj) = 0 for all i ≥ 1 and for all j > 2. Then
Id + ψ ∈ Sp(2g,Z) and it is induced by a mapping class φ ∈ Mod(Σg). By construction
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f∗ = f∗ ◦ φ∗ but φ is not in the Torelli group, nor is a product of twists along loops whose
class belong to ker f∗ = Za1 ⊕ Za2 (because δna1+ma2(b1) = b1 + na1 so all such twists leave
< a1, b1 > invariant, and φ does not).

Definition 4.16. A homological marking of a stable curve with nmarked points (C, r1, . . . , rn)
is a surjective homomorphism

m : H1(Σg, q1, . . . , qn;Z)→ H1(C, r1, . . . , rn;Z).

The data (C, r1, . . . , rn,m) will be referred to as a homologically marked curve.

4.8. Parametrization of the vertices of the dual boundary complex Cg/Ig of Sg. With
the use of homological markings we will provide a homological characterization of the Torelli
classes of simple closed curves on Σg. This will allow us to give a special parametrization of

the vertices of the dual boundary complex of Sg.

First we recall some concepts of homology theory. The intersection of two elements
a, b ∈ H1(Σg,Z) is denoted by a · b and the associated intersection form defines an integral
unimodular symplectic structure on H1(Σg) := H1(Σg,Z). Two submodules of a unimodu-
lar symplectic module M are said to be orthogonal if the intersection of any element of one
of them with an element of the other is zero. Given a submodule N ⊂ M we denote by
N⊥ ⊂ M the orthogonal submodule of N in M , that is, the set of elements in M that have
zero intersection with all elements of N .

Definition 4.17. A submodule N of a unimodular symplectic module M is said to be
symplectic if the symplectic form of M restricted to N is still unimodular. A splitting
M = N1 ⊕ · · · ⊕Nk into pairwise orthogonal submodules is said to be symplectic if every Ni

is a symplectic submodule.

Definition 4.18. A submodule N of a Z-module M is primitive if whenever zm ∈ M for
some m ∈M and z ∈ Z then also m ∈ N .

Let c be a simple closed curve in Σg. If it is non-separating, it determines a primitive
class [c] ∈ H1(Σg). If it is separating, the induced homology class is trivial and carries no
interesting information. However, c splits Σg in two parts, and these induce a symplectic
splitting of H1(Σg) that characterizes the Torelli class of the curve in the following sense:

Proposition 4.19 ([25], Proposition 6.14). Let c, c′ be two isotopy classes of simple closed
curves in Σg. If c and c′ are separating, then they are equivalent by some element of the
Torelli group Ig,0 if and only if the associated symplectic splittings coincide up to changing
the order of the factors. If c and c′ are non-separating, then they are equivalent by some
element of the Torelli group Ig,0 if and only if, up to sign, they determine the same homology
class in H1(Σg).

We can use this information to parametrize vertices of the dual boundary complex Cg/Ig
of the augmented Torelli space Sg.

Corollary 4.20. The set of unordered pairs {V, V ⊥} of non-trivial symplectic submodules
of H1(Σg) such that V ⊕ V ⊥ = H1(Σg) is in 1-1 correspondence with Torelli classes of
separating essential simple closed curves in Σg. The set of non-trivial primitive submodules
Z[c] ⊂ H1(Σg) is in 1-1 correpondence with the set of Torelli classes of non-separating simple
closed curves.
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4.9. Identifying some simplexes of Cg/Ig. A separating node on a homologically marked

stable curve (C,m) induces a non-trivial symplectic splitting V ⊕ V ⊥ of H1(Σg). A non-
separating node induces a cyclic non-trivial primitive submodule Za of kerm ⊂ H1(Σg).

Definition 4.21. Two marked nodal curves (Ci,mi) for i = 1, 2 of genus g are said to share
a separating node if for each i = 1, 2 there exists a separating node ri ∈ Ci that induces the
same splitting V ⊕ V ⊥ of H1(Σg) up to the order of the factors. Equivalently, we say that
they share a non-separating node if there exist non-separating nodes ri ∈ Ci whose associated
cyclic primitive submodules of H1(Σg) coincide.

Two marked stable curves that share a node define points that lie in the closure of the
same bondary stratum of codimension one. In terms of the complex Cg/Ig they represent
simplexes that intersect at one vertex.

This characterization allows to identify certain simplexes of Cg/Ig by looking at the homo-
logical information of the vertices. For instance, given a splitting V1 ⊕ . . . ⊕ Vk+1 of H1(Σg)

into symplectic submodules of rank at least two, the vertices associated to {Vi, V ⊥i } i = 1 . . . k
belong to a simplex of Cg/Ig. It suffices to construct a marked stable curve with k separating
nodes inducing the given splitting. If in each Vi we are given a primitive class of H1(Σg) we
can construct a stable curve with 2k nodes, that defines a simplex joining the corresponding
2k vertices, etc. These simplexes will be very useful to analyze the topology of the boundary
stratification of Sg.

4.10. Attaching and forgetful maps on augmented Torelli spaces. It is well known
that attaching maps, i.e. identification of distinct marked points, define holomorphic maps
at the level of moduli spaces. The same is true for forgetful maps, i.e. forgetting part of the
marked points followed by stabilization. In this subsection we will see how these maps can
be defined at the level of augmented Teichmüller and Torelli spaces.

Let φ : Σg,n → Σg,n/c be the collapse of a simple closed curve c in Σg,n \ {q1, . . . , qn}. We
will define an attaching map associated to φ.

If c is a separating curve, the surface Σg,n \ c has two components, each with a boundary
component. Collapsing each boundary component to a new marked point produces two
surfaces with marked points Σg1,n1 and Σg2,n2 where g1 + g2 = g, n1 + n2 − 2 = n and the
new points are named qn1 and qn2 respectively. The attaching map

Aφ : Tg1,n1 × Tg2,n2 → Tg,n

is defined by the isotopy class of the composition (f1∨f2)◦φ where fi : Σgi,ni → (Ci, r
1
1, . . . , r

1
ni

)

is a representative of its class in Tgi,ni and f1∨f2 denotes the map Σg,n/c→ (C1∨C2, q1, . . . , qn)
by collapsing c to the new node qn1 = qn2 of C1 ∨ C2 and applying the corresponding fi in
each part of the complement of the node.

Remark 4.22. The isomorphism (20) is realized by attaching maps

Lemma 4.23. The map Aφ induces a well defined continuous attaching map

Sg1,n1 × Sg2,n2 → Sg,n.

Proof. Remark that φ allows to define a map

ρφ : Ig1,n1 × Ig2,n2 → Ig,n
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between Torelli groups. Indeed, every pair (ψ1, ψ2) ∈ Ig1,n1 × Ig2,n2 defines an automorphism
ψc of Σg,n/c that acts trivially on its relative homology (with n marked points). We need to
lift the element to an element ψ ∈ Ig,n. The lift via φ is a well defined map Σg,n \c→ Σg,n \c.
Up to changing ψ′is in the neighbourhood of the points qn1 and qn2 homotopically, we can
guarantee that there exists an extension ψ = ρ(ψ1, ψ2) of the lift to Σg,n that fixes c pointwise.

By construction the map Aφ is equivariant with respect to ρ and therefore induces the

desired map Sg1,n1 × Sg2,n2 → Sg,n.

�

If c is non-separating, then Σg,n \ c is connected and has two boundary curves. Collapsing
each boundary curve to a new marked point produces a surface of genus g − 1 with n + 2
marked points that we denote Σg−1,n+2. The new points will be denoted qn+1, qn+2. Remark
that Σg,n/c can be identified with Σg−1,n+2/qn+1 ∼ qn+2. The attaching map is

Aφ : Tg−1,n+2 → Tg,n

defined by (∨f)◦φ where ∨f : Σg,n/c→ (∨C, r1, . . . , rn) is the map induced by a marking f :
Σg−1,n+2 → (C, r1, . . . , rn+1, rn+2) on the stable curve ∨C (that has an extra non-separating
node, compared to C) obtained by identifying rn+1 and rn+2 in C.

Lemma 4.24. The map Aφ induces a continuous attaching map

Sg−1,n+2 → Sg,n.

Proof. As before φ induces a homomorphism between the relevant Torelli groups

ρφ : Ig−1,n+2 → Ig,n

and Aφ is ρφ equivariant by construction.

To construct ρφ, suppose ψ : Σg−1,n+2 → Σg−1,n+2 represents an element in Ig−1,n+2. Then
ψ induces an automorphism of Σg−1,n+2/qn+1 ∼ qn+2. The equivalence between this space
and Σg,n/c provides an automorphism of Σg,n/c that can be lifted to Σg,n \ c via φ. Up
to changing the initial ψ homotopically in a small neighbourhood of the points qn+1 and
qn+2 we can suppose that the lift extends to an automorphism ρφ(ψ) : Σg,n → Σg,n that
fixes c pointwise. The action of ρ(ψ) in H1(Σg, {q1, . . . , qn};Z) is trivial by construction and
therefore ρφ(ψ) ∈ I,g,n. �

As for forgetful maps, given an inclusion φ : Σg,n → Σg,n+1 of the marked points, we can
define its associated forgetful map

(22) Tg,n+1 → Tg,n

sending the class of f : Σg,n+1 → (C, r1, . . . , rn+1) to the stabilization of f ◦ φ, i.e. if the
component of C that contains the forgotten point has an infinite group of automorphisms
after deleting the point, we collapse the component of source and target to a point. Again
we have

Lemma 4.25. The map φ induces a continuous forgetful map Sg,n+1 → Sg,n.

Proof. In this case, φ induces an inclusion ρφ : Ig,n+1 → Ig,n since any diffeomorphism that
fixes n+ 1 points fixes any of the n points that correspond to the image by φ of the n marked
points of Σg,n. The map (22) is ρφ-equivariant by construction. �
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4.11. A useful bordification Ug,2 of Sg,2 in Sg,2. In this subsection we introduce a smooth
partial bordification of Sg,2 that will be useful in Section 7. We also describe its boundary
complex.

Consider the composition of two forgetful maps

(23) Forg,2 : Sg,2 → Sg,0 = Sg

and the open set
Ug,2 = For−1

g,2(Sg)

of marked curves whose stabilization after forgetting both marked points is a smooth curve.
The restriction of Forg,2 to Ug,2 will be denoted by For.

Let C(Sg)→ Sg denote the universal curve bundle over Sg and C2(Sg)→ Sg denote the pull
back of the square of the universal curve bundle C(Sg) × C(Sg) → Sg × Sg by the diagonal
map Sg → Sg × Sg.

Proposition 4.26. There exists a covering map R : Ug,2 → C2(Sg) such that

(24)

Ug,2 C2(Sg)

Sg

R

For

commutes. For each (C,m) ∈ Sg, R|For−1(C,m) : For−1(C,m) → C × C is an H1(Σg)-cover

with monodromy given by

(25) (α1, α2) · γ = γ + α2 − α1, for (α1, α2) ∈ H1(Σg)
2 ' H1(C × C), γ ∈ H1(Σg).

Moreover, the boundary strata in the complex manifold Ug,2 form a smooth divisor whose
components are in one to one correspondence with the set

b = {β ∈ H1(Σg, q1, q2;Z) : ∂β = q2 − q1}.

Proof of Proposition 4.26: We split the proof in several parts:

Action of Modg,2 on relative homology.

Let Aut(H1(Σg, {q1, q2},Z)) be the subgroup of linear automorphisms of H1(Σg, {q1, q2},Z)
that preserve the exact sequence

(26) 0→ H1(Σg,Z)→ H1(Σg, {q1, q2},Z)
∂→ Z(q2 − q1)→ 0

where ∂ is the boundary operator. The group Aut(H1(Σg, {q1, q2},Z)) splits into an exact
sequence

0→ G→ Aut(H1(Σg, {q1, q2},Z))→ Aut(H1(Σg,Z))→ 0

where Aut(H1(Σg,Z)) is the group of linear automorphisms of H1(Σg,Z) that preserve the
intersection form, and where G is the abelian unipotent subgroup of Aut(H1(Σg, {q1, q2},Z))
formed by the transformations

Gα(γ) := γ + n(γ)α

where α ∈ H1(Σg,Z), and where we write the boundary operator as ∂ = n(q2 − q1). Notice
that G naturally identifies with the absolute homology group H1(Σg,Z).

Since the action of Modg,2 on H1(Σg, {p, q},Z) preserves (26), it gives rise to morphism

(27) Modg,2 → Aut(H1(Σg, {q1, q2},Z)).
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Action of the braid group.

Consider the exact sequence

(28) 0→ B(Σg,2)→ Mod(Σg,2)→ Mod(Σg)→ 0

where B(Σg,2) is the braid group with two strings on Σg, and where the right arrow is given
by the forgetful map that forgets the fact that the mapping class fixes the two marked points.
By Birman’s theorem, the braid group is isomorphic to the fundamental group of the square
of Σg deprived of its diagonal ∆.2

Its action on relative homology group (obtained by restriction of the action (27)) takes
values in the abelian unipotent group G , hence its descends to an action defined on the
abelianization of Bg,2, which is isomorphic to H1(Σ2

g \ ∆,Z) ' H1(Σ2
g,Z) ' H1(Σg)

2; one
checks that under these identifications it is given by the morphism

(29) (α1, α2) ∈ H1(Σg)
2 7→ Gα2−α1 ∈ Aut(H1(Σg, {q1, q2},Z)).

A first G-covering of Sg,0.

The group G acts on Sg,2 by precomposition of the marking, and the action is free and
proper (recall that the action of the group Modg,2/Ig,2 ' Aut(H1(Σg, {q1, q2},Z)) on Sg,2 in
free and discontinuous, see subsection 3.1). Denote by R′ the covering Sg,2 → Sg,2/G. The
fundamental group of Sg,2 is isomorphic to Ig,2, the one of G\Sg,2 is the group generated by
the Torelli group Ig,2 and the braid group B(Σg,2), and the monodromy of R′ is given by the
quotient map

< B(Σg,2), Ig,2 >→< B(Σg,2), Ig,2 > /Ig,2 ' G ⊂ Aut(H1(Σg, {q1, q2},Z)) ' Modg,2/Ig,2

The G-action preserves the restricted forgetful map For|Sg,2 : Sg,2 → Sg, so there is a map

F̃or : Sg,2/G → Sg, we have For|Sg,2 = F̃or ◦ R′. The map F̃or is a holomorphic fibration,

whose fibers F̃or
−1

(C,m) are biholomorphic to the square of C deprived of its diagonal,

namely F̃or
−1

(C,m) ' C × C \∆ where ∆ := {(x, x) | x ∈ C}. The fibration at the level of
the fundamental group gives the exact sequence

0→ B(Σg,2)→< B(Σg,2), Ig,2 >→ Ig → 0.

Hence the fibers of F̃or are homologically marked by H1(Σg,Z)2) and the monodromy of the

G-covering R′ in restriction to a fiber of F̃or is given by (29).

Construction of R as a bordification of the covering R′.

We now bordify the previous covering R′ over Sg,2/G. The idea is to add in each fiber

F̃or
−1

(C,m) ' C × C \∆ the diagonal ∆.

As before, the action of G ' H1(Σg,Z) on Sg,2 preserves each fiber of the forgetful map

Forg,2 : Sg,2 → Sg, hence it preserves the open subset Ug,2 := For−1
g,2(Sg) ⊂ Sg,2. The action

is free on this subset. Indeed, recall that the stabilizer of a point (C, r1, r2,m) ∈ Sg,2 in

2Usually what is refered to as Birman’s exact sequence is for a surface punctured at only one point, but
the idea of the proof is the same in the case of two points: given an element of the braid group [ϕ] ∈ B(Σg,2),
represented by an isotopy class of diffeomorphism ϕ ∈ Diff(Σg, q1, q2), there exists an isotopy (ϕt)t∈[0,1] in

Diff(Σg) such that ϕ0 = ϕ and ϕ1 = Id. The loop (ϕt(q1), ϕt(q2)) ∈ Σ2
g \∆ defines an element γ ∈ π1(Σ2

g \
∆, (q1, q2)) that only depends on [ϕ] and the map [ϕ] 7→ γ induces an isomorphism between B(Σg,2) and
π1(Σ2

g \∆, (q1, q2)).
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Aut(H1(Σg, {q1, q2},Z)) is generated by the action on relative homology of the Dehn twists
along the (Torelli classes of) pinched curves of m. In the case of a point (C, r1, r2,m) ∈ Ug,2,
the only non trivial (Torelli class of) pinched curves of m are the ones that separate the
surface Σg,2 into two domains, the first of genus zero containing the two marked points q1, q2,
the second being of genus g with a disc removed (a representation of the surface of genus
two with the pinched curve is depicted in Figure 2). The Dehn twist along such a curve acts
trivially on the relative homology group. On the one hand we deduce from Lemma 4.13 that
Ug,2 is a manifold and on the other that the action of H1(Σg,Z) on Ug,2 is free.

We claim that the action of G on Ug,2 is moreover proper and discontinuous. Since Ug,2 is
a manifold, and hence is locally compact, it suffices to prove that the action is discontinuous,
namely that any point has a neighborhood which is disjoint from its images by G. We already
know this is so on the open stratum Sg,2 of Ug,2 since there the action of the whole Torelli
group is. So it remains to prove that the action is proper around any point of the boundary
of Ug,2. For any point [(C, q1, q2,m)] ∈ ∂Ug,2 denote by γ ⊂ Σg,2 a loop which is mapped to
the node of C by some marking of C in the equivalence class of m. There is a neighborhood
W ⊂ Ug,2 defined by the property that for every [(C ′, q′1, q

′
2,m

′)] ∈ W the image of the loop
γ in C ′ by some marking in the equivalence class of m′ is of minimal length and this is the
unique loop having this property. In particular, if an element of G maps an element of W to
an element belonging to W, then some of its lift to the mapping class group of Σg,2 needs to
fix γ (by uniqueness) and this can happen only if the original element of G is the identity.
Hence the claim follows.

We denote the quotient map by R : Ug,2 → V := Ug,2/H1(Σg,Z), which is a H1(Σg,Z)-
covering, the forgetful map Forg,2 transits via a map

For : V→ Sg

satisfying For = For◦R; it is a holomorphic fibration isomorphic to the square universal bundle
C2(Sg) → Sg by using Riemann’s extension theorem applied on the added boundary points.

Notice that for a given (C,m) ∈ Sg the fiber For
−1

(C,m) is biholomorphic to the complex
surface C×C and inherits a natural identification of the homology m×m : H1(Σg)×H1(Σg)→
H1(C)×H1(C). The covering

R|For−1(C,m) : For−1(C,m)→ For
−1

(C,m) ' C × C

is a H1(Σg)-covering of monodromy given by (25).

Boundary complex of Ug,2.

Each boundary stratum Bc of Ug,2 is characterized by a Torelli class of a simple closed curve
c in Σg,2 that bounds a disc containing the marked points. The following Lemma proves that
every such stratum can be characterized by a homology class in b.

Lemma 4.27. Let c be an isotopy class of separating simple closed curve in Σg,2 that splits
Σg into a disc containing both marked points and a genus g component without marked points.
Then, c defines a unique class βc ∈ H1(Σg, q1, q2;Z) represented by a cycle in the disc such
that ∂βc = q2 − q1. Two such curves c, c′ are equivalent under the Torelli group Ig,2 if and
only if βc = βc′.

Proof. If c and c′ are equivalent by an element of the Torelli group it is obvious that βc′ is
the image of βc and since the action is trivial in homology we have βc = βc′ .
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Suppose βc = βc′ . Let D and D′ be the open discs bounded by representatives of c and c′

respectively. Find an orientation preserving diffeomorphism φ : Σg → Σg such that φ(c) = c′,
φ(D) = D′ and φ1(qi) = qi. By definition the map φ∗ induced by φ in H1(Σg, q1, q2,C)
satisfies φ∗(βc) = βc′ . We will show that up to pre-composition of φ with an diffeomorphims
ψ that fixes the closure of D pointwise, we can suppose that (φ ◦ ψ)∗ fixes every class in
the homology group. Indeed, the restriction of φ∗ to the image of the natural inclusion
0 → H1(Σg,Z) → H1(Σg, q1, q2,Z) defines an element in the group Aut(H1(Σg,Z)). On the
other hand, the action of the mapping class group of orientation preserving isotopy classes of
diffeomorphisms of Σg \D that fix the boundary pointwise, provides a map Mod(Σg \D)→
Aut(H1(Σg,Z)) that is surjective (see [25]p.169 and Section 6.3.2 for details). Hence, there
exists a ψ : Σg → Σg that is the identity on D, such that ψ∗ = (φ∗|H1(Σg))

−1 and ψ∗(βc) = βc.

By construction (φ ◦ ψ)∗ = Id and φ ◦ ψ(c) = c′. �

This finishes the proof of Proposition 4.26. �

4.12. Stable forms on a stable curve.

Definition 4.28. Let C be a stable nodal curve. A stable one-form on C is a section of its
dualizing sheaf. In other words, a holomorphic 1-form on C∗ that has at worst simple poles
at the nodes and satisfies that the sums of the residues of the branches meeting at each node
is zero. Ω(C) denotes the space of stable forms on C. A stable one form will be sometimes
referred to as an abelian differential.

By Riemann Roch’s Theorem, the space of meromorphic 1-forms on a compact connected
genus g Riemann surface X with at most simple poles at k > 0 marked points has dimension
k + g − 1. If we apply this to each part of a connected stable nodal curve C of genus g, we
deduce that the dimension of the complex vector space Ω(C) is g (see [32][p.82]) Remark that
the restriction of a stable form ω ∈ Ω(C) to a component Ci of the normalization of C can
be the zero form. If this is the case we say that ω has a zero component.

Definition 4.29. Given a stable curve C we denote

• Ω∗(C) ⊂ Ω(C) the set of stable forms without zero components.
• Ω0(C) ⊂ Ω(C) the vector subspace of stable forms with zero residue at any node
• Ω∗0(C) = Ω∗(C) ∩Ω0(C) the set of stable forms without zero components, and whose

residues at the nodes are zero.

If C is of compact type, then by the residue theorem applied to each part of C, all residues
of all branches at the nodes have to be zero, so Ω0(C) = Ω(C). If C1, · · · , Ck are the distinct
parts of C, a stable form in Ω(C) will be written as ω1 ∨ . . . ∨ ωk where each ωi ∈ Ω(Ci) and
the ∨ indicates that we glue them at the points corresponding to the nodes of C.

Definition 4.30. The order of a stable form (C,ω) at a node q is defined to be

ordq(ω) = 2 + ordq(ω1) + ordq(ω2)

where ωi denotes the restriction of ω to a branch of C through q.

Note that the order of the node cannot be 1 and ordq(ω) ≥ 0 for any point q ∈ C.

Given a stable form ω ∈ Ω∗(C) of genus g we define its associated divisor

(ω) =
∑
q∈C

ordq(ω)q
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whose primitive degree satisfies

deg(ω) =
∑
q∈C

ordq(ω) = 2g − 2.

The support is a disjoint union of the zeros Z(ω) and the nodes N(ω) of ω. As a consequence
any stable curve C with more than g − 1 nodes has empty Ω∗0(C).

4.13. Stable one forms and singular translation structures. On each component Ci
where a stable form (C,ω) is not identically zero it defines naturally a singular translation
structure. Indeed, around a point q ∈ C∗i we can locally define a holomorphic function
φq(z) =

∫ z
q ω that is a branched covering of degree ordq(ω) + 1, ramified over 0 if the degree

is at least two. At the intersection of domains two such maps φq and φp satisfy

φp = φq + const.

Reciprocally if we are given a cover Uα of a compact (possibly disconnected) topological
surface Σ, and finite branched coverings φα : Uα → Vα ⊂ C satisfying φα = φβ + const at the
intersections Uα ∩Uβ, we can define a complex structure on Σ by declaring that the φα’s are
holomorphic. The abelian differential ω defined locally by dφα is well defined on the obtained
Riemann surface Ĉ. By identifying pairs of points in Ĉ, we obtain all nodal curves C that
are normalized by Ĉ.

4.14. Singular flat metric and geodesic foliations. Denote by Z(ω)∪N(ω) the support of
zeros and nodes of the divisor (ω) =

∑
q∈C ordq(ω)q of a stable form (C,ω) having components

(Ci, ωCi). Any object invariant by translations in C can be pulled back to C∗i \Z(ωCi)∪N(ωCi)
with singularities at the points of Z(ω) ∪N(ω).

In particular the pull back of the flat metric in C produces a a singular flat metric on any
non-zero component (Ci, ωi) defined by ω ⊗ ω. At a branch Ci of C around a point q ∈ Ci
of non-negative order for the restriction ω|Ci

, the metric is equivalent to a standard conical
point of angle 2π(ordq(ωCi) + 1). Around a point with non-zero residue a ∈ C∗, the metric is
a semi-infinite cylinder equivalent to one of the ends of C∗/aZ. The volume of a stable form
ω ∈ Ω(C) is defined as

(30) vol(ω) =
i

2

∫
C
ω ∧ ω.

In particular, 0 ≤ vol(ω) ≤ ∞ and it is finite if and only if all the residues of ω at the nodes
of C are zero. If vol(ω) = 0 then ω is the zero form.

The oriented geodesic directional foliation of C given by an angle θ ∈ S1 is also invariant
by translations, so we can also lift it to a singular oriented directional foliation Gθ on Ci. Its
leaves are geodesics for the metric induced by the form ω. At a zero q of ωCi the foliation has
a saddle with 2(ordq(ωCi) + 1) separatrices, that alternatively enter and leave the singularity
by forming an angle of π (see Figure 4). At any other point the foliation is regular.

Some subsets of stable forms where these geometric objects encode important information
will be of special importance for us and we introduce appropriate notation.

Definition 4.31. Given a family K of (marked or unmarked) stable curves, we define

• Ω0K ⊂ ΩK to be the set of stable forms over curves in K whose residues at all nodes
are zero (or equivalently the volume of the underlying metric is finite) and
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Figure 4. A saddle point of a directional foliation at a zero of order two

• Ω∗0C ⊂ Ω0C the set of stable forms over curves in C that have no zero components and
zero residue at all nodes (or equivalently the underlying metric has finite volume and
isolated singularities)

4.15. The Hodge bundle over the Deligne-Mumford compactification of Mg,n. Re-

call (see [32], Chapter 4) that over the Deligne-Mumford compactification Mg,n we can define
the universal curve bundle

CMg,n →Mg,n

which is a holomorphic map between compact complex orbifolds whose fiber over the point
(C, r1, . . . , rn) ∈ Mg,n is biholomorphic to the curve with marked points (C, r1, . . . , rn). The
cotangent bundle to this fibration is well defined on the complement of the set of nodes. It
extends as a line bundle L to the whole universal curve , called the relative cotangent bundle.
A section of the restriction L|C corresponds precisely to a stable form on C. The constancy of
the dimension of this space of sections implies that the sheaf obtained by pushing it forward
to Mg,n is locally free of rank g (see [33][Exercise 5.8]). Thus it defines a holomorphic vector
bundle

π : ΩMg,n →Mg,n

called the Hodge bundle. The fiber of π over a point (C, r1, . . . , rn) ∈ Mg,n corresponds
precisely to the set of stable forms Ω(C). When n = 0, the Hodge bundle trivializes over any
of the preferred neighbourhoods U = Uc/Γc. A choice of a Lagrangian Λ ⊂ H1(Σg) containing
all the classes induced by the curves in the curve system c allows to define a trivialization

ΩU ' U ×Hom(Λ,C)

Definition 4.32. The boundary strata of ΩMg,n is the set of stable forms over stable curves

with marked points lying the boundary strata ∂Mg,n.

The pull back of the compactified Hodge bundle ΩMg,n → Mg,n by the map Tg,n →
Mg,n defines the (topological) complex vector bundle ΩTg,n → Tg,n of homotopically marked

stable forms of genus g with n marked points. An element in ΩTg,n is a pair ([f : Σg,n →
(C, r1, . . . , rn)], ω) where [f : Σg,n → (C, r1, . . . , rn)] ∈ Tg,n and ω ∈ Ω(C). The Torelli group

Ig,n acts on the bundle ΩTg,n → Tg,n. The quotient defines a bundle ΩSg,n → Sg,n. These will
be referred to as the Hodge bundle over augmented Teichmüller or augmented Torelli space,
depending on the case.

Their boundaries are, by definition, the preimage of the boundary of ΩMg by the corre-
sponding projection,i.e. the stable forms over curves with some node.

Given a collection of (marked or unmarked) stable curves K we define ΩK to be the set of
stable forms over K, with the induced topology in the corresponding vector bundle of forms.
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Given a subset of some space of forms L ⊂ ΩK we denote by ∂L the intersection of L with
the boundary strata of the ambient space.

Endowed with the complex structure in each boundary stratum B, ΩB becomes a holo-
morphic vector bundle over B. We will refer to it as a boundary stratum of the space of forms
where B lies.

Definition 4.33. A homologically marked stable form of genus g ≥ 0 with n marked points is
a tuple (C, r1, . . . , rn,m, ω) ∈ ΩSg,n where ω is a stable one-form on a homologically marked
stable curve (C, r1, . . . , rn,m) of genus g with n marked points. By abuse of language we
say that ω pinches a ∈ H1(Σg, q1, . . . , qn,Z) \ 0 if a is primitive and m(a) = 0. We say that
(C, r1, . . . , rn,m, ω) belongs to the boundary strata if C has some node.

4.16. Attaching and forgetful maps on Hodge bundles. The continuous attaching maps
defined at the level of marked curves in subsection 4.10 can be lifted to attaching maps on
the corresponding Hodge bundles.

In particular, using Lemmas 4.23 and 4.24 the attaching maps can be lifted as continuous
maps to the corresponding Hodge bundles:

(31) ΩSg1,n1 × ΩSg2,n2 → ΩSg1+g2,n1+n2−2 and

(32) ΩSg−1,n+2 → ΩSg,n

by simply considering the stable form over the image curve that coincides with the given
restriction on each part. The image will only contain forms with zero residue at the node
produced by the attaching map. More generally, we can use attaching maps and the the
biholomorphism (20) to define, via the attaching maps a decomposition of forms with zero
residues on a stratum Bc of Tg,n:

(33) Ω0Bc ∼= ΠiΩTgi,ni

On the other hand we can also lift the forgetful maps defined by Lemma 4.25 to the Hodge
bundle. To construct the natural lift

ΩSg,n → ΩSg,n−1

it suffices to restrict the form to the image curve. Remark that on the eventually contracted
components after forgetting the point the form is of genus zero and uniquely determined by
the value of one of the residues.

4.17. Sub-stratification of Hodge bundles and period coordinates on strata. The
boundary stratification of the Hodge bundle over Mg,n is substratified by the topological

properties of the zero divisor and polar set of the forms. Two elements in ΩMg,n are said
to belong to the same substratum if there exists a homeomorphism between the underlying
marked curves preserving the following data of the forms:

(1) zero components
(2) nodes with non-zero residue
(3) the associated zero divisor on each non-zero component

In particular, if an element has a zero of order k at a marked point, then any element in its
substratum will have a zero at of order k at a marked point. The same happens with poles
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with zero residue: if the restriction of the form to one of the branches has a zero of order k,
then any form in its stratum will have this property on the corresponding branch of a node.

This stratification can be lifted to ΩSg,n and ΩTg,n. It is a substratification of the stratifica-

tion induced by tBc on Tg,n. The generic stratum in ΩBc is the only substratum that is open
in ΩBc, and it is Zariski open too. Indeed, the union of all other substrata in ΩBc form an
analytic subset of ΩBc. A substratum in ΩBc is minimal if it has minimal dimension among
substrata of ΩBc. In particular, the generic stratum in ΩB∅ = ΩTg,n is the stratum having

only simple zeros at unmarked points and is also dense in ΩTg,n. The minimal stratum in
ΩTg,n is formed by forms with a single zero of order 2g− 2 at some marked point (for n ≥ 1).

The restriction of an isomorphism of type (33) to all possible products of substrata of
ΩTgi,ni describe all the diferent substrata of forms with zero residues in Ω0Bc. Let us define
local holomorphic coordinates on them.

The zero substratum of ΩMg,n is isomorphic to Mg,n. On the other hand, Veech [65] and
Masur in [49] proved that local holomorphic coordinates can be given in any substratum R of
ΩMg,n around a point (C,P, ω) with ω 6= 0. They are defined by integration of the form on
cycles in H1(C,Z(ω) ∪ P ;Z) and therefore lie in the vector space H1(C,Z(ω) ∪ P,C). These
endow the stratum with the structure of a complex manifold compatible with the one induced
by the complex structure of ΩTg,n.

We conclude from the equivalence (33) and the description of strata, on smooth curves,
that the substratum of stable forms containing a point (C,P, f, ω) ∈ Ω∗0Tg,n without zero
components and with zero residues at the nodes is locally isomorphic to the product∏

i

H1
(
Ci, (Z(ω) ∪N(C) ∪ P ) ∩ Ci,C

)
where each Ci corresponds to a connected component of the normalization of C and N(C) is
the union of all points of attaching in the components Ci to obtain C. These local coordinates
will be referred to as period coordinates on the substratum.

4.18. Periods of marked stable forms with zero residues at the nodes. A stable
form on (C, r1, . . . , rn) is holomorphic on C∗ and can thus be integrated along paths in
C∗. For closed paths the value of the integral does only depend on the homology class in
H1(C∗, r1, . . . , rn;Z) and it is called the period of the class. If the residues at nodes are all
zero, we can also integrate along paths passing through the nodes, and the integral along a
closed path depends only on its class in H1(C,Z).

For any marked stable form ([f : Σg,n → (C, r1, . . . , rn)], ω) ∈ Ω0Tg,n of genus g with
n marked points and zero residues at the nodes we have a well defined notion of period
homomorphism

Per([f : Σg,n → (C, r1, . . . , rn)], ω) : H1(Σg, q1, . . . , qn;Z)→ C

defined by

(34) Per([f : Σg,n → (C, r1, . . . , rn)], ω)(γ) =

∫
f∗(γ)

ω for γ ∈ H1(Σg, q1, . . . , qn;Z).

Since the period homomorphism depends only on the homological marking induced by the
homotopical marking, we can also define the period on a homologically marked stable curve
(C, r1, . . . , rn,m, ω) with marked points by {γ 7→

∫
m(γ) ω}. Any homologically non-trivial
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curve a in Σg pinched by the marking, i.e. belonging to Ker(f∗), also belongs to the kernel
of the period homomorphism. Remark that if the period homomorphism is injective then the
marking is an isomorphism, and thus the curve C must be of compact type.

Definition 4.34. The period map associated to (Σg, q1, . . . , qn) is the map

Ω0Tg,n → H1(Σg, q1, . . . , qn,C)

that associates to any stable form with zero residues marked by (Σg, q1, .., qn), its period
homomorphism. It is invariant by the Torelli group Ig,n action and descends to the quotient

Ω0Sg,n → H1(Σg, q1, . . . , qn,C).

One of the difficulties that we will encounter is related to the fact that the domain of
definition of the period map is neither open nor closed. It is a union of substrata of stable
forms. It contains the (dense) open subset of stable forms on smooth curves, but in the
boundary strata we need to restrict to the closed set of strata that have no residues at the
nodes.

Definition 4.35. An isoperiodic deformation of a point in Ω0T0 or Ω0Sg,n is a continous
deformation in the ambient space that has constant value for the period map.

The following notation will be useful

Definition 4.36. Given a homomorphism p : H1(Σg, q1, . . . , qn;Z) → C and a family K ⊂
Ω0Sg,n we denote by K(p) the subset of marked stable forms in K having period homomor-
phism p, i.e. the intersection of the the period fiber over p with the set K.

4.19. Local structure of the fibers of the period map. A local fiber of the period map
can be thought as a disjoint union of sets in the different strata of the ambient space. The
next theorem shows that this partition is actually a nice stratification

Theorem 4.37. A local fiber L of the period map in Ω∗0Sg,n projects to the orbifold chart of

ΩMg,n as a complex manifold transverse to all boundary divisors through the point. Therefore,
L is an abelian ramified cover of a normal crossing divisor in (C2g+n−3, 0) having precisely
one component of codimension one in each component of codimension one of the ambient
space Ω∗0Sg,n through the point.

The statement is not true in general for forms with zero components (see subsection 4.20).

Proof. A local period fiber on Ω0Sg can be lifted to a local period fiber in Ω0Tg. If the lift of
the point belongs to the stratum ΩBc, the covering group is the subgroup Γc∩Ig ⊂ Γc. Hence,
we just need to prove that the period fiber at the level of the Hodge bundle over augmented
Teichmüller space has a stratification that is locally equivalent to some map ϕl,2g+n−3 as in
(21) where l denotes the number of simple closed curves in the curve system c. It suffices
in fact to show that at the level of the quotient Ω0(Uc/Γc) the period fiber is a holomorphic
manifold transverse to every boundary component passing through the point. Thanks to
the normal crossing condition of the ambient space, this is guaranteed if the period map
is submersive in restriction to the (regular) stratum of the normal crossing divisor where
the point belongs to. In fact we will not use the boundary stratum but a smaller regular
submanifold, consisting of the substratum through the point.
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Proposition 4.38. Consider ([f0 : Σg,n → (C0, P0)], ω0) ∈ Ω0Tg,n and ΩUc its preferred
neighbourhood. Denote m0 := f0∗ : H1(Σg, q1, . . . , qn;Z)→ H1(C0, P0;Z) and define H as the
germ of the zero set of the map ΩUc → Hom(kerm0,C) defined by integration. Then H ⊂
Ω0Uc, H/Γc is a proper holomorphic submanifold of Ω0(Uc/Γc) and the period map induces
a holomorphic map Ω0(H/Γc) → H1(C0, P0,C). If the form ω0 has no zero components, the
holomorphic map thus defined is submersive, even by restricting it to the substratum containing
(C0, ω0). Hence, the isoperiodic foliation extends along H/Γc as a regular foliation.

Proof. We first need a lemma about the holomorphicity of integration over a cycle:

Lemma 4.39. Let Uc/Γc → U ⊂ Mg,n be a (orbifold) chart around a point (C0, P0) ∈ Mg,n

and γ be a path in Σg \ c. Then, the map ΩUc → C defined by

([f : Σg,n → (C,P )], ω) 7→
∫
f∗(γ)

ω

induces a well defined holomorphic map on ΩU ⊂ ΩMg,n.

Proof. The function is well defined on Uc/Γc because γ does not intersect any of the simple
closed curves in c. It is holomorphic outside the boundary and bounded in the neighbourhood
of every boundary point, hence holomorphic by Riemann extension Theorem. �

Remark first that there is a non-trivial exact sequence

(35) 0→ Hom(H1(C0, P0;Z),C)→ Hom(H1(Σg, q1, . . . , qn;Z),C)→ Hom(kerm0,C)→ 0

induced by that defined by the marking

0→ kerm0 → H1(Σg, q1, . . . , qn;Z)→ H1(C0, P0;Z)→ 0.

The map
ΩUc → Hom(kerm0,C)

given by ([f : Σg,n → (C, r1, . . . , rn)], ω) 7→ {c 7→
∫
f∗(c)

ω} is well defined and invariant by the

action of Γc on ΩUc. Lemma 4.39 implies that it induces a holomorphic map

(36) h : Ω(Uc/Γc)→ Hom(kerm0,C).

We claim that h is submersive at [f0 : Σg,n → (C0, P0)]. In fact, its restriction to the Hodge
bundle fiber ΩC0 is already submersive. It associates to each node, the value of its residue. It
is therefore linear. The kernel of this restriction is precisely Ω0C0, the space of stable forms
with zero residues on C0. Let C1, . . . , Cl be the components of the normalization of C0 and
define N(Ci) ⊂ Ci the points corresponding to the nodes of C0. The restriction of any stable
form in ΩC0 to the component Ci is a meromorphic form with at worst simple poles on N(Ci).
It satisfies the residue theorem. On the other hand, by Riemann-Roch theorem applied to Ci
with i ≥ 1 if we denote mi = |N(Ci)| and gi = g(Ci) the genus of Ci we get

(1) the space Mi of meromorphic forms on Ci that have at worst simple poles at the
marked points has dimension gi +mi − 1 and

(2) the space ΩCi of holomorphic forms on Ci has dimension gi.

Denote Li ⊂ Cmi the codimension one space defined by x1 + . . .+ xmi = 0. By the previous
dimension calculations, the sequence 0 → ΩCi → Mi → Li → 0 is exact. Recall that∑
mi = 2m where m denotes the number of nodes of C0. Consider L ⊂ C2m the codimension

l subspace L1 ⊕ · · · ⊕ Ll.
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The sequence

(37) 0→ Ω0C0 →M1 ⊕ · · · ⊕Ml → L→ 0

is still exact. A necesssary and sufficient condition for an element of M1 ⊕ · · · ⊕Ml to define
a form in ΩC0 is that the residues at the points that are attached to produce a node in C0

have opposite sign. This corresponds to cutting L with m linear equations of type xi−xj = 0
in C2m where m is the number of nodes of C0. When we intersect m − 1 of those with
L, we easily obtain the last of such equations. In fact, the dimension of the intersection is
2m− l− (m−1) = m− l+ 1. The points in this intersection are in one to one correspondence
with elements in Hom(kerm0,C). Indeed, the non-separating curves in c generate kerm0,
and the only relations they have to satisfy are the relations given by the fact that some sums
of the generators are boundaries of components. This relations coincide with those defining
the relevant subspace of L. On the other hand the exactness of (37) tells us that we can find
a form in ΩC0 with any given residue homomorphism kerm0 → C. This proves that h|ΩC0

is surjective. Since it is linear it is also submersive, and so are h and the restriction of h to
each boundary component containing (C0,m0, ω0). The levels of h are regular subvarieties
transverse to each boundary component and invariant by Per. The zero level set

H = {([f : Σg,n → (C,P )], ω) ∈ ΩUc :

∫
f∗(c)

ω = 0 ∀c ∈ kerm0}

contains the marked stable form ([f0 : Σg,n → (C0, P0)], ω0) and is invariant under the action
of Γc. By the exact sequence (35), the restriction of the period map to H can be thought as
a map H → H1(C0,C) that is invariant by Γc. The induced map

h2 : H/Γc → Hom(H1(C0, P0;Z),C) is holomorphic.

This proves that the fibers of the period map in Ω0Sg,n are preimages under the branched
covering ΩUc → Ω(Uc/Γc) of analytic sets.

It remains to prove that h2 is submersive in restriction to the substratum R containing
([f0 : Σg,n → (C0, P0)], ω0) whenever ω0 has no zero components.

Recall that C1, . . . , Cl denote the components of the normalization of C0 and define

• ωi the restriction of ω0 to Ci
• gi = g(Ci) the genus of Ci
• Pi = (P ∩ Ci) ∪N(Ci) ∪ Z(ω0i))

The local coordinates in the substratum Ri of the stable form (Ci, Pi, ωi). The latter are
given by vectors in Wi = H1(Ci, Pi,C).

By using the attaching maps used to obtain C0 from C1, . . . , Cl we define a surjective
holomorphic map

W1 ⊕ · · · ⊕Wl → R.

If we prove that the composition of this map with the period map h2 is submersive onto
H1(C0,C) we will be done. The said composition is a map

W1 ⊕ · · · ⊕Wl → Hom(H1(C0, P0,Z),C)

that factors through

Ŵ1 ⊕ · · · ⊕ Ŵl where Ŵi = H1(Ci, N(Ci),C).
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The map W1⊕· · ·⊕Wl → Ŵ1⊕· · ·⊕Ŵl and the map Ŵ1⊕· · ·⊕Ŵl → Hom(H1(C0, P0;Z),C)
are obviously submersive. �

�

Definition 4.40. The map

Perg,n : Ω∗0Sg,n → Hom(H1(Σg,n);C)

denotes the extension to the bordification Ω∗0Sg,n of the period map Perg,n defined on ΩSg,n.
When there is no risk of confusion we omit the subindex and write Per and Per respectively.

Definition 4.41. Let p ∈ Hg and denote Gp the dual boundary complex of the bordification

Per−1(p) of Per−1(p) defined by its closure in Ω∗0Sg . The final statement of Theorem 4.37
and Remark 4.9 allow to define a continuous map of dual boundary complexes

(38) Gp → C(Sg) ' Cg/Ig

Corollary 4.42. The period map Perg,n induces a regular holomorphic foliation Fg,n on the

moduli space Ω∗M
c
g,n of stable forms without zero components on curves of compact type called

the isoperiodic foliation. It is transverse to all boundary components and to the substratum
passing through the point. Its restriction to Ω∗Mg,n will be denoted by Fg,n.

Proof. All the residues of all forms in a neighbourhood of a point in Ω0S
c
g,n are zero. Hence,

the map Per is holomorphic in some neighbourhood. Proposition 4.38 guarantees that it is
also submersive there. On the other hand Perg,n is equivariant with respect to the natural
action of Mod(Σg,n) on source and target. Hence the underlying foliation is well defined in
the quotient. �

Remark 4.43. The isoperiodic foliation Fg,n extends to the whole space ΩMg,n as a singular
holomorphic foliation. In fact, the zero section of the Hodge bundle is part of the singular
set of this foliation, as are the points of non-compact type in Ω∗0Mg,n, and most strata with
zero components (see section 4.44 for an example). To construct the extension isoperiodic
foliation to the missing strata (those with non-zero residue at the nodes) we need to define
the notion of isoperiodic family of meromorphic forms on smooth curves. This subject will
be developed in a forthcoming paper.

4.20. Some singularities of the isoperiodic set on regular points of ΩSg,2. In this
subsection we analyze the local isoperiodic deformation spaces at some points of the Hodge
bundle over the complex manifold Ug,2 ⊂ Sg,2, bordification of Sg,2, introduced in Section
4.11. The contents of this section will be useful in Section 7.

Recall from Section 4.26 that the boundary points in Ug,2 consist on stable curves having
precisely one separating node that leaves both marked points on a genus zero component (in
Figure 2 we depict such a stable curve for g = 2). The strata of ∂Ug,2 form a smooth divisor
having a connected component Bβ for each class β ∈ b = {β ∈ H1(Σg, q1, q2;Z) : ∂β = q2−q1}

The bundle ΩUg,2 → Ug,2 is a complex manifold. The stratification of the ambient space
induces a stratification on ΩUg,2 that has the following boundary strata:⊔

β∈b
ΩBβ.
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Each stable form in ΩBβ has a zero component of genus zero and lies in the domain Ω0Sg,2
of the period map Perg,2. Moreover the restriction of this map to ΩUg,2 is holomorphic (see
Proposition 4.38) . We want to analyze the local analytic set formed by a period fiber around
generic points of ΩBβ.

By abuse of language we write ΩSZBβ ⊂ ΩBβ the forms that have simple zeros on the

smooth genus g component and a zero component of genus zero, and ΩSZ,1Bβ ⊂ ΩSZBβ
those where the zero component is glued at a simple zero of the non-zero component (as in
Figure 2) .

Proposition 4.44. Let (C0, r0
1, r

0
2,m

0, ω0) ∈ ΩSZBβ ⊂ ΩUg,2. The local isoperiodic defor-
mation space at (C0, r0

1, r
0
2,m

0, ω0) is

(1) a normal crossing of two smooth manifolds, precisely one of which is contained in the
boundary strata, if (C0, r0

1, r
0
2,m

0, ω0) ∈ ΩSZ,1Bβ or

(2) a smooth manifold contained in the boundary if (C0, r0
1, r

0
2,m

0, ω0) /∈ ΩSZ,1Bβ

Proof of Proposition 4.44. Along the proof we write U = Ug,2. Let (C, r1, r2,m, ω) ∈ ΩSZBβ.

We consider the contraction of the spherical component of ω, namely the tuple (Ĉ, q̂, m̂, ω̂)) ∈
ΩSZSg,1 satisfying the following relations

(39) m̂ = m ◦ ι where ι : H1(Σg,1)→ H1(Σg,2) is the natural inclusion

(40) (C, r1, r2,m) = (Ĉ, q̂, m̂) ∨
q̂=∞

(CP 1, 0, 1,∞) for some q̂ ∈ Ĉ

and

(41) ω = ω̂ ∨ 0 on (Ĉ, q̂, m̂) ∨
q̂=∞

(CP 1, 0, 1,∞).

The point lies in ΩSZ,1Bβ if and only if ω̂(q̂) = 0.

We can define a holomorphic map

(42) hβ : ΩSZU → C by hβ(C, r1, r2,m, ω) =

∫
m(β)

ω

Its zero set Hβ = {hβ = 0} contains ΩSZBβ and is invariant by the isoperiodic foliation on

ΩSZU .

Let us provide adapted coordinates of ΩSZU around the point (C0, r0
1, r

0
2,m

0, ω0) ∈ ΩSZBβ.
Denote

(43) For : ΩSZU → ΩSZSg

the restriction of the forgetful map Forg,2 : ΩSg,2 → ΩSg to the open set ΩSZU .

Given a small neighbourhood V 0 of For(C0, r0
1, r

0
2,m

0, ω0) in ΩSg suppose we are given a
local holomorphic section q : V 0 → ΩSZSg,1 of ΩSZSg,1 → ΩSZSg such that

(1) q(Ĉ0, m̂0, ω̂0) = q̂0 ∈ Ĉ0 is the point corresponding to the node of C0, and
(2) the order of the form ω̂ at the point q(C,m, ω) is independent of (C,m, ω) and (there-

fore) has value k − 1 ∈ {0, 1}
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The germs of holomorphic functions

r1 7→
∫ r1

q◦textFor(C,r1,r2,m,ω)
ω̂ and r2 7→

∫ r2

q◦For(C,r1,r2,m,ω)
ω̂

at q(C,m, ω) have each degree k and can therefore be written as

r1 7→
(
ζ1(C, r1, r2,m, ω)

)k
and r2 7→

(
ζ2(C, r1, r2,m, ω)

)k
for some germ of biholomorphisms

ζ1, ζ2 : (C, q(C,m, ω))→ (C, 0)

In a small neighbourhood W 0 of (C0, r0
1, r

0
2,m

0, ω0) in For−1(V 0) we consider the holomorphic
map Ψq : W 0 → V 0 × C2 defined by

(44) Ψq(C, r1, r2,m, ω) =
(
For(C, r1, r2,m, ω), ζ1(C, r1, r2,m, ω), ζ2(C, r1, r2,m, ω)

)
.

It is locally injective and therefore it is locally a biholomorphism. In these coordinates, the
boundary strata of ΩSZU are defined by {ζ1 = ζ2} and the map hβ and Perg,2 by

hβ
(
(C,m, ω), ζ1, ζ2

)
= ζk2 − ζk1 and Perg,2((C,m, ω), ζ1, ζ2) =

(
Perg,0(C,m, ω), ζk2 − ζk1

)
.

In particular

Per−1
g,2(p0, 0) =

⋃
{α∈C:αk=1}

Per−1
g,0(p0)× {ζ2 = αζ1}

When k = 1 the germ of isoperiodic set at (C0, r0
1, r

0
2,m

0, ω0) is smooth contained in the
boundary.

When k = 2, the holomorphic section q : V0 → ΩSZSg,1 is uniquely defined by the implicit
condition ω

(
q(C,m, ω)

)
= 0. There are two smooth isoperiodic components intersecting

transversely at (C0, r0
1, r

0
2,m

0, ω0); precisely one lies in the boundary. �

5. Surgeries on stable forms and models of degeneracy

In this section we recall a surgery called Schiffer variation, that allows to construct isope-
riodic deformations of forms without zero components on stable curves. We use them mainly
to find boundary points that have some node zero residues and no zero components in the
closure of any connected component of a fiber of Per.

5.1. Schiffer variations on stable forms. A Schiffer variation is a continuous deformation
of stable forms with some branch point or node. It can be best described in terms of the
associated translation structures. The surgery changes the translation structure associated to
a form on some small neighbourhood in the surface without changing it on the complement.
By taking representatives of the cycles in the homology group that avoid that open set, it
is easy to see that the period maps before and after the surgery coincide. There are several
instances of the surgery that produce differences on the underlying surface and the translation
structure. For instance it allows to deform the projective structure without varying the orders
and number of zeros and nodes. It also allows to split a multiple branch point into simpler
branch points; at last it allows to produce a smooth surface with several branch points from
a node. The surgery operation is invertible (the surgery is actually involutive under suitable
restrictions) so the inverse operations can be used to join branch points and to produce
nodal curves. They were first considered by Schiffer in [60]. A detailed discussion of Schiffer
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variations on projective structures the can be found in [15]. We will introduce it only for the
case of branched translation structures and will use them to prove that any abelian differential
on a smooth curve can be joined to an abelian differential on a stable curve with some node
by a sequence of such surgeries.

Let (C0,m0, ω0) be a marked abelian differential on a nodal curve C0 and q be point where
0 < ordq(ω0) <∞. Remark that the chart φ = φq defined by ω0 around q can be analytically
continued along any path in C0. Let γ1 and γ2 be two embedded paths in C0 starting at q
parametrized by [0, 1] whose images do not intersect outside the endpoints. For our purposes
it is important to stress that both endpoints can coincide with each other, and/or with the
starting point. We say that γ1 and γ2 are twin paths if none passes through two distinct
nodes and the continuation φi of φ along γi satisfies that φ1 ◦ γ1(t) = φ2 ◦ γ2(t) ∈ C for all t
and t 7→ φi ◦ γi(t) is a simple path in C. Since the chart φq is a branched covering of degree
ordq(ω0) + 1 each path starting at q has ordq(ω0) candidates to be its twin paths. Remark
that the restriction of a pair of twin paths parametrized by [0, 1] to some sub-interval [0, t0]
is still a pair of twin paths.

Given a pair of twin paths γ1, γ2 in C0, we can use the equivalence between abelian differ-
entials and atlases formed by branched coverings over open sets in C and with transitions in
the set of translations z 7→ z + const to produce a new abelian differential ω1 by cutting and
pasting the twin paths as follows. Let U0 be a small neighbourhood of γ1 ∪ γ2 where the φi’s
are defined. Cut U0 along the segments γ1 and γ2 and glue the boundary on the left (resp.
on the right) of γ1 to the boundary on the right (resp. on the left) of γ2 by identifying points
that have the same image for φi(see Figure 5). The fact that none of the twins passes through
distinct nodes implies that at any point m, the new germ (V,m) of singular surface has the
property that V \m has one or two components. This implies that the new singular surface
has only regular points and nodes. Let U1 be the set of points obtained from U0 after the
gluing. The new nodal surface is equipped with a family of local branched coverings. Indeed,
on the complement of U1 we consider the family of branched coverings given by integrating
ω. On U1 we consider the branched covering defined by the φi’s after the new identification.
This family of branched coverings is translation invariant and defines a stable form ω1 on
some stable curve C1, that has a non-zero component whenever the component has points
belonging to U1. The number of points where the local covering has degree at least two is
finite. The order of ω1 at a point that has not been glued is the same as in ω0. The zeros or
nodes of ω1 that lie on the glued points, can only appear at points corresponding to endpoints
of the twin paths, or to zeros of ω0 lying on the twins. By construction, the total order of the
zero divisor of ω1 on U1 is the same as that of ω0 on U0. Therefore, the genus of C1 is the
same as the genus of C0.

Remark that the twin paths γ1, γ2 that we cut in ω0 produce a pair of paths in C1. After
inverting their orientation we get a pair of twin paths γ̃1, γ̃2 for ω1. Cutting and pasting the
twin paths γ̃1, γ̃2 in ω1 we obtain (C0,m0, ω0) back. Therefore the inverse surgery is naturally
defined in the same manner. We will use this inversion of surgery especially when the base
point of the twin paths is a node.

Suppose γ1, γ2 are twin paths of a stable form ω0 starting at a point q and ending at points
q1 and q2 respectively. Suppose that only the starting point and endpoints can be zeros or
nodes of ω0. We are going to describe the structure of the twin paths γ̃1, γ̃2 of the form ω1 in
some cases. Denote by q̃ the starting point of γ̃i and q̃i the final endpoint of γ̃i.
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Example 1: Suppose q, q1 and q2 are pairwise distinct points and q1 and q2 lie in the same
component of C∗0 . Then the same is true for q̃, q̃1 and q̃2 (see Figure 5).

Figure 5. Cut and paste along twin paths contained in one part of the stable curve

Comparing the local degrees of the branched coverings at each point we get:

ordq̃(ω1) + 1 = (ordq1(ω0) + 1) + (ordq2(ω0) + 1);

ordq(ω0) + 1 = (ordq̃1(ω1) + 1) + (ordq̃2(ω1) + 1).

By taking appropriate combinations of twins and zeros we can do several types of changes to
the zero divisor. For instance, if q is a simple zero and q1, q2 are regular points, the surgery
simply changes the position of the simple zero. We can also split a multiple zero, meaning
that two or three zeros of ω1 are produced from a single zero of ω0. It suffices to take any
pair of twins starting at that zero with distinct endpoints.

The inverse operation of the latter will be referred to as joining two or three different zeros
in one zero. This is the case, for instance, when two twins leaving a simple zero have distinct
endpoints and at least one of them is a zero.

Example 2: Suppose that γ1 and γ2 leave q following different branches of C0 at q. Then q
is a node and there are three interesting sub-cases that will be referred to as smoothing of
a node:

(1) If q1, q2 and q are pairwise distinct, then q̃1 = q̃2 6= q̃, none of them is a node, and
they are zeros of ω1. Each γ̃i joins the same pair of distinct zeros of ω1 (see Figure 6).

Figure 6. Cut and paste along twin paths contained in different branches of
a node to smoothen the node and obtain a couple of twins between zeros

(2) If q1 = q 6= q2 and γ1 does not come back to q through a different branch of C0, then
q̃ is not a node of ω1 and q̃ = q̃1 = q̃2, i.e. both γ̃1 and γ̃2 are closed loops based
at a zero of ω1 (see Figure 7). Moreover, by considering the intersection of the twins
with a neighbourhood of q̃ we observe that among the oriented segments there are
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two consecutive segments in the cyclic order with the same sign (either both enter or
both leave the singularity).

Figure 7. γ1 is a closed path that leaves and arrives to the node through one
of the branches. After the surgery, there is no node, and a couple of closed
twin paths based at a zero q̃.

(3) If q1 = q 6= q2 and γ1 returns to q through the other branch of the node, then the
conclusion is the same as in case (2). The only difference with that case is that the
cyclic order changes (see Figure 8).

Figure 8. γ1 is a closed path based at the node. Its starting segment and
end segment lie in different branches. After the surgery, there is no node, and
a couple of closed twin paths based at a zero q̃

The inverse surgeries of those examples allow to construct stable forms on nodal curves
starting from certain stable forms on smooth curves. In Figure 9 we depict an example in
genus two joining a form in the minimal stratum with a form with a node from the point of
view of the description of a form as a translation surface

In figure 10 we provide an example of combinatorics of a pair of closed twins whose Schiffer
variation does not lead to a nodal curve.

For future reference we state:

Lemma 5.1. If a pair of twin paths based at a zero share starting point and endpoint then
either the cut and paste surgery produces a stable form with an additional node, or both start
and endpoint coincide, and in the cyclic order at that point, any pair of consecutive oriented
segments of the twins have opposite sign (as in Figure 10) .
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Figure 9. The dotted lines represent pairs of twins in the smooth genus two
surface. After the Schiffer variation along them we obtain a stable form with
a node.

Figure 10. The Schiffer variation along a pair of closed twins as in Lemma
5.1 exchanges the relative position of β2 and β3, but no node appears.

Proof. The cases with a node correspond to the inverse surgeries of the smoothing of a node
(Example 2). The last case described in the lemma does not produce a node, since the base
point obtained after the surgery does not separate the germ of surface in two connected
components. �

The surgery can be generalized to families of twin paths. We call a family of paths Γ =
{γ1, . . . , γk} a family of twin paths for a form ω0 if every pair forms a pair of twin paths for
ω0. The cut and paste surgery associated to the family Γ cuts each γi producing two sides
of each cut, and glues each to its adjacent twin side. When Γ is maximal and all points in
the paths are regular except for the initial point, that is a zero of order k − 1, the surgery
provides a deformation of the form in its substratum. We can use the families of twins to
join zeros of any order:

Lemma 5.2. Let Γ = {γ1, . . . , γk} be a maximal family of twin paths starting at a zero of
order k − 1 of a stable form ω0 . Suppose that all points in the paths are regular except for
their common starting point and the endpoint of γ1, that is a zero of ω0 distinct from the
starting point. Then the form ω1 obtained from the cut and paste surgery associated to Γ has
less zeros than ω0 (See Figure 11 for an example)

Proof. After the surgery all the endpoints of the initial twins are glued together to form a
single zero. The angle between any pair of adjacent twins is 2π. Therefore the starting point
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Figure 11. On the left a maximal family of twin paths at a double zero.
Both endpoints of γ1 are zeros. The maximality implies that, after the Schiffer
variation, the points q̃j have angle 2π (the circle around them represents this
angle). The obtained form has one zero less.

of the twins splits into k regular points after the surgery. All other glued points are regular
and the conclusion follows. �

Since the restriction of a family of twin paths parametrized by [0, 1] to some interval
starting at time zero is still a family of twin paths, the previous construction gives a stable
form for each t ∈ [0, 1]. We thus obtain a parametrized family {(Ct, ωt)}t∈[0,1] of stable forms.
Moreover, at any t ∈ (0, 1) there are two natural families of twin paths on (Ct, ωt). On the
one hand there is the family that inverts the surgery from (C0, ω0) to (Ct, ωt); on the other,
there is the family of twin paths that correspond to the segments of the original twin paths
parametrized by [t, 1]. The cut and paste surgery applied to the latter family of twin paths
on (Ct, ωt) produces the same stable form (C1, ω1). With this descritption at hand, items (ii)
and (iii) of Example 2 are just a concatenation of Example 1 and the inverse of item (i) in
Example 2. To compare the periods of the constructed stable forms we need to produce a
(homological) marking mt on each Ct, starting from a marking m0 on C0. It suffices to do
that under the hypothesis of Example 1 and of the inverse of item (i) in Example 2.

In the case of Example 1 (see Figure 5), the neighbourhood U0 of the twins γ1 ∪ γ2 can be
taken as a topological disc. By construction there is a natural identification between C0 \ U0

and C1 \U1. The map ∂U0 → ∂U1 has a unique extension up to isotopy to a homeomorphism
U0 → U1. The gluing of those two identifications produces a homeomorphism C0 → C1 that
induces, by postcomposing it at the homology to m0, a marking m1 on C1. With this marking
it is readily verified that

Per(C0,m0, ω0) = Per(C1,m1, ω1).

In the case of the inverse of item (i) in Example 2, we have the couple of twins γ̃1, γ̃2 that join
two distinct zeros of a stable form (C1, ω1) on a smooth curve C1 (the component they belong
to). The neighbourhood U1 is the annulus depicted in Figure 6 surrounding the twins. The
neighbourhood U0 is a neighbourhood of the node that contains both twins γ0 ∪ γ1. There
is a natural identification C1 \ U1 → C0 \ U0. Each boundary component of U1 is sent to
the boundary of a disc contained in one of the branches of the node, giving an orientation
preserving homeomorphism ∂U1 → ∂U0. By arguing as before with each side of the pair of
twins, up to isotopy there is a unique collapse U1 → U0 that sends the twins to the node and
has the given values on the boundary. If there is a marking m1 on C1, it can be postcomposed
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to the action of the collapse C1 → C0 on homology, giving a homological marking m0 of C0.
Again, the equality Per(C0,m0, ω0) = Per(C1,m1, ω1) is easily verified.

With the given markings the parametrized family produces a map [0, 1] → ΩSg whose

composition with the projection ΩSg → Sg to the space of marked curves t 7→ (Ct,mt) ∈ Sg is
continuous by construction. On the other hand we claim that there exists a local trivialization
of the fiber bundle ΩSg → Sg around the point (Ct,mt) where isoperiodic sets are contained
in the constant sections of the local trivialization. Indeed, kermt is isotropic and we can
find a symplectic basis {ai, bi : i = 1, . . . , g} of H1(Σg) such that kermt is contained in the
Lagrangian generated by a1, . . . , ag. The map Ψ : ΩU → U × Cg defined by

Ψ(C,m, ω) = ((C,m),

∫
m(a1)

ω, . . . ,

∫
m(ag)

ω)

is continuous thanks to Lemma 4.39. It preserves the fibers and it is also linear in restriction to
each fiber. This restriction is injective since every form satisfying Ψ(C,m, ω) = (C,m, 0, . . . , 0)
has zero residues at all non-separating nodes, hence at all nodes. In section 6.1 we will see
that the condition implies that volω = 0 and this volume is also the sum

∑
vol(ωi) where

vol(ωi) denotes the (positive) volume of the restriction ωi of ω to the part Ci of C. Hence
vol(ωi) = 0 for all i. However a holomorphic form ωi on a smooth curve Ci has zero volume
if and only if it is the zero form. Hence, the only possibility is that ω is zero everywhere.
The map Ψ is therefore a trivialization of the bundle ΩU → U . In this local trivialization the
fibers of Per are contained in the constant horizontal sections, which are continuous. Hence,
the map [0, 1] 7→ ΩSg is continuous. The same argument works for a family of twin paths.

Definition 5.3. Let Γ = {γ1, . . . , γk} be a (not necessarily maximal) family of twin paths for
(C0,m0, ω0) parametrized by t ∈ [0, 1] and set p = Per(C0,m0, ω0). The Schiffer variation
along Γ is the continuous path

(45) t 7→ (Ct,mt, ωt) ∈ Per−1(p)

where (Ct,mt, ωt) is obtained from (C0,m0, ω0) by cutting and pasting the family of twins
{γ1|[0,t], . . . , γk|[0,t]}.

In the case of translation structures there is naturally a distinguished family of twin paths,
namely those that have image in straight lines in C. This produces a sub-family of paths
in the fibers of Per. However, connectedness by paths in either of the families is equivalent
to connectedness in the case of fibers of Per. The advantage of using straight paths is that
the candidates to twins are invariant of the associated directional foliation. This allows to
have some control on the embedding/intersection properties. In particular, a pair of geodesic
segments of leaves of one of the directional foliations leaving the same singularity and having
the same length, form a pair of twin paths. Let us analyze with more detail the oriented
directional foliations.

5.2. Periodic annuli. The dynamics of each oriented directional foliation Gθ induced by
an abelian differential ω without residues or zero components on a smooth curve C is well
known. Indeed, by Maier’s Theorem (see [45] or [63]) there exist a finite number of saddle
connections, that is, leaves γ1, . . . , γn such that each γi converges to some singular point in the
positive direction and to some singular point in the opposite direction. Each component of
C \∪γi is saturated by F and is either a periodic annulus, i.e. an annulus formed of closed
leaves/geodesics, or minimal , i.e. each leaf in the component is dense in the component.
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The length of all leaves in a periodic annulus is the same and coincides with the length of
each of its boundary components. We orient each boundary component with the orientation
of the foliation (not that induced by the orientation of the annulus). We call b+ the boundary
component that has the annulus to its right, and b− the boundary component that has the
annulus on its left. Each boundary component of the annulus is identified with an ordered
cycle of saddle connections (γ±1 , . . . , γ

±
k ) each starting at the singular point where the former

ended. The angle that a saddle connection forms with the following is of π to the corresponding
side (right for b+, left for b−). Thus the intersection of the annulus with a neighbourhood of
a zero of the abelian differential is a (possibly empty) family of sectors of angle π.

We recall an important existence result:

Theorem 5.4 (Masur, [47]). For any non-zero abelian differential on a smooth curve there
exists a periodic annulus.

5.3. Degeneracy. We will use Schiffer variations to show the following

Proposition 5.5. Let g ≥ 2 . Given (C,m, ω) ∈ Ω∗Sg there exists a finite sequence of
Schiffer variations joining it to a stable form with one node and no zero components. If ω
has a single zero we can suppose that the node separates the stable curve, and has an elliptic
component.

Proof. Let (C,m, ω) ∈ Ω∗Sg. We will apply Schiffer variations to connect it to a point in ΩSg
having a configuration of twin paths as in the first alternative of Lemma 5.1: two twin paths
joining the same pair of zeros with a pair of non-alternating signs whenever the zeros coincide.
In fact the twins that we will find are geodesic saddle connections. The application of the
Lemma then allows to connect the latter to a point in the boundary strata via the associated
Schiffer variations. Since Schiffer variations are paths in the fibers of Per, the proposition
follows.

First we will treat three cases where the boundary of some periodic annulus for ω provides
the twins. In those three cases the Schiffer variation leads to a stable form on a curve with one
separating node and an elliptic component. Denote by b+ and b− the boundary components
of some periodic annulus A of ω.

Case 1: If b+ and b− are closed saddle connections at a zero q of ω, meaning that each is
formed by a single saddle connection starting and ending at q. Then they cannot both coin-
cide. Indeed, if they did, the surface would have genus one, which is not the case. Therefore
they are different and the extension of the chart of ω at q along the saddle connections sends
each of them to a segments of oriented straight line of the same length and direction. This
implies that they form a pair of twin paths for ω. To be able to apply Lemma 5.1 it remains
to check that there is a consecutive pair of separatrices at q with the same sign. Since the
annulus lies to the right of b+ and to the left of b− the pair of twin segments leaving the
singularity are consecutive in the cyclic order and we conclude. The situation is similar to
the one depicted in Figure 9.

Case 2: Suppose one of the saddle connections of b+ is closed, and coincides with one of
the saddle connections of b−. Call the saddle connection γ. In this case we can find another
periodic annulus satisfying the conditions of Case 1. Think of the universal cover of A as

an infinite horizontal band Ã ⊂ C. In each boundary component of Ã we have copies of γ
and they all point in the same direction (see Figure 12). Choose a copy on each boundary
component of the band, and draw the parallel geodesics (straight lines) in the band joining
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corresponding points in the chosen copies of γ. By construction, for the foliation given by
the direction of the geodesics we get a periodic annulus in ω whose boundary components are
each formed by one closed saddle connection, as in Case 1.

Figure 12. Case 2: Universal cover of the initial annulus A

Case 3: If b+ and b− only pass through one zero q of ω, and at least one of them is formed
by two saddle connections. The only case that is left is the case where none of the saddle
connections of b+ and b− coincide. We focus on the distribution of π-sectors described by the
annulus at the zero q (see Figure 13).

Figure 13. Case 3: The π-sectors corresponding to the boundary of A at the
saddle q are coloured black if they correspond to sectors of b− and light grey
if they correspond to sectors of b+. Consecutive sectors of distinct colour have
an even number of white π-sectors between them. If they are coloured the
same there is an uneven number of white sectors between them.

Some of the π-sectors correspond to b+ and some to b−. Draw them in two different
colors, say black and grey. By hypothesis the intersections of the closures of any two such
sectors are empty, since otherwise we would be in Case 2. In the cyclic order at q there is
a pair of such π-sectors of distinct color that are consecutive (among the coloured sectors).
Between two such consecutive sectors of different colours there is necessarily an even number
number of uncoloured π-sectors. Hence, up to changing the orientation of the directional
foliation if needed, we can consider that the consecutive saddle connections γ+ and γ− that
lie consecutively in boundaries of those two sectors of different colors both leave the singularity.
If the lengths of γ+ and γ− coincide, they are twin paths satisfying all the conditions of the
first alternative of Lemma 5.1. Otherwise, we consider the shortest among γ+ and γ− and
its twin path starting along the other. The Schiffer variation along this pair of twin paths
produces a form that has a periodic annulus as in Case 2.

This said we proceed to prove the Proposition by induction on the number of zeros of the
form.
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Suppose first that ω has one zero. Then all the saddle connections appearing in the bound-
ary of a periodic annulus start and end at the zero. Therefore we fall in one of Cases 1,2 or 3
described above. Since in all cases we reached a stable form on a curve of compact type this
proves the final statement of Proposition 5.5.

Suppose that we have proved Proposition 5.5 for all marked forms with n zeros and let us
prove it for a form ω with n+ 1 zeros on a smooth curve C.

Let z1, . . . , zn+1 be the zeros of ω. Up to moving them via Schiffer variations we can
suppose that the number

dmin = min
j 6=k
{dist(zj , zk)}

is realized by a single pair of zeros, say z1, z2. We can further move the point z2 to guarantee
that

∫ z2
z1
ω is not in the countable set {

∫
a ω ∈ C : a ∈ H1(C)}.

Consider one of the geodesics γ1 between z1 and z2 that realizes the distance between them.
It is a saddle connection. If the zero z1 has order k there are k+ 1 oriented geodesics leaving
z1 in the same direction as γ1. We extend each until distance dmin. By construction they do
not pass through zeros of ω, except for (maybe) at their endpoint, where they can only reach
z2. Indeed, if either reached zj with j 6= 2 one of the conditions of the definition of z1, z2

would be violated.

If one of the twins ends at z2 we are done by Lemma 5.1. Otherwise the family of twin
paths satisfies the hypothesis of Lemma 5.2. We use the Lemma to connect ω to a form with
less zeros. The inductive hypothesis then concludes the proof. �

For future reference we state

Corollary 5.6. Let p : H1(Σg) → C be a homomorphism. Then there exists an abelian
differential (C,m, ω) on a smooth curve C satisfying p = Per(C,m, ω) if and only if the same
is true for some stable form without zero components defined on a singular curve.

Proof. Suppose first that there exists a marked abelian differential (C,m, ω) on a smooth
curve C satisfying Per(C,m, ω) = p. Then Proposition 5.5 implies that there also exists an
abelian differential with no zero component on a marked stable curve with a node, having
periods p.
For the converse, suppose that there exists a point in a boundary stratum contained in
Per−1(p). By smoothening the nodes isoperiodically we obtain a form on a smooth curve.
Alternatively, we can argue by Theorem 4.37: the local fiber L of Per around this point
satisfies that L\∂L is nonempty. A point in the latter set provides a marked abelian differential
on a smooth curve with period homomorphism given by p. �

6. Period homomorphisms of stable forms

6.1. The image of the period map Perg,0. Recall from subsection 4.14 that a stable form
(C,ω) induces a flat singular metric ω ⊗ ω on C∗ with volume

vol(ω) =
i

2

∫
C
ω ∧ ω.

In particular, 0 ≤ vol(ω) ≤ ∞ and it is finite if and only if all the residues of ω at the nodes
of C are zero. If vol(ω) = 0 then ω is the zero form.
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A second fact more directly related with periods is that whenever ω has no zero components
on C, and the set of periods Λ = {

∫
a ω ∈ C : a ∈ H1(C)} is a lattice in C, integration along

paths produces a branched covering

(46) π : C → C/Λ whose primitive degree satisfies deg(π) =
vol(ω)

vol(C/Λ)
.

In particular if the genus of C is at least 2, deg(π) > 1.

Now, by Riemann’s relations, the volume of ω can be calculated by using the periods of ω.
Indeed, for any symplectic basis {a1, b1, . . . , ag, bg} of H1(C) we have

vol(ω) =

∫
C
<ω ∧ =ω =

i

2

∫
C
ω ∧ ω =

i

2

g∑
j=1

∫
aj

ω

∫
bj

ω −
∫
aj

ω

∫
bj

ω =

=
∑
j

=(

∫
aj

ω

∫
bj

ω))

The positivity of both terms implies that if the periods of a form are discrete, they cannot
be contained in a real line and thus define a lattice.

We extend the definitions of volume and degree to homomorphisms on symplectic modules:

Definition 6.1. Given a unimodular symplectic Z-module M and a homomorphism p : M →
C we define

• The volume of p as vol(p) := <(p) · =(p) where the intersection is on the dual space
Hom(M,R). Up to a choice of a symplectic basis {aj , bj} of M , the volume can be
calculated as

vol(p) =
∑
j

=(p(aj)p(bj))

• Define the primitive degree of p, denoted deg(p) as ∞ if p(M) is non-discrete and as

deg(p) =
vol(p)

vol(C/p(M))
if p(M) ⊂ C is discrete.

For any symplectic submodule V ⊂M we denote volp(V ) := vol(p|V )

Remark that if 0 < deg(p) <∞, the kernel of p has necessarily co-rank two.

If (C,m, ω) is a homologically marked stable form with zero residues and no zero com-
ponents on a marked stable curve (C,m), then the homomorphism p = Per(C,m, ω) ∈
H1(Σg,C) has the following properties:

(H1) vol(p) > 0 and
(H2) If g ≥ 2 , deg(p) > 1.

Haupt proved in [34] that conditions (H1) and (H2) are in fact also sufficient for a homo-
morphism p : H1(Σg) → C to be the period of a non-zero abelian differential on a smooth
curve. For genera g = 2, 3 we have already given an argument in Theorem 3.3. We will give
an alternative proof of this theorem in subsection 6.6.

If we allow the non-zero form to have some zero components, there is a case where (H2) is
not satisfied: when there is a single non-zero component and it has genus one.
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6.2. Haupt homomorphisms. Condition (H2) of a homomorphism has other equivalent
statements that will be useful, and show that the said exception is unique:

Proposition 6.2. Let M be a unimodular symplectic module of rank 2g and p : M → C be
a homomorphism. Suppose vol(p) > 0 and Λ = p(M) ⊂ C discrete. Then the following are
equivalent:

(1) vol(p) ≤ vol(C/Λ);
(2) deg(p) = 1;
(3) ker p is a symplectic submodule of M (of rank 2g − 2).

Proof. First remark that by virtue of Riemann’s relations we have vol(p) ∈ Z vol(C/Λ). If
we assume (1) then the positivity of vol(p) implies (2). Obviously (2) implies (1). For the
proof of (2)⇒ (3), we can normalize p by post-composing it by a real linear map to suppose
that Λ = Z2 ⊂ C. The kernels before and after this composition coincide. Up to taking a
symplectic basis of M , we have p : Z2g → Z2 ⊂ C a homomorphism of positive volume. Then
vol(p) = p1 · p2 where p = (p1, p2) and pi ∈ (Z2g)∗. On the other hand ker p = ker p1 ∩ ker p2.
Now, the dual of pi is an element ui ∈ Z2g and we have the equality p1 · p2 = u1 · u2.
If vol(p) = vol(C/Z2) = 1, then u1, u2 generate a symplectic submodule of rank two. Its
orthogonal is a symplectic submodule of rank 2g − 2 that coincides with ker p.

Next suppose (3) and let us prove (2). Recall that ker p has rank 2g − 2. Since ker p is a
symplectic unimodular submodule of M we can take a symplectic basis a1, b1, . . . , ag−1, bg−1 of
ker p and complete it to a symplectic basis of M by adding ag, bg. Apply Riemann’s relations

to deduce that 0 < vol(p) = =(p(ag)p(bg)). This implies that p(ag) and p(bg) generate a
lattice; since they also generate Λ, we have vol(p) = vol(C/Λ).

�

Definition 6.3. Let M be a unimodular symplectic module of rank 2g and p : M → C
be a homomorphism. We say that p is a Haupt homomorphism if vol(p) > 0 and either
g = 1 (and deg p = 1) or g ≥ 2 and deg(p) > 1. The set of Haupt homomorphisms in
H1(Σg,C) = Hom(H1(Σg),C) will be denoted by Hg.

Corollary 6.4. A homomorphism p : M → C on a unimodular module of rank 2g with
vol(p) > 0 is not Haupt if and only if g ≥ 2 and ker p is a symplectic module of rank 2g − 2.

6.3. Homological invariants of isoperiodic boundary components. The image of the
extended period map Perg is contained in Hg ∪ 0. The fundamental remark for the proof of

Theorem 1.2 is related to the fact that the normalization of some node of a form in Ω∗0Sg is

again a collection of forms in some Ω∗0Sh,n with h < g and n ≥ 1. The periods of those forms
are intimately related and are subject to satisfy Haupt’s conditions. In more detail:

Suppose c is a simple closed curve in Σg that is collapsed by the marking of a stable form

(C,m, ω) ∈ Ω∗0Sg to a node and set p = Per(C,m, ω) ∈ Hg.

If [c] = 0 in homology, then the curve is separating and C is a union C1∨C2 of stable curves
and the form ω = ω1 ∨ ω2 where ωi ∈ Ω∗0(Ci). On the other hand m and the decomposition
H1(C) = H1(C1)⊕H1(C2) define a symplectic splitting V1⊕V2 of H1(Σg). The map mi = m|Vi
is a marking of H1(Ci). The periods of (Ci,mi, ωi) are precisely pi := p|Vi , which are Haupt
homomorphisms of lower genus. Therefore we have a decomposition

p = p1 ⊕ p2
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of the Haupt homomorphism p into two Haupt homomorphisms. In this case

vol(p) = volp(V1) + volp(V2) = vol(p1) + vol(p2)

and each factor of the sum is positive. On the other hand

deg p = deg p1 ·
∣∣∣∣ Im(p)

Im(p1)

∣∣∣∣+ deg p2 ·
∣∣∣∣ Im(p)

Im(p2)

∣∣∣∣ .
If [c] 6= 0 then the curve is non-serparating and p([c]) = 0. The normalization of the node
produces a stable curve C2 of genus g−1 equipped with a form ω2 ∈ Ω∗0Sg−1. Let V1 be a rank
two symplectic submodule of H1(Σg) that contains [c] and V1 ⊕ V2 its associated symplectic
splitting of H1(Σg). Then, m|V2 defines a marking of H1(C2). The map p2 = p|V2 corresponds
to the periods of (C2,m2, ω2) and is therefore a Haupt homomorphism. In this case the
volume of p1 = p|V1 is equal to zero and we have

vol(p) = vol(p1) + vol(p2) = vol(p2).

The positivity of vol(p2) is guaranteed by that of vol(p). However for p2 to be a Haupt
homomorphism we need to verify the primitive degree condition (H2).

Remark 6.5. Given any symplectic submodule V of rank two containing a primitive element
a ∈ ker p, there is a natural symplectic isomorphism between V ⊥ and a⊥/Za. Under this
identification p|V ⊥ is equal to the map

pa : a⊥/Za→ C

induced by p on the quotient. In particular, if one is a Haupt homomorphism then so is the
other.

Definition 6.6. Let p : M → C be a Haupt homomorphism defined on a symplectic unimod-
ular module. Given a symplectic splitting V1 ⊕ · · · ⊕ Vk of M , we say that it is p-admissible
if every p|Vi is a Haupt homomorphism. We say that a primitive element a ∈ ker(p) \ 0 is
pinched by p if the induced homomorphism pa is a Haupt homomorphism.

Remark 6.7. If p : M → C is a Haupt homomorphism, then every primitive element of a
symplectic submodule of ker p is pinched by p.

In Corollary 6.18 we will prove inductively that all those decompositions and elements of
ker p appear as induced by marked stable forms.

Factors of rank two of p-admissible splittings and the primitive elements they contain will
be important in the sequel.

Definition 6.8. Given a Haupt homomorphism p : M → C define

Vp := {V ⊂M : rank(V ) = 2, V ⊕ V ⊥ is a p -admissible splitting of M}.

A primitive element a ∈M is said to be p-admissible if it belongs to some V ∈ Vp.

6.4. Volumes of symplectic submodules and p-admissible elements. A necessary con-
dition for a symplectic splitting V ⊕ V ⊥ to be p-admissible is that volp(V ) ∈ (0, vol(p)). In
this subsection we will analyze the possibilities for the volumes for rank two symplectic sub-
modules containing a given element a from an algebraic point of view. The idea behind the
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Lemmas is that we can parametrize such submodules by a⊥. The volume function is then
affine with linear part

La : a⊥ → R defined by La(c) = =(p(c)p(a)).

Up to an isomorphism R2 ∼= C, La(c) is the projection of p(c) ∈ C along the line ` = p(a)R to
its orthogonal line. Whenever the image is discrete (which amounts to having many elements
having p-image in `) there will be none, or a finite number of values of the affine function in
the interval (0, vol(p)). In the other cases, the values are dense in R.

Lemma 6.9. Let W be a unimodular symplectic module of rank 2g ≥ 4 and p : W → C a
non-trivial homomorphism. Let a ∈W \ker p and suppose that one of the following conditions
hold:

(1) rank(a⊥ ∩ p−1(Rp(a))) ≤ 2g − 3 or
(2) there exists a real line ` 6= Rp(a) in C containing 0 and satisfying

rank(p(W ) ∩ `) > 2.

Then for every ε1 < ε2 there exists a symplectic submodule V ⊂W of rank 2 such that a ∈ V
and ε1 < volp(V ) < ε2. In particular if a is primitive, it is also p-admissible.

Proof. First suppose a is primitive and choose b ∈W be such that a · b = 1. For each e ∈ a⊥
define b′ = b+ e. Denote α = p(a), β = p(b). The volume of V = Za+ Zb′ is given by

(47) volp(V ) = =(βα) + =(p(e)α).

If 1) holds, the form e ∈ a⊥ 7→ =(p(e)α) ∈ R has image a submodule of R of rank

rank(a⊥)− rank(a⊥ ∩ p−1(Rα)) ≥ 2g − 1− (2g − 3)) ≥ 2.

Therefore its image is dense in R and we can find the desired e for any given ε’s. On the
other hand, 2) implies 1) so the same conclusion holds.

If a is not primitive, it is an integer multiple of some primitive a1. If one of the conditions
(1) or (2) is valid for a, then it is also valid for a1. Since the lemma is valid for a1 we obtain
V of appropriate volume containing a1. By construction a ∈ V .

�

Proposition 6.10. Let W be a unimodular symplectic module of rank 2g ≥ 4, and p : W → C
be a homomorphism whose image is not contained in a real line. Suppose that either p is
injective or rank(p) ≥ 5. Then at least one of the following possibilities occur

(1) there exists an element a ∈ W \ ker p such that for any pair of real numbers ε1 < ε2,
there exists a rank two symplectic submodule V ⊂W containing a such that

ε1 < volp(V ) < ε2.

(2) g = 2, and for every real line l ⊂ C, the preimage p−1(l) is either {0} or a Lagrangian
submodule of W .

Moreover, if g ≥ 3 there exists a submodule ker p ⊂ I ⊂ W of positive co-rank such that the
conclusion is true for every primitive a ∈W \ I. If I = ker p does not have the property, then
there exists a unique real line ` ⊂ C such that rank(p(W ) ∩ `) > 2. In this case, the module
I = p−1(`) does the job.
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Proof. We first treat the case g ≥ 3. Assume that for every real line l ⊂ C, p(W )∩ l has rank
≤ 2. Take a ∈W \ ker p. Then

rank(a⊥ ∩ p−1(Rp(a)) ≤ rank p−1(Rp(a)) ≤ rank ker p+ rank(p(W ) ∩ Rp(a)) ≤
≤ 2g − 5 + 2 = 2g − 3

and we conclude by Lemma 6.9. Therefore in this case the conclusion with I = ker p is valid. If
there exists a real line l ⊂ C such that p(W )∩ l has rank > 2 therefore item (1) in Proposition
6.10 follows by item (1) of Lemma 6.9. In this case the submodule I = p−1(l) does the job.
For the uniqueness of the module I as defined: suppose that there exists a ∈ W \ ker p and
an interval (ε1, ε2) in R such that no symplectic submodule V ⊂ W containing a satisfies
ε1 < volp(V ) < ε2. Then there exists a real line l ⊂ C, p(W ) ∩ l has rank > 2. On the other
hand, no real line l 6= Rp(a) can have this property, since otherwise a would belong to rank
two submodules of W of arbitrary volume. Hence the only possibility is that l = Rp(a). The
submodule I = p−1(l) is the only of this type that has the desired property.

Next suppose g = 2. Then p is injective by assumption. If there exists a real line l =
Rp(w) ⊂ C with rank(a⊥ ∩ p−1(l)) = 1 or rank(p−1(l)) > 2, we can use Lemma 6.9 to find
the desired element a ∈W \ 0. Otherwise we have that for every a ∈W \ 0

rank(a⊥ ∩ p−1(Rp(a))) = 2 and rank p−1(Rp(a)) ≤ 2.

By injectivity of p this means that p−1(Rp(a)) ⊂ a⊥ for every a, so p−1(Rp(a)) is a Lagrangian.

�

Corollary 6.11. Let W be a unimodular symplectic module of rank 2g ≥ 6, and p : W → C
be a homomorphism whose image is not contained in a real line such that rank(p) ≥ 5. Then,
either all elements in W \ker p are p-admissible or all elements that are not p-admissible have
image in a real line ` ⊂ C containing 0 and lie in a submodule of rank 2g− 2 or 2g− 1 of W .
Consequently for every real line l 6= ` passing through 0 we have rank p−1(l) ≤ 2.

Example 6.12. In H2 there are examples of injective homomorphisms for which the volume
of symplectic submodules can only take discrete values. They necessarily correspond to case
(2) in Proposition 6.10. These examples correspond precisely to the periods of forms belonging
to Hilbert modular invariant submanifolds (see Theorem 1.5). Let W be a rank 4 unimodular
symplectic module and the homomorphism p : W → C given on a symplectic basis a1, b1, a2, b2
by α1 = 1, β1 = i

√
D, α2 =

√
D, β2 = i, where D ≥ 2 is an integer. Then, direct calculation

shows that for any symplectic submodule V of W we have volp(V ) ∈
√
D + Z. Even if the

possible volumes of symplectic submodules form a discrete set, there are an infinite number
of elements in Vp, all having volumes in a finite set of values.

6.5. Existence of pinched elements for non-injective p ∈ Hg.

Lemma 6.13. Suppose V1 is a symplectic module of rank ≥ 4, and V2 one of rank ≥ 2. Let
pi : Vi → C be a homomorphism for i = 1, 2. Suppose p1 is Haupt and vol(p2) ≥ 0. Then
p = p1 ⊕ p2 : V1 ⊕ V2 → C is a Haupt homomorphism.

Proof. We already have vol(p) = vol(p1) + vol(p2) ≥ vol(p1) > 0. If p were not Haupt, then
vol(p) = vol(C/Im(p)). On the other hand Im(p1) ⊂ Im(p) are discrete and therefore

vol(C/Im(p)) ≤ vol(C/Im(p1)) < vol(p1) ≤ vol(p)

where the strict inequality comes from the Haupt condition for p1.
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�

Lemma 6.14. Let p : V → C be a homomorphism on a rank 2g ≥ 6 unimodular symplectic
module V and suppose W ⊂ ker p is a symplectic submodule of rank at most 2g − 4. Then p
is Haupt if and only if p|W⊥ is Haupt. If both are Haupt, then

(1) all primitive elements in W are pinched by p;
(2) a primitive a ∈ ker(p) ∩W⊥ is pinched by p if and only if it is pinched by p|W⊥.

Whenever p is Haupt and deg(p) <∞ there exists such a W of (maximal) rank 2g − 4.

Proof. We have that V = W ⊕ W⊥ is a symplectic splitting and volp(W ) = 0. Hence

volp = volp(W
⊥) is positive as soon as one of them is. As for the second of Haupt’s conditions,

remark that ker p is a symplectic submodule of rank 2g − 2 if and only if ker p ∩W⊥ is a
symplectic submodule of rank rank(W⊥) − 2. By Proposition 6.2 we have that under the
positivity of the volume hypothesis, p is not Haupt if and only if p|W⊥ is not Haupt.

To prove item (1), we remark that for any a ∈W , pa is a Haupt homomorphism if and only
if p|W⊥ is. As for item (2), take a ∈ ker p ∩W⊥ and W1 ⊂ W⊥ a symplectic submodule of

rank two containing a. Take the splitting W⊥ = W1⊕W2. If a is pinched by p|W⊥ , then p|W2

is a Haupt homomorphism. By Lemma 6.13 p|W2⊕W is also a Haupt homomorphism which
implies that a is pinched by p. If a is not pinched by p|W⊥ then W2 ∩ ker p is a symplectic

submodule of rank 2g−6 and thus ker p∩W⊥1 is a symplectic submodule of rank 2g−4. This
implies that pa is not Haupt, and thus a is not pinched by p.

Using the normal form for homomorphisms of finite primitive degree, see Lemma 9.1 proved
in Appendix 9, we find a rank 2g − 4 symplectic submodule W ⊂ ker p. �

Lemma 6.15. Let g ≥ 2 and p ∈ Hg be a Haupt homomorphism with ker p 6= 0. Then
either all primitive elements of ker p are pinched by p, or, g ≥ 3, ker p has rank ≥ 2g− 3 and
contains a symplectic submodule of rank 2g − 4 (whose primitive elements are pinched by p).

Proof. Suppose that there exists a primitive element a ∈ ker p such that pa is not Haupt and
take a rank two symplectic submodule V containing a. Then p(V ) 6= 0 and 0 < vol(p) =
volp(V ) + volp(V

⊥) = volp(V
⊥).

If g = 2 then V ⊥ has rank two, and pV ⊥ is a Haupt homomorphism. A contradiction. Thus
in genus g = 2 every a ∈ ker p satisfies that pa is Haupt, therefore pinched by p.

If g ≥ 3, then p|V ⊥ is of positive volume and primitive degree one, therefore contains a
symplectic submodule W ⊂ ker p of rank 2g − 4. Moreover W ⊕ Za ⊂ ker p. �

6.6. Alternative proofs of Haupt’s Theorem. In this section we provide an alternative
proof of Haupt’s Theorem in [34].

Theorem 6.16 (Haupt’s Theorem). A character p ∈ H1(Σg,C) is the period of some marked
abelian differential on a smooth curve if and only if it is a Haupt homomorphism.

Proof. For genus one and p ∈ H1 the condition vol(p) > 0 implies that p is injective and the
image of p is a lattice Λ ⊂ C. The abelian differential dz on C/Λ has periods p.

For genus 2 (and even three) we can apply Theorem 3.3.

For g ≥ 3, we can proceed by induction. Suppose Haupt’s Theorem is true for all genera
up to g − 1 ≥ 2 and take p ∈ Hg.
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Case 1: If ker p = 0. By Proposition 6.10 applied for g ≥ 3 we deduce that there exists a
p-admissible splitting V1⊕V2. The restriction pi = p|Vi is an injective Haupt homomorphism.
By inductive hypothesis we can realize pi as the periods of a marked abelian differential on a
smooth curve (Ci,mi, ωi). The marked nodal form (C1 ∨C2,m1 ⊕m2, ω1 ∨ ω2) has period p,
no zero components and induces the splitting V1 ⊕ V2.

Before proceeding to the proof of the non-injective case, we state a well-known lemma from
the theory of Riemann surfaces:

Lemma 6.17. Let (C,ω) be a non-zero abelian differential on a smooth curve of genus g ≥ 1.
For any z ∈ C there is an immersed arc δ in C so that

∫
δ ω = z. Moreover, if g ≥ 2, the arc

δ can be chosen to be embedded with distinct endpoints.

Proof. Let C̃ be the universal cover of C and ω̃ the lift of ω to C̃. The map I : C̃ → C
defined by x 7→

∫ x
x0
ω̃ is holomorphic, non-constant and equivariant with respect to the action

of π1(C) on C by translations under elements of Λ = {
∫
γ ω : γ ∈ π1(C)}. The image of I is

therefore open and invariant by Λ. We claim that the image is C. Indeed, if Λ is dense we are
done . If Λ is discrete, it is a lattice and the map I induces a branched covering C → C/Λ
onto a torus. The equivariance then tells us that the image of I is the universal cover C of
the torus. The only other possibility is that the closure of Λ ⊂ C is isomorphic to R×Z. Up
to post-composing I with a real linear map we can suppose that Λ = R+ Zi. The imaginary
part =I induces a surjective map C → R/Z. Therefore the image of I covers a neighbourhood
U of the imaginary axis. The Λ invariant set containing U is then C.

Let z ∈ C be the chosen point. By the surjectivity of I, there exists an immersed arc δ in
C, starting from x0, such that

∫
δ ω = z. If g ≥ 2 we can require x0 to be a zero of ω. In this

case the map I is a branched covering of degree > 1 near x0. Thus, if the endpoints of both
δ coincide with x0, we can move them a little so that

∫
δ ω does not change and they become

distinct. Now, since δ is an arc, via an homotopy relative to endpoints we can eliminate all
self-intersections so that δ becomes embedded. �

Case 2: If ker p 6= 0. Use Lemma 6.15 to consider a primitive element a ∈ ker p such that pa
is Haupt. Choose b ∈ H1(Σg) such that a ·b = 1, define V1 = Za⊕Zb, V2 = V ⊥1 , and pi = p|Vi .
By construction p2 is a Haupt homomorphism. By inductive hypothesis, let ω2 be an abelian
differential on a smooth curve of periods p2. Since g−1 ≥ 2, by Lemma 6.17 applied to ω2 we
can find an embedded arc β with distinct endpoints in ω2 such that

∫
β ω2 = p(b). Glue the

endpoints and mark the obtained nodal curve to guarantee that the period homomorphism
of the stable form is p and the class a is pinched to the node.

In either case smoothing the node produces a form of period p on a smooth curve. �

Kapovich gave a proof of Haupt’s Theorem for genus g ≥ 3 as a corollary of Proposition
3.10 in [42]. Indeed, he remarked that the image of the map Perg is an open set in H1(Σg,C)
invariant by the action of Sp(2g,Z). For genus g ≥ 3 he deduced that it is the set Hg by
finding forms with periods in each of the closed invariant sets defined by Proposition 3.10,
except of course, for the collapse of g − 1 handles.

Using the constructions of Cases 1 and 2 of the proof of Haupt’s Theorem we can easily
construct stable forms with more nodes and given period map:

Corollary 6.18. Let p : H1(Σg) → C be a Haupt homomorphism and H1(Σg) = V1 ⊕ . . . ⊕
Vk a p-admissible splitting. Then k ≤ g and there exists a stable form in Ω∗0Sg(p) with
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k − 1 separating nodes such that each p|Vj corresponds to the periods of a component of its

normalization. Moreover, if we choose up to g − k ≥ 0 classes aj ∈ ker p \ 0, each belonging
to a distinct Vj and such that aj is pinched by p|Vj , then there exists a stable form as before
that shares the separating nodes with the form of the previous case, and has non-separating
nodes that pinch precisely the chosen classes aj.

6.7. Non-admissible splittings for injective p ∈ Hg and disconnected covers. Since
the primitive degree condition (H2) of a Haupt homomorphism is automatically satisfied for
injective p ∈ Hg, a symplectic submodule V ⊂ H1(Σg) induces a p-admissible splitting V ⊕V ⊥
if and only if the intermediate volume condition 0 < volp(V ) < vol(p) is satisfied. Using the
bijection between symplectic splittings and boundary components of the ambient space of
compact type given in section 4.7 we prove

Proposition 6.19. Let g ≥ 2. If p ∈ Hg is injective, then ΩS
c
g(p) cuts an infinite number of

boundary strata of ΩS
c
g and also avoids an infinite number of them.

Proof. If p falls into case (1) of Proposition 6.10, for each choice of interval (ε1, ε2) in R we
can construct an example of symplectic splitting V ⊕ V ⊥ of H1(Σg) with V of rank two and
volp(V ) ∈ (ε1, ε2) by using that proposition. If the interval belongs to (0, vol(p)) the splitting
is p-admissible. If it belongs to R\ [0, vol(p)] it is not p-admissible. Since two splittings having
factors of different volumes are different and an infinite number of disjoint intervals can be
chosen, we conclude.

If p falls into case (2) of Proposition 6.10 we have that the genus g = 2. Haupt’s Theorem
guarantees that Per−1(p) contains a stable form of period p on a smooth curve. By Corollary
5.6, ΩSg(p) contains a point in some boundary stratum of codimension one. It corresponds

necessarily to a p-admissible splitting H1(Σg) = V ⊕ V ⊥ with factors of rank two. Further-
more, the detailed description of the isoperiodic set of marked stable forms associated to p can
be found in [50, Theorem 1.2, p. 2274]. Among other properties we find an infinite number of
elements defined over nodal curves with a (necessarily separating) node, and inducing distinct
p-admissible splittings H1(Σg) = V ⊕ V ⊥ with factors of rank two.

To construct splittings that are not p-admissible we take any p-admissible splitting V ⊕V ⊥
with V = Za⊕Zb and c ∈ a⊥ with p(c) /∈ Rp(a). For each k ∈ Z consider Vk = Za⊕Z(b+kc).
Then only for a finite number of k’s we have volp(Vk) ∈ (0, vol(p)). Since the volumes of the

Vk’s are all different, we have found an infinite family of distinct splittings Vk ⊕ V ⊥k that are
not p-admissible.

Any p-admissible splitting is realized by some singular stable form via Corollary 6.18.
�

Corollary 6.20. The generic fiber of the period map on ΩT2 is disconnected.

Proof. By [54] there is a free generating family of the Torelli group I2 that can be thought
in Siegel space as the family of cycles around every boundary component of Torelli space in
Siegel space. These boundary components are parametrized by symplectic splittings V ⊕V ⊥.
Let p ∈ H2 be injective (which is generic). From the proof of Theorem 3.3, Per−1(p) is a slice
of dimension one of Torelli space that is isomorphic to D\B where B is the intersection of the
slice with the boundary components. Inclusion induces a map π1(D \B)→ I2. By Corollary
6.19 this map is not surjective. Hence the lift of Per−1(p) to T2 is disconnected. �
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6.8. Non-admissible splittings for non-injective p ∈ Hg and compact type bound-
ary.

Proposition 6.21. Let g ≥ 2 and p ∈ Hg. There exists a p-admissible splitting of H1(Σg) if
and only if either g = 2 or g ≥ 3 and deg(p) > 2.

Proof. First remark that if there are no p-admissible splittings, then there do not exist forms
of compact type with no zero components and periods p. By Proposition 5.5 there do also
not exist forms with a single zero (i.e. in the minimal stratum) of period p.

As was already shown in the beginning of the proof of Lemma 3.14, the image of the
minimal stratum contains all points with deg(p) = ∞, so we are left with the cases of finite
degree.

For g = 2 there are always p-admissible splittings. Indeed, if deg(p) = 2 there cannot exist
a form with a single zero of period p, since the local degree of the covering at the zero would
be three so we cannot use this argument. However the stable form with a separating node
dz ∨ dz on C

Λ ∨
C
Λ where Λ := p(H1(Σg)) defines a p-admissible splitting. For deg(p) ≥ 3 there

are forms in the minimal stratum with period p ([44], [8] for constructive proofs).

If g ≥ 3 and 3 ≤ deg(p) < ∞ we proceed by induction on the genus to construct p-
admissible splittings. There is a symplectic submodule W ⊂ ker p of rank two, the map p|W⊥
has the same degree and volume as p. If deg(p) ≥ 3 then there is a p|W⊥-admissible splitting

of W⊥. Adding W to one of the factors produces a p-admissible splitting.

It remains to treat the case g ≥ 3 and deg(p) = 2. Without loss of generality we can suppose
that the image of p is the group of Gaussian integers. Using the normal form of period of
finite primitive degree (see Lemma 9.1 proved in Appendix 9) we can find a symplectic basis
{ai, bi} by p(a1) = p(a2) = 1, p(b1) = p(b2) = i and zero elsewhere. In this case vol(p) = 2 and
deg p = 2. The p- volume of any symplectic submodule of H1(Σg) is an integer. Suppose that
there exists a p-admissible splitting V1 ⊕ V2 of H1(Σg). The volume of each component is a
positive integer. Hence, the only possibility is that each component has volume one and thus
vol(Vi) = vol(C/Im(p)). Since g ≥ 3, one of both factors, say V1, has even rank ≥ 4 so p|V1 is
not a Haupt homomorphism, contradicting the definition of p-admissible decompositon. �

Corollary 6.22. If p ∈ H3 has deg(p) = 2 then Per−1
3 (p) ' S2. Therefore its lift to ΩT3 has

infinitely many connected components.

Proof. The proof of Theorem 3.3 together with the fact that there are no p-admissible split-
tings, imply that Per−1(p) is isomorphic to Siegel space S2. By simple connectedness of Siegel
space we deduce the final statement. �

Corollary 6.23. For p ∈ Hg with deg(p) ≥ 3 that can be decomposed as a direct sum of
primitive degree two homomorphisms on modules of rank at least ten, the set of boundary
points of compact type of Per−1(p) in Ω∗0Sg is disconnected.

Proof. Let V1 ⊕ V2 be the splitting such that pi = p|Vi has degree two for i = 1, 2. By
Proposition 6.21 there are no pi-admissible decoompositions of Vi.

In particular there are no forms of compact type with two separating nodes and periods
p such that one of the nodes induces the splitting V1 ⊕ V2 so we cannot approach a point
of intersection with another irreducible boundary component of Per−1(p) of compact type.
On the other hand, the intersection of the boundary component with the fiber Per−1(p) is
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homeomorphic to a product of two fibers as in Theorem 1.3 via the normalization map of the
node. Hence it is a disconnected set. �

This corollary indicates that to prove the connectedness of the bordification the boundary
of compact type does not solve the problem, since it is not connected.

7. Detecting connected components of isoperiodic forms with one node

Attaching and forgetful maps have nice relations with respect to the fibers of period maps.
For instance, the restriction of a map of type (31) with n1 = n2 = 1 to a product of fibers
produces a map

ΩSg1,1(p1)× ΩSg2,1(p2)→ ΩSg1+g2,0

whose image points have one node and constant periods p that can be decomposed as p1⊕p2.
Equivalently, the restriction of a map of type (32) with n = 0 to a fiber ΩSg−1,2(p) has its
image in the set of forms with a unique non-separating node in a fiber of the period map in
ΩSg,0 (see Figure 1). In fact, thanks to the characterization given in Corollary 4.20, these
maps provide continuous parametrizations of the components of the intersections of fibers
of Per with some boundary stratum ΩBc of stable forms with one node. Remark that the
hypothesis of Theorem 1.2 does not apply to isoperiodic spaces of forms with some marked
points, so to control the number of connected components of the image of the attaching maps,
we will first relate isoperiodic sets on spaces of curves with marked points with isoperiodic
spaces without marked points.

7.1. Connectedness of the fibers of Perg,2. Recall that the relative homology long exact
sequence gives a natural injection

0→ H1(Σg,Z)→ H1(Σg, q1, q2;Z).

Theorem 7.1. Let g ≥ 1 and p : H1(Σg, q1, q2;Z) → C be a homomorphism such that
0 6= p0 = p|H1(Σg ,Z) has degree at least three and ΩSg,0(p0) is connected. Then, ΩSg,2(p) is
non-empty and connected.

Since non-generic sub-strata of forms in ΩSg,2(p) form analytic subsets, the claim of The-
orem 7.1 is equivalent to proving that the open subset

ΩSZSg,2(p) = {(C,m, ω) ∈ ΩSg,2(p) : ω has simple zeros }
is connected . To prove Theorem 7.1 we will bordify ΩSZSg,2(p) in the complex manifold

ΩSZUg,2 ⊂ ΩSg,2 defined in subsection 4.20 by adding the limit points. Thanks to Proposition
4.44 the closure is a smooth complex manifold where the boundary points form a divisor.

Recall that Ug,2 = For−1
g,2(Sg,0) ⊂ Sg,2 where Forg,2 : Sg,2 → Sg,0 is the map that forgets

both marked points and stabilizes the obtained curve. Every point in some boundary stratum
in Ug,2 has one node and a part of genus zero containing both marked points. To simplify the
notations along the proofs we fix g and write U := Ug,2.

The fibration ΩSZU→ U of forms having only simple zeros in the smooth genus g part is
a complex manifold and the restriction of the period map defined on ΩSZU is holomorphic
(see Lemma 4.39).

Given a homomorphism p : H1(Σg, q1, q2;Z)→ C, we define the analytic subset

Xp = {(C, r1, r2,m, ω) ∈ ΩSZUg,2 : Perg,2(C, r1, r2,m, ω) = p}.
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To understand the topology of Xp we will slice it by fibers of the restriction of the forgetful
map to ΩSZU introduced in equation (43)

(48) For : ΩSZU→ ΩSZSg.

The fiber of For over a point (C,m, ω) ∈ ΩSg is biholomorphic to the covering of the surface
C × C described in Proposition 4.26.

Recall that p0 := p|H1(Σg). Thanks to Lemma 6.17, we have

For(Xp) = ΩSZSg(p0).

Lemma 7.2. For any (C,m0, ω0) ∈ ΩSZSg(p0), the analytic subset

Xp ∩ For−1(C,m0, ω0)

is a connected singular curve.

Proof. Fix a homology class α0 ∈ H1(Σg, {q1, q2},Z) with boundary ∂α0 = q2 − q1. Define
the map f : For−1(C,m0, ω0)→ C by

f(C ′, r1, r2,m, ω) =

∫
m∗α0

ω where C ′ = C or C ′ = C ∨ P1

Since H1(Σg, {q1, q2},Z) is generated by H1(Σg,Z) and α0, the set Xp ∩ For−1(C,m0, ω0) is
equal to the fiber f−1(z0) with z0 = p(α0) ∈ C. We will actually prove that all fibers of f are
connected to conclude the proof.

The function f is a primitive of the holomorphic 1-form r∗Ω where

(i) r = R|For−1(C,m0,ω0) : For−1(C,m0, ω0)→ C×C is the H1(Σg)-covering of monodromy

(α1, α2) · α = α+ α2 − α1,

described in Proposition 4.26 and
(ii) Ω is the form on C × C defined by Ω = pr∗2ω0 − pr∗1ω0, where pri : C × C → C for

i = 1, 2 are the projections on the first and second factors respectively.

A result of Simpson [62] shows that either

(1) the fibers of f are connected, or
(2) there exists a complex curve E equipped with a holomorphic one form η, and a

holomorphic map h : C × C → E with connected fibers such that Ω = h∗η.

So it remains to prove the Lemma in the second case.

Since the set of zeros of Ω is finite (it is the square of the set of zeroes of ω0 in C × C),
and that fibers of h are one dimensional subvarieties, the form η does not vanish, hence E is
an elliptic curve. So we have E = C/Λ for a certain lattice Λ ⊂ C, and η = dz for z ∈ C the
coordinate.

Notice that the set of absolute periods of ω,Ω and η coincide with Λ; indeed, it is clear
that the set Λ′ of absolute periods of ω and Ω coincide and that it is contained in the set of
periods of η, which is equal to Λ. Now, assuming for contradiction that Λ′ is strictly contained
in Λ, the map h could be factored in the form h = r′ ◦ h′ where h′ : C × C → C/Λ′ and
r′ : C/Λ′ → C/Λ ' E a covering of degree > 1. But h′ is onto since it is a non constant
holomorphic map, so this contradicts the fact that the fibers of h are connected. Hence
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Λ′ = Λ. This discussion shows that up to changing the coordinate z by a translation if
necessary, we have the following commutative diagram

(49)

For−1(C,m0, ω0) C

C × C C/Λ

f

r

h

Let us fix z ∈ C and analyze the restriction

(50) r|f−1(z) : f−1(z)→ h−1(z mod Λ)

Recall from Proposition 4.26 that the covering group G ' H1(Σg) of r is presented as
G ⊂ Aut(H1(Σ,{q1, q2},Z)) acting on α0 by α · α0 = α0 + α. Therefore we have

f ◦ α = f + p0(α).

Together with the diagram (49), this shows that r|f−1(z) is a Ker(p0)-covering. Its monodromy

is the composition of the inclusion map H1(h−1(z mod Λ),Z) → H1(C × C,Z) ' H1(C,Z)2

with that of the H1(Σg,Z)-covering r. The connectedness of f−1(z) is equivalent to the
transitivity of the action of the monodromy on the fiber of r|f−1(z).

Picard-Lefschetz theory can be applied to analyze this monodromy. We include a statement
of a particular instance of it that is needed here, in Corollary 11.2 of Appendix 11. It shows
that the image of H1(h−1(z mod Λ),Z)→ H1(C×C,Z) is the kernel of h∗ =: H1(C×C,Z) '
H1(C,Z)2 → H1(E,Z) ' Λ. Moreover, the map h at the level of the homology is given by
the periods of Ω, namely by h∗ = p0 ◦ (pr2 − pr1). In conclusion, the monodromy of the
Ker(p0)-covering r|f−1(z) : f−1(z) → h−1(z mod Λ) acts transitively, and this concludes the

proof that f−1(z) is connected, hence Lemma 7.2. �

Corollary 7.3. Xp is connected if and only if For(Xp) is connected.

Proof of Corollary 7.3. Suppose For(Xp) = ΩSZSg(p0) is connected. By Lemma 7.2 , each
connected component ofXp is a union of fibers of For|Xp

. SupposeXp = X1tX2 whereX1 and

X2 are disjoint open sets and X1 6= ∅ is connected. Then X1 is a union of fibers of For|Xp
, and

so is its complement X2. Moreover For|Xp
: Xp → ΩSZSg(p0) is an open map, since on each

fiber there is some point where For|Xp
is a submersion. Then For(Xp) = For(X1) t For(X2).

By connectedness of For(Xp) we deduce For(X2) = ∅, and therefore X2 = ∅, which implies
that Xp = X1 is connected. The other implication is obvious.

�

When Xp contains a point in some boundary stratum, there are, by Proposition 4.44,
irreducible components of Xp strictly contained in the boundary. To deduce the connectedness
of the subset of points of Xp that lie outside the boundary (to prove Theorem 7.1) we need
to show that taking out those components we still have a connected set. We will apply the
following general

Lemma 7.4. Let X be a connected analytic set on a complex manifold and suppose X = Y ∪Z
where both Y and Z are unions of irreducible components of X that satisfy

(1) around each point of Sing(X) the set X is a normal crossing of two smooth manifolds,
one of which lies in Y and the other in Z, and
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Figure 14. Real representation for the set X in Lemma 7.4: each plane
represents component of Z. Each circle in a component of Z represents a
connected component of Sing(X) that forms a divisor in Y , the closure of
X \ Z.

(2) the intersection of each irreducible component of Z with Sing(X) is connected.

Then X \ Z ⊂ Y is connected.

Proof. The diagram in Figure 14 helps to understand the ideas behind the proof. The prop-
erties of Sing(X) imply that Y and Z are smooth manifolds. Moreover, each connected
component of Sing(X) is a smooth complex submanifold of Y and of Z that coincides with
Zi ∩ Y for some irreducible component Zi of Z. In particular, the connectedness of X \ Z is
equivalent to the connectedness of Y .

On the other hand, for X, (and also for the manifolds Y and Sing(X))) connectedness is
equivalent to path connectedness.

Given y1, y2 ∈ Y ⊂ X we can, by hypothesis, find a path γ : I → X starting at y1 and
ending at y2. If the path lies in Y we are done. Otherwise I \ γ−1(Y ) is a finite family of
disjoint segments I1, . . . , Ik ⊂ I where γ|Ik is a path contained in a unique Zk with endpoints
in Sing(X). Substitute γ|Ik by a path in the connected manifold Zk ∩ Y ⊂ Sing(X) joining
the same endpoints. The constructed path lies in Y . Therefore, Y is path connected and so
is X \ Z. �

7.1.1. Proof of Theorem 7.1. Recall from subsection 4.20 that the boundary strata in ΩSZUg,2
is precisely the disjoint union

⊔
β∈b ΩSZBβ, where b = {β ∈ H1(Σg, q1, q2,Z) : ∂β = q2 − q1}.

The boundary strata in Xp are

Zp =
⊔
β∈b

ΩSZBβ(p).

Let Yp be the union of irreducible components of Xp that have some point outside the bound-
ary.

From Proposition 4.44 we deduce that

Sing(Xp) =
⊔
β∈b

ΩSZ,1Bβ(p).
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where ΩSZ,1Bβ is the substratum of forms where the points corresponding to the node are
zeros of the form on both sides of the node. Moreover, the local structure of Xp at a singular
point is a normal crossing of two smooth components: one lying in Zp and the other in Yp.

Claim 1: Xp is connected.

Proof of Claim 1: Since deg(p0) ≥ 3 and Per−1
g,0(p0) is connected by hypothesis, so is the

Zariski open set Per−1
g,0(p0) ∩ ΩSZSg,0 = For(Xp). Corollary 7.3 then implies that Xp is con-

nected.

Claim 2: Each ΩSZBβ(p) is a smooth irreducible component of Zp.

Proof of Claim 2: Proposition 4.44 shows that the set ΩSZBβ(p) is a smooth manifold. As
for connectedness, the attaching map

(51) ΩSZSg,1 ∼= ΩSZSg,1 × ΩS0,3 → ΩSZBβ

that sends a form with simple zeros on a smooth genus g curve with a marked point to the
form that attaches a zero component of genus zero at the marked point, is a biholomor-
phism. Define p1 = p|H1(Σg,1). Then, the set ΩSZBβ(p) corresponds to ΩSZSg,1(p1) under
this biholomorphism. Remark that the forgetful map Sg,1 → Sg is a fiber bundle that is
equivalent to the universal curve bundle CSg → Sg. The restriction of the forgetful map
CΩSg,1 → ΩSg to ΩSZSg,1(p1) ⊂ ΩSZSg,1 coincides with the restriction of the universal curve
bundle to the open set ΩSZSg(p0) ⊂ ΩSg. Since the latter is connected by hypothesis, so is
ΩSZSg,1(p1) ⊂ ΩSZSg,1.

Claim 3: Each ΩSZ,1Bβ(p) is a connected set.

Proof of Claim 3: By the biholomorphism (51), the set ΩSZ,1Bβ(p) corresponds to the subset

ΩSZ,1Sg,1(p) ⊂ ΩSZSg,1 where the marked point coincides with one of the simple zeros. This
set can be interpreted as the multi-section described by the set of 2g− 2 simple zeros on each
fiber of the universal curve bundle

CΩSZSg,0(p0)→ ΩSZSg,0(p0).

Since ΩSZSg,0(p0) is connected and deg p0 ≥ 3, we deduce from Lemma 3.14 that this multi-
section is connected.

From Claims 1,2 and 3 we deduce that the hypotheses of Lemma 7.4 are satisfied for
Xp = Yp ∪ Zp. We deduce from it that ΩSg,2(p) = Xp \ Zp is connected.

7.2. Some connected components of isoperiodic sets on curves with one node.

Proposition 7.5. Let g ≥ 2, p ∈ H1(Σg,C), and c be a Torelli class of a simple separating
curve in Σg such that Ω∗Bc(p) is non empty. Let H1(Σg,Z) = V1⊕V2 the symplectic splitting
associated to c and denote pi = pVi. Suppose that, after a symplectic identification of Vi with
H1(Σgi ,Z) for corresponding gi’s, the set ΩSgi(pi) is connected for i = 1, 2. Then, Ω∗0Bc(p)
is connected as well.

Proof. First remark that pi 6= 0 and ΩSgi,0(pi) is non-empty, since the restriction of an element
(C1 ∨ C2,m, ω1 ∨ ω2) ∈ Ω∗Bc(p) to a part (Ci,m|Vi , ωi) belongs to that set. By Theorem 7.1
the set ΩSgi,1(pi) is also non-empty and connected. The natural attaching map

ΩSg1,1(p1)× ΩSg2,1(p2)→ Ω∗Bc(p)
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that attaches the marked curves and the forms at the marked points is a surjective continuous
map (see Subsection 4.16). Therefore the image is connected. �

Proposition 7.6. Let g ≥ 3, p ∈ H1(Σg,C), and c be a Torelli class of a simple non
separating curve in Σg such that Ω0Bc(p) is non empty. Suppose that, after a symplectic

identification of [c]⊥/Z[c] with H1(Σg−1,Z), the primitive degree of p[c] is at least three, and
ΩSg−1(p[c]) is non-empty and connected. Then, Ω0Bc(p) is connected as well.

Proof. Take a representative of c and introduce the closed connected oriented topological
surface Σg−1 with two marked points q1 6= q2 ∈ Σg−1 defined by cutting Σg along c and
identifying each component of the geometric completion to a point, one defining the point q1

and the other the point q2. Notice that we have a natural isomorphism

(52) H1(Σg−1, q1, q2;Z) ' H1(Σg,Z)/Z[c],

where [c] denotes the homology class of c. The inclusion H1(Σg−1,Z) ↪→ H1(Σg−1, q1, q2;Z)
coming from the long exact sequence of relative homology translates under the isomorphism
(52) into the inclusion [c]⊥/Z[c] ↪→ H1(Σg,Z)/Z[c].

Since [c] belongs to the kernel of p : H1(Σg,Z) → C, this latter defines a period prel :
H1(Σg−1, q1, q2;Z) → C. The attaching map that identifies the two marked points provides
an isomorphism

Ω0Bc(p) ' ΩSg−1,2(prel).

Now, the restricition (prel)0 of prel to H1(Σg−1,Z) coincides with p[c] up to the given identifi-
cation. In particular deg((prel)0) ≥ 3 and ΩSg−1,0((prel)0) is (non-emtpy and) connected. By
Theorem 7.1 applied to prel we deduce that ΩSg−1,2(prel) is connected. �

8. Connectedness of the boundary of a fiber of Per

This section will be devoted to show the following

Theorem 8.1. Let g ≥ 4 and suppose that Theorem 1.2 is true up to genus g − 1. Then for
any p ∈ Hg with deg p ≥ 3 the boundary ∂ Per−1(p) in Ω∗0Sg is connected.

Its proof will be split in two separate parts, depending on whether p ∈ Hom(H1(Σg,Z),C)
is injective or not.

8.1. Proof of Theorem 8.1 for injective p ∈ Hg. In the case of injective p ∈ Hg all points

in ΩSg(p) are contained in the smooth manifold Ω∗S
c
g formed by stable forms without zero

components on curves of compact type. Moreover, Corollary 4.42 guarantees that ΩSg(p) is
a smooth manifold, and the boundary strata ∂Per−1(p) form a normal crossing divisor. The
connectedness of this divisor is equivalent to the connectedness of its dual complex Gp.

Remark 8.2. If L ∈ GL+
2 (R) is an orientation preserving real linear map, the complexes

associated to p and to L ◦ p are isomorphic. In particular, for any c ∈ C∗, Gp and Gcp are
isomorphic.

In the rest of this section we will prove the connectedness of the complex Gp.
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Since each component of a boundary stratum of Per−1(p) lies in a component of a stratum

of the boundary of ΩS
∗
g we can define, using the dual boundary complexes, a continuous map

of simplicial complexes

(53) Gp → Csep
g /Ig.

We claim that if p is injective and g ≥ 4 then so is the map (53) at the level of vertices. Indeed,
suppose D1, D2 are connected components of ∂ Per−1(p) lying on the boundary component

of ΩS
∗

corresponding to a symplectic splitting V1 ⊕ V2. Since ker p = 0, deg(p|Vi) <∞ if and
only if rank(Vi) = 2. The inductive hypothesis of Theorem 1.2 and Proposition 7.5 guarantee
that there is only one isoperiodic irreducible component of period p in the boundary stratum
of ΩSg corresponding to V1 ⊕ V2. Hence, D1 = D2. The connectedness of Gp is therefore
equivalent to that of the image of (53). Two vertices of the image of (53) are said to be
equivalent if they lie in the same connected component of the image. Suppose that for
i = 1, 2, {Vi, V ⊥i } are the modules associated to two vertices. We write V1 ∼ V2 if the vertices
lie in the same connected component of the image of (53). In particular V ∼ V ⊥ for any pair
{V, V ⊥} representing a vertex in the image. In fact, more generally, if V1, V2 are orthogonal
submodules of intermediate volume volp(Vi) ∈ (0, vol(p)) such that

0 < volp(V1) + volp(V2) < vol(p) then V1 ∼ V2.

Indeed, they are two of the factors of a p-admissible splitting V1 ⊕ (V1 ⊕ V2)⊥ ⊕ V2. By
Corollary 6.18, this splitting occurs as the period of a stable form without zero components
on a curve with two separating nodes. Moreover it lies in the intersection of the closure of
the components of V1 and V2.

We first prove that every vertex given by a p-admissible splitting V ⊕ V ⊥ is equivalent
to another V1 ⊕ V ⊥1 where V1 ∈ Vp, i.e. V1 is of rank two. Indeed, if V is of rank strictly
between 2 and 2g− 2 then p|V is an injective Haupt homomorphism and by Proposition 6.19
there exists a p|V -admissible splitting V1 ⊕ V2 of V with a factor V1 of rank 2. Therefore

V1 ⊕ V2 ⊕ V ⊥ is also a p-admissible splitting and V ∼ V ⊥ ∼ V1. It remains to connect the
vertices corresponding to rank two p-admissible submodules.

Proposition 8.3. If g ≥ 4, p ∈ Hg is injective and V, V ′ ∈ Vp, we have V ∼ V ′. Therefore
the image of (53) is connected.

We will split the proof in several Lemmas :

Lemma 8.4. Let g ≥ 4 and p ∈ Hg be injective. If V, V ′ ∈ Vp satisfy V ∩ V ′ 6= 0, then

V ∼ V ′.

Proof. If V = V ′ we are done. Suppose that V 6= V ′

First step: there is a symplectic basis a1, b1, . . . , ag, bg such that V = Za1 + Zb1 and V ′ =
Za1 + Z(b1 +m′2a2) for a certain integer m′2.

Proof of the first step. The intersection V ∩ V ′ is a primitive submodule of H1, since both V
and V ′ are primitive. Being of rank 1, we have V ∩ V ′ = Za1 with a1 primitive. Let b1 ∈ V
(resp. b′1 ∈ V ′) such that a1 · b1 = 1 (resp. a1 · b′1 = 1). These elements exist since V and
V ′ are unimodular. The element b′1 − b1 belongs to a⊥1 . For a certain integer n, the element
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b′1 + na1 − b1 is also orthogonal to b1. Change b1 to b1 − na1 if necessary. We then have
that b′1 − b1 is orthogonal to V = Za1 + Zb1. Write b′1 − b1 = m′2a2 where a2 is a primitive
element of V ⊥. Completing a2 into a symplectic basis a2, b2, . . . , ag, bg of V ⊥ gives the desired
statement. �

Second step: if the periods of (V +V ′)⊥ do not lie in a real line of C, there exists a symplectic
rank two submodule W ⊂ H1(Σg) such that V ⊥W , V ′ ⊥W and

(54) 0 < volp(W ) < inf(volp(V
⊥), volp((V

′)⊥).

In particular, V ∼W ∼ V ′.

Proof of second step. In the coordinates of the first step, we have (V +V ′)⊥ = Za2 +X where
X :=

∑
k≥3 Zak +Zbk. We apply Proposition 6.10 to p|X . If the restriction of p to X belongs

to case (1) of that proposition, we are done. If it belongs to case (2), we use the

Lemma 8.5. Let X be a unimodular symplectic module of rank 4. For every Lagrangian
subspace L ⊂ X, there exists a symplectic rank two submodule Y ⊂ X such that L∩Y = {0}.

Proof. We can assume that L = Za + Za′ is primitive. Let a1 = a and b1 be an element of
X such that a1 · b1 = 1. We have a′ = m1a1 + c where c ∈ (Za1 + Zb1)⊥ and m1 ∈ Z. Up to
replacing a′ by a′ −m1a1, we can assume that m1 = 0. Since L is primitive, so is c, so that
we can extend the family a1, b1, a2 = c to a symplectic basis of X. The symplectic submodule
Y = Z(a1 + b2) + Zb1 has the desired properties. �

From now on a Greek letter will denote the period of the corresponding Latin letter. Let
l = Rα2, and L = X∩p−1(l). This space is either {0} or a Lagrangian subspace of X since we
assume the restriction of p to X is in case (2) of Proposition 6.10. By the preceding Lemma,
there exists a symplectic rank two submodule Y ⊂ X such that Y ∩ p−1(l) = {0}. Let a′, b′

be a symplectic basis of Y , and let

a = a′ +Aa2, b = b′ +Ba2,

for some A,B ∈ Z. We have a · b = a′ · b′ = 1, and the volume of W = Za+ Zb is given by

volp(W ) = =((β′ +Bα2)(α′ +Aα2)) = =(β′α′) + =((Aβ′ −Bα′)α2).

By construction none of the cycles of Y are mapped by p to an element of the line l = Rα2,
so the linear form (A,B) ∈ Z2 7→ =(Aβ′ − Bα′)α2) ∈ R is injective, and thus the volume of
W can approximate any real value. Since W is orthogonal to both V and V ′, choosing W
with volp(W ) ∈ (0, vol(p)) gives the solution to step 2.

�

Third step: assume that the periods of (V + V ′)⊥ lie on a real line l ⊂ C. Then V ∼ V ′.
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Proof of the third step. Thanks to Remark 8.2 it suffices to show that V is equivalent to V ′

for some wp where w ∈ C∗. By choosing an appropriate w of modulus one we can suppose
that wp((V + V ′)⊥) ⊂ R. If we prove Step 3 for the case l = R we will be done. Recall that
X =

∑
i≥3 Zai + Zbi ⊂ (V + V ′)⊥. Let c ∈ X and define Vc := Za1 + Z(b1 + c). The volume

of Vc is given by
volp(Vc) = volp(V ) + =(p(c)α1).

If α1 ∈ R, then Vc is automatically p-admissible. Otherwise p(α1) /∈ R and Vc is p-admissible
as soon as

−volp(V ) < =(p(c)α1) < vol(p)− volp(V ).

Now X has rank at least 4 and so has the image of the homomorphism X → R
c 7→ =(p(c)α1).

Therefore, the inequality has an infinite number of solutions c ∈ X \{0}. We can even impose
a further condition that c · a3 = 1. Define V ′′ = Vc for such a solution c.

We claim that V ′′ ∼ V . Indeed, the space (V +V ′′)⊥ contains the element b2. Observe that
the period β2 of b2 is not real, since otherwise all the periods of V ⊥ would be real, and so we
would have volp(V ) = vol(p) which contradicts V ∈ Vp. On the other hand, the submodule

c⊥ ∩ X has rank ≥ 3 and is contained in (V + V ′)⊥. Since the periods of X are real, this
proves that some periods of (V + V ′′)⊥ are real. We can thus apply Step 2 to the couple
(V, V ′′) to infer V ′′ ∼ V .

To prove that V ′′ ∼ V ′ we will show that (V ′+V
′′
)⊥ does not have all its periods in a line

and apply Step 2. Consider the element b2 +m′2(a1 + a3). It belongs to (V ′+ V
′′
)⊥. If it has

real period, then b2+m′2a1 has also real period, which implies that (V ′)⊥ has only real periods.
This is in contradiction with the fact that V ′ is p-admissible. Therefore b2 +m′2(a1 + a3) has

non-real period. On the other hand there are elements in (V ′+V
′′
)⊥∩X \0 and their periods

are non-zero real numbers. �

�

Lemma 8.4, allows to reduce the equivalence relation ∼ on submodules in Vp to an equiv-
alence relation on the elements that belong to those submodules.

Definition 8.6. Let p ∈ Hg. Recall that a primitive element w ∈ H1(Σg) is said to be
p-admissible if it is contained in some module V ∈ Vp. Two p-admissible elements w,w′ are
equivalent and denoted w ∼ w′ if there exist V, V ′ ∈ Vp containing w and w′ respectively such
that V ∼ V ′.

The transitivity property of this equivalence relation is proven by the use of Lemma 8.4.

In particular, we already know that if V ∩ V ′ 6= 0 then any pair of primitive elements in
V ∪ V ′ are equivalent.

If V and W belong to Vp and there exists some elements v ∈ V and w ∈ W such that
v ∼ w, then V ∼W . Indeed, we can find V ′,W ′ ∈ Vp such that v ∈ V ′, w ∈W ′ and V ′ ∼W ′.
By Lemma 8.4, V ∼ V ′ and W ∼W ′, so V ∼W .

Let us analyze the p-admissible elements.

Lemma 8.7. Let p : H1(Σg)→ C be an injective Haupt homomorphism. Given w1, w2, w3 ∈
H1(Σg) such that
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(1) wi · wi+1 = 1 for i = 1, 2,
(2) p(w3) /∈ Rp(w1) and
(3) for every real line ` ⊂ C containing 0

rank(p−1(`) ∩ w⊥1 ∩ w⊥3 ) < 2g − 3.

Then there exists w′2 ∈ H1(Σg) such that w1 ·w′2 = w′2 ·w3 = 1 and Zw1⊕Zw′2 and Zw′2⊕Zw3

belong to Vp. Therefore w1 and w3 are p-admissible and w1 ∼ w3.

Proof. Write w′2 = w2 + z where z ∈ w⊥1 ∩ w⊥3 . If we show that the image of the map

w⊥1 ∩ w⊥3 → R2

defined by z 7→ (volp(Zw1 ⊕ Z(w2 + z)), volp(Z(w2 + z) ⊕ Zw3)) has a point in the square
(0, vol(p))× (0, vol(p)) we will be done. The previous map is affine, with linear part

ϕ(z) = (=(p(z)p(w1)),=(p(w3)p(z))).

Since p(w1) and p(w3) are not R-colinear, Ker(ϕ) = 0 and therefore rank(Imϕ) = 2g − 2.
The topological closure of Imϕ in R2 is either R, Z × R or R2. Suppose it is not R2. Then
there exists a submodule H ⊂ w⊥1 ∩w⊥3 such that ϕ(H) ⊂ ` ⊂ R2 for some real line ` passing
through the origin and rankH ≥ (2g − 2)− 1 = 2g − 3. Write ` = {(x, y) : αx+ βy = 0} and
then for each z ∈ H,

=(p(z)(αp(w1)− βp(w3)) = 0.

Hence p(H) ⊂ R(αp(w1) − βp(w3)) is a submodule of rank at least 2g − 3 and we reach a
contradiction with the rank hypothesis. �

The role played by the rank of p on lines in Lemma 6.9, Lemma 8.7 and Proposition 6.10
makes it useful to introduce the following

Definition 8.8. Given a homomorphism p : W → C from a Z-module W we define its line
rank as

r(p) = max
a∈S1

rankZ(p−1(aR)).

Remark that if W is symplectic and vol(p) > 0 then r(p) < 2g. Also, if p is injective and
r(p) > g, then the maximum is attained by a unique real line `max ⊂ C containing 0.

As far as Lemma 8.7 is concerned, the rank condition is automatically satisfied if r(p) <
2g − 3. For g ≥ 4 and r(p) ≥ 2g − 3 we have to check the rank condition only for `max. In
case r(p) = 2g − 1 the rank condition cannot be attained. In the other two cases it depends
on whether there exists a rank two submodule of w⊥1 ∩ w⊥3 with periods outside ` or not.

Lemma 8.9. For g ≥ 2, given primitive w1, w4 ∈ H1(Σg) such that w1 · w4 = 0, there exists
w2, w3 ∈ H1(Σg) such that

wi · wi+1 = 1 for i = 1, 2, 3

Proof. Let w′2 satisfy w1 · w′2 = 1 and w′3 satisfy w′3 · w4 = 1. Since w1 ∈ w⊥4 for any k we
have (w′3 + kw1) ·w4 = 1. Choose k as to have w′2 · (w′3 + kw1) = 0 and define w3 = w′3 + kw1.
It is primitive and we can take w′′2 satisfying w′′2 · w3 = 1. Since w′2 ∈ w⊥3 there exists l such
that w2 = (w′′2 + lw′2) satisfies w1 · w2 = 1. �

Lemma 8.10. If g ≥ 4, p : H1(Σg) → C is an injective homomorphism of positive volume
and r(p) < 2g − 3, then any pair of primitive elements in H1(Σg) are equivalent.
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Proof. Let v, w ∈ H1(Σg) be two primitive elements. By taking z ∈ v⊥ ∩ w⊥ and applying
twice Lemma 8.9 we can consider a sequence w0, w1, . . . , w6 ∈ H1(Σg) such that wi ·wi+1 = 1
for i = 0, . . . , 5, w0 = v, w3 = z and w6 = w.

We claim that there exist c2 ∈ w⊥1 ∩ w⊥3 and c4 ∈ w⊥3 ∩ w⊥5 such that for w′0 = w0,
w′2 = w2 + c2, w′4 = w4 + c4 and w′6 = w6 we can apply Lemma 8.7 to each of the triples
w′i, w

′
i+1, w

′
i+2 for i = 0, 2, 4 and conclude. By the line rank assumption on p, we need to

verify

(55) =(p(w′2)p(w0)) 6= 0, =(p(w′4)p(w′2)) 6= 0, =(p(w′6)p(w′4)) 6= 0,

for this claim to hold.

If p(w′2) is always colinear to p(w0) for any choice of c2 ∈ w⊥1 ∩ w⊥3 , this means that
p(w⊥1 ∩w⊥3 ) is contained in the line Rp(w0), which contradicts the line rank assumption. Let
us fix c2 ∈ w⊥1 ∩ w⊥3 (and the corresponding w′2) such that p(w′2) is not colinear with p(w0).

Now, the same argument shows that each affine subspace

{c4 ∈ w⊥3 ∩ w⊥5 : =(p(w′4)p(w′2)) = 0} and {c4 ∈ w⊥3 ∩ w⊥5 : =(p(w′6)p(w′4)) = 0}

have positive corank. Hence, the union of these subspaces does not fill the whole w⊥3 ∩ w⊥5 .
Choosing c4 outside the union of these subspaces gives the solution to Lemma 8.10. �

Lemma 8.10 provides a proof of Proposition 8.3 for the case of r(p) < 2g − 3. In fact, a
similar reasoning, but more elaborated, permits to cover also the case r(p) = 2g−3. However,
we will treat this case, together with the cases r(p) ≥ 2g − 3, by different methods, in the
next family of lemmata:

Lemma 8.11. Let g ≥ 4 and p : H1(Σg) → C an injective Haupt homomorphism with
r(p) ≥ 2g − 3. Write I = p−1(`max) and suppose v, w ∈ H1(Σg) \ I are primitive elements

such that v · w = 0 and [w] ∈ v⊥/Zv is also primitive. Then v ∼ w.

Proof. By applying Remark 8.2 we can suppose without loss of generality that `max = R.
Choose b ∈ w⊥ such that v · b = 1. We claim that, up to changing b by b + e for some
e ∈ I ∩ w⊥ ∩ v⊥ we can suppose that V = Zv ⊕ Zb belongs to Vp. Indeed, since p(e) ∈ R,

vol(Zv ⊕ Z(b+ e)) = vol(Zv ⊕ Zb) + p(e)=(p(v)).

By hypothesis the rank of p(I ∩w⊥ ∩ v⊥) is at least 2g − 5 ≥ 3 for g ≥ 4, so the value of the
volume of V can be chosen arbitrarily close to any desired value.

Next take c ∈ V ⊥ such that w · c = 1. Given f ∈ w⊥ ∩ V ⊥ ∩ I, we have

vol(Zw ⊕ Z(c+ f)) = vol(Zw ⊕ Zc) + p(f)=(p(w)).

Again, since the rank of w⊥ ∩ V ⊥ ∩ I is at least 2g − 6 ≥ 2 for g ≥ 4, we can suppose
that c is chosen so that W = Zw ⊕ Zc belongs to Vp|V⊥ . By construction V ⊥ W and

0 < vol(V ) + vol(W ) < vol(p). Therefore V ∼W and also v ∼ w. �

Lemma 8.12. Let g ≥ 4 and p : H1(Σg) → C an injective Haupt homomorphism with
r(p) ≥ 2g − 3. Define I = p−1(`max). If v, w ∈ H1(Σg) \ I are primitive such that

v⊥ ∩ w⊥ * I

then v ∼ w.
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Proof. Take a symplectic basis ai, bi of H1(Σg) such that a1 = v and

w = m1a1 + n1b1 +m2a2.

Let X := Za3 ⊕ Zb3 ⊕ · · · ⊕ Zag ⊕ Zbg. If X * I then choose z ∈ X \ (I ∩X) primitive. By

Lemma 8.11 v ∼ z and w ∼ z therefore v ∼ w. If X ⊂ I take c ∈ (v⊥ ∩ w⊥) \ I and write
c = cX + c⊥ where c⊥ ∈ X⊥. Then c⊥ /∈ I and c⊥ · v = c⊥ · w = 0, so v, w ∈ (X ′)⊥ where
X ′ := Z(a3 +c⊥)⊕Zb3⊕· · ·⊕Zag⊕Zbg. Restart the argument of the proof with a symplectic

basis of (X ′)⊥ whose first element is still a1 = v and complete it to a basis of H1(Σg) with
the chosen basis of X ′. Since X ′ * I the argument will fall in the previous case and we will
be done. �

Lemma 8.13. Let g ≥ 4 and p : H1(Σg) → C an injective Haupt homomorphism with
r(p) ≥ 2g − 3. Define I = p−1(`max). Let v ∈ H1(Σg) \ I and define

Iv = {z ∈ H1(Σg) : z⊥ ∩ v⊥ ⊂ I}.

Then there exists a proper submodule J  H1(Σg) such that Iv ⊂ J .

Proof. If Iv = ∅, the module J = 0 does the job. Otherwise take z ∈ Iv. Then z⊥∩v⊥ ⊂ v⊥∩I.
We also have

2g − 2 ≤ rank(v⊥ ∩ I) < rank(v⊥) = 2g − 1

where the strict inequality comes from the fact that v /∈ I and I is a primitive module.
Therefore rank(v⊥ ∩ I) = 2g− 2. Its primitive submodule z⊥ ∩ v⊥ has also rank 2g− 2 so the
only possibility is that z⊥ ∩ v⊥ = v⊥ ∩ I. Therefore z ∈ (v⊥ ∩ I)⊥ =: J �

Lemma 8.14. Let g ≥ 4 and p : H1(Σg) → C an injective Haupt homomorphism with
r(p) ≥ 2g − 3. Then for any V,W ∈ Vp we have V ∼W .

Proof. Again we suppose `max = R and define I = p−1(R). Since V and W are of positive
volume we can find primitive elements v ∈ V ∩ Ic and w ∈ W ∩ Ic. If w⊥ ∩ v⊥ * I we have
v ∼ w by Lemma 8.12. Therefore V ∼W .

If w⊥ ∩ v⊥ ⊂ I we can consider the union I ∪ Iv ∪ Iw. Since by Lemma 8.13 it is contained
in a union of proper submodules, it cannot cover the whole of H1(Σg). Take z ∈ H1(Σg) \
(I ∪ Iv ∪ Iw). Then by Lemma 8.12 v ∼ z ∼ w, which as before implies that V ∼W . �

Proposition 8.3 is now proven for all possible ranks of an injective p ∈ Hg.

8.2. Proof of Theorem 8.1 for non-injective p ∈ Hg. In the case of non-injective p we
also consider the dual boundary complex Gp of the stratification of Per−1(p).

Remark that each connected component of a codimension one boundary stratum in Per−1(p)
is contained in a component of the boundary of ΩSg and again we can define a continuous
map of dual complexes

(56) Gp → Cg/Ig.

However, in the case ker p 6= 0 we know that there will be some image points that correspond
to Torelli classes of non-separating curves (see Lemma 6.15). In terms of the parametrization
of the vertices of Cg/Ig given in subsection 4.8, these correspond to primitive classes in ker p\0
pinched by p.
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In contrast with the case of injective periods, when p has large kernel, there may be bound-
ary components of codimension one of ΩSg whose intersection with Per−1(p) is disconnected
(when ker p contains symplectic submodules of large rank). For instance, the boundary com-
ponent of ΩSg corresponding to a p-admissible splitting V1 ⊕ V2 with rankV1 ≥ 10 and
deg(p|V1) = 2 provides an example, via attaching maps and Theorem 1.3. This implies that
the map (56) is no longer injective. However, we can use the inductive hypothesis to identify
a particular subcomplex G′p ⊂ Gp spanned by simple vertices where the restriction of (56) is
injective:

Definition 8.15. Let p ∈ Hg. A p-admissible splitting V1 ⊕ V2 is simple if it satisfies
rank(Vi) ≤ 6 or deg(p|Vi) ≥ 3 for i = 1, 2. A pinched class a ∈ ker p \ 0 is simple if either
g = 3, 4 or deg pa ≥ 3. A vertex of Cg/Ig is p-simple if the corresponding p-admissible splitting
or pinched class is p-admissible and simple.

Lemma 8.16. Let g ≥ 3. For any p ∈ Hg with ker p 6= 0 and deg p ≥ 3 there exist p-simple
vertices of non-compact type in Cg/Ig.

Proof. For g = 3, 4 the statement is equivalent to the existence of pinched classes (see Lemma
6.15). Suppose g ≥ 5 and that there is a vertex that is not simple. If it is of compact type, it
means that one of the factors of the associated p-admissible splitting is of rank at least eight
and the restriction of p to it is of primitive degree two. If it is of non-compact type, there is
a symplectic submodule of rank at least 8 where the restriction of p has degree two. In either
case there is a symplectic submodule of ker p of rank at least two. Each primitive element in
that submodule determines a simple vertex of non-compact type of Gp. �

Proof of Theorem 8.1 in the non injective case. We claim that the restriction of (56) to the
subcomplex G′p–spanned by simple vertices– is injective. Indeed, suppose D1 and D2 are

irreducible boundary components in boundary strata contained in Per−1(p) lying in a bound-
ary component of ΩSg corresponding to a simple p-admissible splitting or primitive class in
ker p \ 0. Propositions 7.5 and 7.6 describe this set as the image of products of isoperiodic
sets under attaching maps. However, by inductive hypothesis (or by Theorem 3.3 in the cases
of genus two and three and degree two) the products of isoperiodic sets under consideration
are connected. Hence D1 = D2. We can therefore talk about simple vertices of Gp, namely,
those lying over p-simple vertices of Cg/Ig. The connectedness of the complex Gp in the non
injective case proceeds in three basic steps:

Step 1: Each vertex of compact type is equivalent in Gp to some vertex of non-compact type.
Step 2: Each vertex of non-compact type is equivalent in Gp to some simple vertex of non-
compact type.
Step 3: Any pair of simple vertices of non-compact type are equivalent in G′p.

8.2.1. Proof of Step 1: from compact type to non-compact type: Let V1 ⊕ V2 = H1(Σg) be
the p-admissible splitting associated to a separating simple closed curve c in Σg and denote
pi = p|Vi . If one of the pi’s is non-injective we claim that any stable form

(C,m, ω) = (C1 ∨ C2,m1 ⊕m2, ω1 ∨ ω2)

of period p sitting in the boundary component associated to V1 ⊕ V2 is equivalent to a stable
form with a non-separating node. Indeed, suppose without loss of generality, that ker p2 6= 0.
Then V2 has at least rank 4. Suppose first that the vertex defined by (C,m, ω) is simple.
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Then, under the hypotheses of Proposition 8.1, Per−1(p2) is connected, contains ω2 and a
stable form ω3 over a curve with a non-separating node. An isoperiodic path ηt between them
provides an isoperiodic path ω1 ∨ ηt between ω = ω1 ∨ω2 and ω1 ∨ω3. The latter is a form in
Ω∗0Sg with periods p and two nodes, one of which is non-separating. Therefore it defines an
edge between the vertex defined by (C,m, ω) and a vertex of non-compact type of Gp.

Next suppose that the vertex defined by (C,m, ω) is not simple. Then rankV2 ≥ 8 and
deg p2 = 2. Integration of ω2 along C2 provides a branched degree two cover

C2 → C/p2(V2) =: E2

having at least two distinct critical values. The preimage of a path in E2 joining these critical
values provides a pair of twin paths for ω2 sharing the same endpoints. The Schiffer variation
along this pair of twin paths describes an isoperiodic deformation ηt joining ω2 with a stable
form ω3 with a non-separating node. Indeed, if it would join the two critical points to a single
critical point, the local degree of the branched covering around the latter would be at least
three, contradicting the degree two hypothesis. If it would collapse to a separating node, the
degree of the restriction of the period map to each part of the curve would be one, and since
one of the parts has genus at least two it would contradict Haupt’s Theorem.

It remains to treat the case where both p1 and p2 are injective. We will prove that the
(simple) vertex is equivalent to another vertex of compact type where the restriction of p to
one of the parts has non-trivial kernel.

If both p1 and p2 are injective, we can find p-admissible splittings of V1 and V2 with all
factors of rank 2 by using Corollary 6.19 inductively to p1 and p2. In particular the vertex
associated to (C,m, ω) is equivalent to a vertex defined by a p-admissible splitting having a
rank two factor, so we can suppose rankV1 = 2. If p2 is non-injective we are done. It remains
to treat the case where p2 is injective.

Take a primitive element a ∈ ker p and write a = n1a1 + n2a2 for primitive ai ∈ Vi and
co-prime n1, n2 ∈ N∗. If a2 ∈ V2 is contained in a factor V of a p2-admissible splitting of V2,
define V ′1 = V1 ⊕ V . The splitting V ′1 ⊕ V ′⊥1 is also p-admissible and satisfies ker(p|V ′1 ) 6= 0. It
defines a vertex that is equivalent to the one defined by V1 ⊕ V2. In particular this argument
works if a2 is p2-admissible.

So suppose p2 is injective and a2 6= 0 is not p2-admissible. Then by Lemma 6.9 applied to
p2, the rank of p−1

2 (Rp(a2)) ∩ a⊥2 is at least (2g − 2) − 3 + 1 = 2g − 4. Completing a2 to a
symplectic basis a2, b2, a3, b3, . . . , ag, bg of V2, and denoting V3 := Za3 +Zb3 + . . .+Zag +Zbg,
we conclude that H = (p−1

2 (Rp(a2)) ∩ a⊥2 ) ∩ b⊥2 = p−1(Rp(a2)) ∩ V3 is either V3 or a co-rank
one primitive submodule of V3.

In the latter case, by considering an element w ∈ V3 such that p(w) does not belong to
` := Rp(a2), we apply Lemma 6.9 to ` and V3 to construct a symplectic rank two submodule
W ⊂ V3 containing w with 0 < volp(W ) < volp(V2). Since p2 is injective, this implies that

W ∈ Vp2 . The splitting V1 ⊕W ⊕ (W⊥ ∩ V2) of H1(Σg) is p-admissible, and in particular so

is W ⊕W⊥. On the other hand a ∈ W⊥ ∩ ker p so the restriction p|W⊥ is non-injective and
we are reduced to one of the previous cases.

It remains to treat the case where H = V3, namely p(V3) ⊂ Rp(a2). In this case we will
find a new initial p-admissible splitting V1 ⊕ V2 that falls in one of the previous cases and
that defines an equivalent splitting. The new V1 that we want to construct, call it V ′1 , will be
a rank two factor of a p2-admissible splitting of V2.
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The candidates to V ′1 satisfy 0 < volp(V
′

1) < volp(V2). The initial splitting of a will change
to

a = n′′1a
′′
1 + n′′2a

′′
2

with primitive a′′1 ∈ V ′1 and a′′2 ∈ V ′2 := (V ′1)⊥ and co-prime n′′1 and n′′2 (the reason for this
notation a′′i instead of a′i will become clear hereafter). We claim that it is possible to find V ′1
so that either a′′2 is pV ′2 -admissible or p′2 = p|V ′2 is not injective. We already explained that
this would conclude the proof.

Take b1 ∈ V1 such that a1 ·b1 = 1. Up to composing p with a R-linear orientation preserving
equivalence from C to C, we can assume that

p(a1) = n2, =p(b1) = 1, p(a2) = −n1, =p(b2) < 0,

and that
p(ak) = αk ∈ R, p(bk) = βk ∈ R for k ≥ 3.

By injectivity of p2, the numbers α3, . . . , αg, β3, . . . , βg are linearly independent over Q.

We are going to look for the module V ′1 as being generated by the elements a′1 and b′1,
where

a′1 = a2 +
∑
k≥3

mkak + nkbk, b
′
1 = b2, a

′
2 = a1, b

′
2 = b1

and for k ≥ 3
a′k = ak + nkb2, b

′
k = bk −mkb2

form a new symplectic basis for H1(Σg). Here mk, nk are integers that have to be determined
for k ≥ 3. We have

volp(V
′

1) = −=(p(b2))(n1 −
∑
k≥3

mkαk + nkβk).

Observe also that volp(V2) = −n1=(p(b2)). We will choose mk, nk multiple of n1, so we write
mk = m′kn1, nk = n′kn1 with m′k, n

′
k integers. We then have

volp(V
′

1) = εvolp(V2) with ε = 1−
∑
k≥3

m′kαk + n′kβk.

Since p2 is injective, V ′1 is p2-admissible if and only if 0 < ε < 1. By rational independence of
α3, . . . , αg, β3, . . . , βg we can find m′k, n

′
k ∈ Z satisfying this condition. If for such a choice the

homomorphism p′2 := p|V ′2 is not injective, we are done. Suppose that for all choices we have

that p′2 is injective. In this case we will refine the solution to have a′′2 to be p′2-admissible.

Let us understand how the class a decomposes according to the splitting V ′1 + (V ′1)⊥: it is
given by a = n2a

′′
1 + n1a

′′
2 with a′′1 = a′1 and

a′′2 = a′2 − n2

∑
k≥3

m′ka
′
k + n′kb

′
k.

Hence, it suffices to find n′k,m
′
k ∈ Z such that a′′2 is p′2-admissible. The volume of the

symplectic rank two submodule Za′′2 + Zb′2 ⊂ V ′2 (containing a′′2) is

volp(Za′′2 + Zb′2) = =(p(b′2)p(a′′2)) = n2

(
1−

∑
k≥3

m′kαk + n′kβk
)

= n2ε,

while
volp(V

′
2) = volp − volp(V

′
1) = volp − εvolp(V2).
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Hence, as soon as 0 < ε <
volp

n2+volp(V2) one concludes that a′′2 is p′2-admissible. The rational

independence of α3, . . . , αg, β3, . . . , βg allows to find a solution, again.

8.2.2. Proof of Step 2: From non-compact type to simple of non-compact type.

Lemma 8.17. Let (C,ω) be a stable form with a non-separating node having (Ĉ, ω̂) as its

normalization and n1, n2 ∈ Ĉ the points corresponding to the node in C. Let p (resp. p̂)
be the period homomorphism associated to ω (resp. ω̂). Assume that deg(p̂) < ∞, and let

F̂ : Ĉ → C/p̂(H1(Ĉ)) be the map defined by integration of ω̂. Then

deg(p̂) = deg(p)⇔ F̂ (n1) = F̂ (n2).

Proof. The proof is straightforward once one realizes that vol(p̂) = vol(p). �

Continuing with the notations of Lemma 8.17 we consider a marked stable form (C,m, ω)
with period map p of primitive degree at least three, and a non-separating node that collapses

a curve c such that deg(pc) = 2. The period map p̂ of its normalization (Ĉ, ω̂) has therefore

precisely degree two. By Lemma 8.17, F̂ (n1) 6= F̂ (n2) for the integral

F̂ : Ĉ → C/p̂(H1(Ĉ))

of ω̂. The map F̂ is a branched covering of degree two. All its branch points are therefore

simple and have distinct values for F̂ . Choose a path in C/p̂(H1(Ĉ)) that avoids the two

points F̂ (n1) and F̂ (n2) and joins two distinct critical values. Its preimage by F̂ defines a

pair of twins that join two critical points in Ĉ and also two zeros of ω in C. The closed curve
formed by both twins cannot be separating. Indeed, if it was separating, it would induce a
p̂-admissible splitting of H1(Σg−1). However, these do not exist for deg(p̂) = 2 and g − 1 ≥ 3
(see Example 6.21). Therefore, the curve formed by both twins is non-separating. After the

Schiffer variation on (Ĉ, ω̂) along these twins, we obtain a new stable form (C̃, ω̃) of period
p̂ with a node ñ that is non separating. It is a degree two cover of an elliptic differential.
By Lemma 8.17, identifying the points n1 and n2 on (C̃, ω̃) produces a stable form whose
period map has finite primitive degree different from deg(p̂) = 2 (and from one by Haupt’s
Theorem). Hence it has degree at least three. Again by the same Lemma, the normalization
of ñ on this form has that same degree, larger than three.

8.2.3. Proof of Step 3: connecting simple vertices of non-compact type in G′p. Recall that
each simple vertex of non-compact type of the complex Gp corresponds to a unique cyclic
primitive submodule Za ⊂ ker p such that deg pa ≥ 3. We will parametrize those vertices
by the primitive elements ±a ∈ ker p \ 0 generating the submodule. We say that two such
primitive elements a, a′ ∈ ker p \ 0 are equivalent if the corresponding vertices in G′p lie in the
same connected component of the subcomplex G′p of Gp spanned by simple vertices .

Lemma 8.18. Given g ≥ 4, a homomorphism p : H1(Σg)→ C with vol p > 0, deg p ≥ 3 and

(1) a symplectic submodule W ⊂ ker p of rank two, then every pair of simple vertices of
non-compact type of G′p corresponding to classes in W ∪W⊥ are equivalent.

(2) an isotropic primitive submodule L ⊂ ker p of rank two, then every pair of simple
vertices of non-compact type of G′p corresponding to classes in L are equivalent.

(3) a p-admissible splitting H1(Σg) = V1⊕ V2. The primitive elements a ∈ Vi ∩ ker p such
that deg

(
(p|Vi)a

)
≥ 2 satisfy deg(pa) ≥ 3.
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Proof. (1) First remark that the homomorphism p1 := p|W⊥ is defined on a module of rank
at least 6 and has the same volume and primitive degree as p. By Lemma 8.16 applied to
p1 we deduce that there exists a simple vertex for Gp1 . Thanks to Lemma 6.13 and the fact
that W ⊂ ker p, it also determines a simple vertex for Gp. Using Corollary 6.18 we construct
a marked stable form (C1,m1, ω1) of genus g− 1 and period p1, with a node that induces the
given simple vertex and – thanks to the genus hypothesis and up to some Schiffer variations
– a simple zero at some regular point. Take a pair of embedded twins with distinct endpoints
starting at the simple zero and glue the endpoints, thus obtaining a stable form on a genus
g curve with two nodes. After the gluing, the union of the twins forms a closed loop in
the nodal curve whose period vanishes. Given any symplectic basis a, b of W we mark the
obtained nodal form by collapsing a to the node, associating b to the loop obtained from the
twins, and keeping the marking on W⊥ as it was for (C1, ω1,m1). The given form with two
nodes defines an edge in Gp joining two simple vertices. One of them corresponds to the node
of the initial ω1 and is independent of the chosen a. In particular all primitive classes in
W define equivalent simple vertices. Moreover, if the chosen node for ω1 is determined by a
primitive element ker p∩W⊥ defining a simple vertex for Gp it is also a simple vertex for Gp1 .
This vertex is equivalent to any vertex defined by a primitive element of W . This shows that
all simple vertices of non-compact type of Gp corresponding to primitive classes in W ∪W⊥
are equivalent.
(2) The module L⊥/L has rank 2g − 4 and the ambient symplectic form on H1(Σg) induces
a symplectic form on it. Since L ⊂ ker p, the map p induces a homomorphism

pL : L⊥/L→ C.

If ker pL contains a non-trivial symplectic submodule, then by item (1) of this Lemma, every
pair of simple vertices in L are equivalent. Item (2) is proven for the cases deg pL = 1 (where
the kernel is symplectic of corank two) or g ≥ 5 and deg pL < ∞ (thanks to Lemma 6.14 ).
It remains to treat the cases g = 4 and deg pL ≥ 2 and g ≥ 5 and deg pL =∞.

Next suppose a1, a2 forms a basis of L corresponding to simple vertices and deg pL ≥ 2.
We claim that we can construct a marked stable form of period p with precisely two non-
separating nodes that correspond to the given classes. The corresponding vertices are thus
joined by an edge in Gp. Indeed, take a form (C2,m2, ω2) of genus g − 2 and periods pL
with two simple zeros. Complete the elements a1, a2 to a symplectic basis ai, bi of H1(Σg).
For i = 1, 2, apply Lemma 6.17 to ω2 to choose an embedded path βi in C2 having distinct
endpoints and satisfying

p(bi) =

∫
βi

ω2.

We can further assume that β1 and β2 are disjoint. Indeed, if p(b1) = p(b2) = 0 it suffices
to take pairs of short twins at distinct zeros of ω2. If only one of them is non-zero, we can
take a very short pair of twins to realize the zero period so as to avoid the path of non-zero
length. If both are non-zero and we have initially taken two paths that intersect, we change
one of the paths in its homotopy class with fixed endpoints to avoid the intersections. Gluing
the endpoints of the said paths and marking the form by collapsing a1 and a2 to the nodes,
and associating bi to the corresponding loop βi we obtain a marked stable form of period p
with two non-separating nodes as was claimed. In full generality it is not true that every
primitive element of L corresponds to a simple vertex. However, if deg pL ≥ 3 we have that
every primitive element of L corresponds to a simple vertex. The previous argument shows
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that we only have to check that for any pair of primitive elements a, a′ ∈ L we can construct
a sequence a = a0, . . . , an = a′ of primitive elements in L such that ai, ai+1 form a basis of L
for each i = 0, . . . , n− 1. This is guaranteed by Gauss algorithm in L.

It remains to treat the case g = 4 and deg pL = 2. In this case, pL is defined on a rank four
symplectic module and has a lattice Λ ⊂ C as image. The normal form for periods of finite
primitive degree, see Lemma 9.1 proved in Appendix 9, provides a symplectic splitting of
L⊥/L into rank two submodules W1⊕W2 satisfying pL(Wi) = Λ. Let V ⊂ H1(Σg) be a rank

four symplectic submodule containing L and consider a symplectic splitting of V ⊥ = V1 ⊕ V2

that induces W1⊕W2 on L⊥/L. Let V3 = V ⊕V1. The symplectic splitting H1(Σg) = V3⊕V2

defines a simple vertex in Gp, since all factors are of rank at most 6. We claim that there is
an edge of Gp between this simple vertex and any simple vertex corresponding to a primitive
element in L. To construct it, it suffices to construct a marked stable form with two nodes one
of which induces the symplectic splitting V3⊕V2 and the other collapses the class a ∈ L ⊂ V3

satisfying deg pa ≥ 3 to a node. On the other hand we have Im(p|V3)a = Im(pa), volp(V ) = 0,
and volp(V2) = volp(V1). Therefore

deg
(
(p|V3)a

)
=

vol
(
(p|V3)a

)
vol
(
C/Im(p|V3)a

) =
vol
(
pa
)
/2

vol
(
C/Im(pa)

) =
1

2
deg(pa) ≥

3

2
> 1.

By using Corollary 6.18 we can construct a stable form with two nodes, one of which corre-
sponds to a and the other to the splitting V3 ⊕ V2.

(3) Without loss of generality suppose a ∈ V1. Remark that by definition Im
(
(p|Vi)a

)
⊂

Im(pa). Therefore

deg pa =
vol pa

vol
(
C/Im(pa)

) ≥ vol pa

vol
(
C/Im(p|V1)a

) =
vol
(
(p|V1)a

)
+ vol(p|V2)

vol
(
C/Im(p|V1)a

) >

> deg
(
(p|V1)a

)
≥ 2.

�

Corollary 8.19. If c, c′ ∈ ker p are primitive elements satisfying c·c′ = 0 and deg(pc),deg(pc′) ≥
3 and then c ∼ c′.

Proof. Write a1 = c and choose b1 ∈ H1(Σg) such that a1 · b1 = 1. Define W1 = Za1 ⊕ Zb1
and write

c′ = m1a1 + n1b1 +m2a2

where a2 ∈ W⊥1 is a primitive element and m1, n1,m2 ∈ Z. Since c · c′ = 0 we have n1 = 0.
If m2 = 0 then c′ = ±c and we are done. Otherwise a2 ∈ ker p and we can apply item (2) of
Lemma 8.18 to L = Za1 ⊕ Za2 to conclude c ∼ c′. �

Corollary 8.20. If there exists a non-trivial symplectic submodule W ⊂ ker p then every pair
of primitive c, c′ ∈ ker p such that deg(pc), deg(pc′) ≥ 3 are equivalent.

Proof. For every primitive c ∈W deg(pc) = deg p ≥ 3. Every pair of primitive elements in W
are equivalent by (1) in Lemma 8.18. Take any primitive c ∈ ker p with deg(pc) ≥ 3. Then
rank(c⊥∩W ) ≥ 1 and for any primitive element c′ ∈ c⊥∩W we have c′ ∼ c by Corollary 8.19
we deduce c ∼ c′. �



84 GABRIEL CALSAMIGLIA, BERTRAND DEROIN, AND STEFANO FRANCAVIGLIA

Corollary 8.21. If there exists a primitive a ∈ ker p such that deg(pa) < ∞ then for every
pair of primitive c, c′ ∈ ker p such that deg(pc),deg(pc′) ≥ 3 we have c ∼ c′.

Proof. deg(pa) <∞ implies that rank ker p = 2g− 2. Since g ≥ 4 we have that ker p contains
a non-trivial symplectic submodule and conclude by Corollary 8.20. �

The following result improves Corollary 8.19:

Corollary 8.22. If rank(ker p) ≥ 3 then every pair of primitive c, c′ ∈ ker p such that
deg(pc),deg(pc′) ≥ 3 satisfy c ∼ c′.

Proof. By Corollary 8.21 if there exists an element c such that deg(pc) <∞ we are done. So
we can suppose deg(pc) = ∞ for every primitive c ∈ ker p. Let c, c′ ∈ ker p be two primitive
elements. Then rank(c⊥ ∩ c′⊥ ∩ ker p) ≥ 1 and a primitive element a ∈ c⊥ ∩ c′⊥ ∩ ker p will
satisfy c ∼ a ∼ c′ by Corollary 8.19. �

Lemma 8.23. If rank(ker p) ≤ 2 then every pair of primitive a, a′ ∈ ker p such that

deg(pa), deg(pa′) ≥ 3 satisfy a ∼ a′.

Proof. If ker p has rank one, or a·a′ = 0 or there exists a symplectic module in ker p containing
a and a′ we are done by Corollaries 8.19 and 8.20.

Let a1 = a and b1 such that a1 · b1 = 1. Write W1 = Za1 ⊕ Zb1 and

(57) a′ = m1a1 + n1b1 +m2a2

for a primitive a2 ∈ W⊥1 and integers m1, n1,m2. We can assume n1 = a · a′ 6= 0 and
m2p(a2) 6= 0 (otherwise we contradict the rank hypothesis on ker p or we fall in one of the
initial cases). Define p1 = p|W⊥1

.

If a2 is p1-admissible, i.e., it belongs to a symplectic module of rank two V2 ∈ Vp1 , there

exists a p-admissible splitting W⊥1 = V2 ⊕ V3. Then a1, a
′ ∈ V4 := W1 ⊕ V2 and volp(V4) =

volp(V2) > 0. The restriction of p to the orthogonal V ⊥4 = V3 has infinite degree, since it

has rank at least four, and the kernel of the restriction of p to V ⊥4 has rank bounded by
one (otherwise the whole period would have a rank bounded from below by three). Since
a1 ∈ V4 does not belong to any symplectic submodule contained in ker(p), p|V4 is a Haupt
homomorphism on a rank four symplectic module. By Lemma 6.15 applied for g = 2, all
primitive elements a′′ in ker p|V4 are pinched by p|V4 . Applying Corollary 6.18 we can find a

form with two nodes: one that pinches a′′ and another that induces the splitting V4 ⊕ V ⊥4 ,
which is simple, hence the vertex of Gp associated to a′′ is equivalent to the vertex associated

to V4 ⊕ V ⊥4 . Since a, a′ are primitive elements in V4 ∩ ker p we have a′ ∼ a.

By Corollary 6.11 applied to W⊥1 , there exists a proper submodule I ⊂ W⊥1 containing
all elements that are not p1-admissible, i.e. that do not belong to any symplectic module
V2 ∈ Vp1 . So if a2 /∈ I we are done. Next we are going to show that, up to changing the initial
choice of b1, we can guarantee that we fall in the previous case.

Indeed, suppose a2 ∈ I \ker p is not admissible. Denote ` = Rp(a2). We know by Corollary
6.11 that I = p−1(`)∩W⊥1 has rank at least 2g−4 and for every other real line `′, `′∩p(W⊥1 ) has
rank at most 2. Since p(a1), p(b1) ∈ `, p−1(`) has rank at least 2g−2 ≥ 6. On the other hand,
for every other real line `′ ⊂ C containing 0 we have rank(p−1(`′)∩W⊥1 ) ≤ 2+rank(ker p1) ≤ 3.
Therefore p−1(`′) has rank at most 5. If we manage to find a splitting as in equation (57)
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where the image of the a2 is outside ` we will be done. We are going to show that, up to
changing the initial b1, we can suppose that we fall in this case or one of the previous cases.

Given w ∈ a⊥1 define b′1 = b1 + w and W ′1 = Za1 ⊕ Zb′1. Then

a = m1a1 + n1b
′
1 +m′2a

′
2

where m′2a
′
2 = m2a2 − n1w. If we manage to guarantee that

• a′2 ∈W ′⊥1 , or equivalently 0 = −n1(b1 · w) +m2(w · a2)
• p(a′2) /∈ ` = Rp(a2) or equivalently p(w) /∈ `,

we will be done: a′2 ∈W ′⊥1 will be p|W ′⊥1
-admissible.

If there exists w ∈ a⊥2 ∩W⊥1 \ p−1(`), it constitutes a solution. Otherwise a⊥2 ∩W⊥1 ⊂
p−1(`) ∩W⊥1 , and since W⊥1 has positive volume, any b2 ∈W⊥1 satisfying a2 · b2 = 1 satisfies
p(b2) /∈ `. In this case the element w = m2a1 + n1b2 provides a solution. �

�

8.3. Proof of Theorem 1.2. The Theorem is true for g = 2, 3 by Theorem 3.3 . We proceed
by induction on the genus. Fix some g ≥ 4 and suppose that Theorem 1.2 is true up to genus
g − 1. Take p ∈ Hg with deg(p) ≥ 3. By Proposition 5.5 every connected component of
Per−1(p) has points in the boundary. The boundary Per−1(p) \Per−1(p) is connected thanks
to Theorem 8.1. Therefore Per−1(p) is connected. On the other hand, by Theorem 4.37, the
boundary points do not locally separate Per−1(p), and the latter is therefore also connected.

9. Appendix I: proof of Proposition 3.10

We first begin by providing a normal form for periods of positive volume and finite primitive
degree, which implies the first item of Proposition 3.10 in the case where the subspace (18)
is rational.

Lemma 9.1. Given a surjective homomorphism p : Z2g → Z + iZ of volume (and primitive
degree) d ≥ 2, there exists M ∈ Sp(2g,Z) and a symplectic basis {a1, b1, . . . , ag, bg} of Z2g

such that
p ◦M = a∗1 + i(db∗1 + a∗2)

where the star denotes the symplectic dual of the given element.

Proof. Denote by x = <(p) and y = =(p) the elements in (Z2g)∗. They satisfy x · y = d.
Choose a1 ∈ Z2g the symplectic dual of x. Choose some b1 ∈ Z2g such that a1 · b1 = 1 and
write

(58) y = m1a
∗
1 + db∗1 +m2a

∗
2

where a2 is a primitive element satisfying a1 · a2 = b1 · a2 = 0 and m1, d and m2 are co-
prime. Complete those elements to a symplectic basis a1, b1, . . . , ag, bg of Z2g. The image of
an element u =

∑
k≥1 αkak + βkbk under p is

p(u) = (a∗1(u), (m1a
∗
1 + db∗1 +m2a

∗
2)(u)) = (α1,m1α1 + dβ1 +m2α2).

Therefore
p(u) = 1⇔ α1 = 1 and m1 + dβ2 +m2α2 = 0

p(u) = i⇔ α1 = 0 and dβ1 +m2α2 = 1.
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Hence, p is surjective if and only if d and m2 are co-prime.

To conclude, we are going to show that under the hypothesis of d and m2 co-prime, there
exists a choice of b1 such that the coefficients m1 and m2 in the splitting given by (58) are 0
and 1 respectively.

Let us analyze the effect of a change of the first given b1. Write ã1
∗ = a∗1 and

b̃1
∗

= u1a
∗
1 + b∗1 +

∑
k≥2

uka
∗
k + vkb

∗
k

for some uk, vk ∈ Z. The new decomposition y = m̃1ã1
∗ + db̃1

∗
+ m̃2ã2

∗ has the properties

(y − m̃1ã1
∗ − db̃1

∗
) · ã1

∗ = 0 and (y − m̃1ã1
∗ − db̃1

∗
) · b̃1

∗
= 0.

The first equation is automatically satisfied, and the second gives

(59) m̃1 = m1 − du1 +m2v2

Since d and m2 are co-prime we can already choose u1 and v2 to get m̃1 = 0 and restart the
argument by supposing m1 = 0.

For this choice, we have

m̃2
∗ã2
∗ = y − m̃1ã1

∗ − db̃1
∗

= m2v2a
∗
1 + (m2 − du2)a∗2 − dv2b

∗
2 − d(

∑
k≥3

uka
∗
k + vkb

∗
k)

and from this

m̃2 = gcd(−m2v2,m2 − du2,−dv2,−du3,−dv3, . . . ,−dug,−dvg)

If we still want m̃1 = 0 we need to impose m2v2 = du1 by equation (59). The choice v2 = d,
u1 = m2 and all other coefficients equal to zero gives m̃1 = 0 and m̃2 = 1, as desired. �

We continue the proof of Proposition 3.10, which is reminiscent of Ratner’s theory.

Equipp R2g with its canonical symplectic form ω(x, y) =
∑

1≤k≤g x2ky2k+1−x2k+1y2k. The

volume of a period p ∈ C2g is the symplectic product V (p) = ω(<p,=p). Since the action of
Γ is linear, and that the volume is multiplicative, namely V (λp) = |λ|2V (p) for every λ ∈ C
and p ∈ C2g, we can restrict our attention to the action of Γ on the subset X ⊂ C2g whose
elements have volume 1. In real and imaginary coordinates the set of periods of volume 1 is
then the set of pairs (x, y) ∈ R2g × R2g such that ω(x, y) = 1.

The simple real Lie group G = Sp(2g,R) acts transitively on the set of couples (x, y) ∈
(R2g)2 such that ω(x, y) = 1, and that the stabilizer of the couple

(
(1, 0, . . . , 0), (0, 1, 0, . . . , 0)

)
is the group

 1
1

Sp(2g − 2,R)


that we will denote by U in the sequel. Our set X is isomorphic to the homogeneous space
G/U . The linear action of Γ on X is under the isomorphism X ' G/U given by left multi-
plication on G/U .

Since the group G is simple, that U is generated by unipotent elements, and that Γ is a lat-
tice in G, Ratner’s theorem [59] tells us that the closure of the Γ-orbits on X are homogeneous
in the following sense



A TRANSFER PRINCIPLE: FROM PERIODS TO ISOPERIODIC FOLIATIONS 87

Theorem 9.2 (Ratner). For every p ∈ X of the form p = gU , there exists a closed subgroup
H of G containing Ug = gUg−1, such that Γ∩H is a lattice in H, and such that Γ · p = ΓHp.

Notice that in our situation, we have Ug = I|W ⊕ Sp(W⊥) ' Sp(2g − 2,R) where W =

R<p+ R=p ⊂ R2g is the symplectic subspace associated to the volume one p ∈ C2.

Let H0 be the connected component of H containing the identity: then Γ ∩ H0 is still a
lattice in H0, and Ug is contained in H0.

If H0 = G then Γ · p = G and we deduce that the orbit closure is dense in X. Since the
closure of Λ(p) contains all the Λ(q) of elements q ∈ Γ · p, we have Λ(p) = C.

If H0 is a proper subgroup of G, Kapovich observes that it falls into two categories

• (Semi-simple case) H0 is of the form S⊕Sp(W⊥), where S is a Lie subgroup of Sp(W ).
• (Non semi-simple case) H0 is not semi-simple and preserves a line L ⊂W .

The proof of this dichotomy can be found in [42, p. 12], and is based on Dynkin’s classification
of maximal connected complex Lie subgroups of Sp(2g,C), see [21]. Let L be a maximal
complex Lie subgroup of Sp(2g,C) which contains H0. If H0 6= Sp(2g,R), its Zariski closure
in the complex domain is a strict subgroup of Sp(2g,C), so it is contained in a maximal
complex Lie (strict) subgroup of Sp(2g,C). It satisfies one of the following properties (see
[27, Ch. 6, Thm 3.1, 3.2]):

(1) L = Sp(V )⊕ Sp(V ⊥) for some complex symplectic subspace V ⊂ C2g,
(2) L is conjugated to Sp(s,C)⊗ SO(t,C) where 2g = st, s ≥ 2, t ≥ 3, t 6= 4 or t = 4 and

s = 2,
(3) L preserves a line of C2g.

Since H0 contains Ug, L contains the complexification of Ug, which is nothing but IdWC ⊕
Sp(W⊥C ), whereWC denotes the complexificationW⊗RC ofW . In case (1), the only possibility

is that up to permutation of V and V ⊥, we have WC = V . In particular, H0 is a subgroup
of Sp(W )⊕ Sp(W⊥). Since it contains Id|W ⊕ Sp(W⊥), it must be of the form S ⊕ Sp(W⊥),
where S is a Lie subgroup of Sp(W ). Case (2) cannot occur. In case (3), observe that the line
L needs to be in WC, since the group Id|WC ⊕ Sp(W⊥C ) preserves this line. If L is defined over

the reals, we are done. If not, both L and L (the image of L by the complex conjugation)
are preserved by H0, and thus H0 is a subgroup of Sp(W )⊕ Sp(W⊥). As before, because it
contains IdW ⊕ Sp(W⊥), it must be of the form S ⊕ Sp(W⊥), where S is a Lie subgroup of
Sp(W ).

Remark 9.3. If ΓW := Γ∩ (IdW ⊕ Sp(W⊥)) is a lattice in IdW ⊕ Sp(W⊥) then W is defined
over Q and the conclusion of the first item of Proposition 3.10 follows easily. Indeed, ΓW acts
by the identity on W σ for every Galois automorphism σ. The Zariski closure of ΓW being
IdW ⊕ Sp(W⊥) (by Borel density theorem, see [73]), IdW ⊕ Sp(W⊥) acts by the identity on
W σ as well. This implies that W σ = W for every σ (otherwise Id ⊕ Sp(W⊥) acts by the
identity on the non-trivial subspace (W +W σ) ∩W⊥), and so W is rational.

Let us proceed to analyze the different cases.

Semi-simple case. Since the group H0 = S ⊕ Sp(W⊥) contains a lattice, it must be
unimodular. In particular, either S is the trivial group, or a 1-parameter subgroup, or the
whole Sp(W ). If S is trivial, then Ratner’s Theorem tells us ΓW := Γ ∩ (IdW ⊕ Sp(W⊥)) is
a lattice in IdW ⊕ Sp(W⊥) and we fall in case (1) by Remark 9.3.
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If S is 1-dimensional, S ⊕ IdW⊥ would be the radical of H0, and a theorem of Wolf and
Raghunathan, see [58], shows that it would intersect Γ in a lattice. This implies that the
intersection of Γ with IdW ⊕ Sp(W⊥) is also a lattice. Indeed, let Γ denote the natural
projection of Γ on Sp(W⊥). Since the sequence

0→ S ∩ Γ→ Γ→ Γ→ 1

is exact, the map Γ → (S ∩ Γ)\S induced by the projection of S ⊕ Sp(W⊥) to S induces a
morphism Γ→ (Γ∩S)\S. The group (Γ∩S)\S is abelian, and since Γ has Kazdhan property
(T), the image group in (Γ ∩ S)\S is finite. We thus conclude that the image of Γ on the
factor S is a lattice and therefore Γ ∩ (IdW ⊕ Sp(W⊥)) as well. We conclude as in Remark
9.3.

Finally, it remains to treat the case where S = Sp(W ). This case splits into two subcases,
depending on the lattice Γ∩Sp(W )⊕Sp(W⊥) being reducible or irreducible. If it is reducible,
this implies that Γ∩ (IdW ⊕ Sp(W⊥)) is a lattice, and then W must be rational by the above
considerations. Assume now that we are in the irreducible case. Then g = 2, by a theorem
of Margulis [46]. Assume W is not rational, otherwise we are done. Let σ be a Galois
automorphism such that W σ 6= W . The group Γ ∩ Sp(W )⊕ Sp(W⊥) preserves the splitting
W σ ⊕ (W σ)⊥, since Γ and the symplectic form are defined over the rationals. Borel density
theorem applied to the lattice Γ ∩ Sp(W )⊕ Sp(W⊥) shows that Sp(W )⊕ Sp(W⊥) preserves
the splitting W σ ⊕ (W σ)⊥. This implies that W σ = W⊥ and (W σ)σ = W . This being true
for every Galois automorphism, this means that W is defined over a totally real quadratic
field K, and we have W σ = W⊥ where σ is the Galois automorphism of K. This is the only
situation where we fall in the last case of Proposition 3.10.

Non semi-simple case. We suppose that H0 is not semi-simple and prove in this case that
the periods p satisfy the second case of Proposition 3.10. We already know that there is a
line L ⊂W that is invariant by the action.

For this, we will first need to understand in detail the subgroup B of Sp(2g,R) formed by
all elements that stabilize the line L, see [42, p. 10]. To unscrew the structure of B, notice
that any element of B stabilizes both L and L⊥ so that we have an exact sequence

CH2g → B → Sp(L⊥/L) ' Sp(2g − 2)

The group CH2g is then the set of elements M ∈ Sp(2g) which induce the identity map on

L⊥/L.

We now have another exact sequence

(60) H2g−1 → CH2g → GL(L) ' R∗,

the last arrow being given by the restriction of an element M ∈ CH2g to the line L. Hence
the subgroup H2g−1 ⊂ CH2g is the group of elements M ∈ Sp(2g) which act as the identity

on L and on L⊥/L. Such M are easily seen to be of the form Mϕ,α, for some ϕ ∈ (L⊥/L)∗

and α ∈ R, where

• the restriction of Mϕ,α to L⊥ equals id|L⊥ + ϕa1

• Mϕ,α(b1) = αa1 + b1 +
∑

k≥2 ϕ(bk)ak − ϕ(ak)bk,
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where a1, b1, . . . , ag, bg is a symplectic basis such that L = Ra1. The group structure on H2g−1

is then given by the following relation

(61) Mϕ,αMϕ′,α′ = Mϕ+ϕ′,α+α′+ω(ϕ,ϕ′),

where ω(ϕ,ϕ′) is the natural symplectic product induced by ω on (L⊥/L)∗, namely

ω(ϕ,ϕ′) =
∑
k≥2

ϕ(ak)ϕ
′(bk)− ϕ′(ak)ϕ(bk).

Equation (61) is a straightforward computation. An equivalent formulation is that H2g−1 is
the central extension

R→ H2g−1 → (L⊥/L)∗,

defined by the 2-cocycle (ϕ,ϕ′) 7→ ω(ϕ,ϕ′). The group H3 is isomorphic to the classical
Heisenberg group of upper triangular real matrices of size 3× 3 with 1’s on the diagonal.

Now CH2g is a semi-direct product of R∗ by H2g−1, see (60). To understand its structure,
we introduce for every λ, one of its lift Sλ ∈ CH2g defined by

Sλ(a1) = λa1, Sλ(b1) =
1

λ
b1, Sλ(ak) = ak, Sλ(bk) = bk for k ≥ 2.

A trivial computation shows that for any λ ∈ R∗, every ϕ ∈ (L⊥/L)∗ and every α ∈ R, we
have

(62) SλMϕ,αS
−1
λ = Mλϕ,λ2α.

This shows that CH2g is not unimodular, and consequently does not contain any lattice.

By construction, our group H0 is contained in B. We have an exact sequence CH2g →
B → Sp(L⊥/L, ω). The image of H0 by the right arrow is onto since H0 contains Ug, so
that H0 itself splits as an exact sequence CH2g ∩ H0 → H0 → Sp(L⊥/L, ω). The group

CH2g ∩ H0 is invariant under the action by conjugation of Sp(L⊥/L, ω) ' Sp(W⊥). The

restriction of this action on H2g−1 can be described explicitly: for U ∈ Sp(L⊥/L) ' Sp(W⊥)
denote s(U) = IdW ⊕ U ∈ H0 ⊂ B. Then

s(U)Mϕ,αs(U)−1 = Mϕ◦s(U)−1,α.

Lemma 9.4. The closed non-trivial connected subgroups of CH2g invariant by Sp(W⊥) are

(1) Z(H2g−1)
(2) lifts of GL+(L) in CH2g

(3) H2g−1

(4) GL+(L)n Z(H2g−1)
(5) CH2g

The proof of Lemma 9.4 is an easy consequence of the previous exact sequences and cal-
culations.

Now H0 ∩ CH2g cannot fall in cases (1) and (2) of Lemma 9.4 since in either of those, H0

would be semi-simple, contrary to hypothesis. It can neither fall in cases (4) or (5), since in
those cases equation (62) does not allow H0 to be unimodular. Hence we are left with the
possibility H0 ∩ CH2g = H2g−1 (and H0 ' Sp(W⊥)nH2g−1). In this case we will show that
the invariant line L is rational, and thus we fall in the second possibility of Proposition 3.10.
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The theorem of Raghunathan and Wolf cited above tells us that Γ ∩H2g−1 is a lattice in
H2g−1. By using Borel’s density Theorem in [28, p.91] we deduce that its Zariski closure is
H2g−1. We have L ⊂ K :=

⋂
γ∈Γ∩H2g−1

Ker(γ− I) which is an intersection of rational spaces.

If the inclusion is proper, then the Zariski closure of Γ ∩ H2g−1 would not be the whole of
H2g−1. This shows that L = K and it is a rational one-dimensional subspace of R2g.

Up to a real affine change of coordinates on C, we can assume that the imaginary part of p
generates L, and that it is a primitive element of Z2g. Since the group H2g−1 acts transitively
on the set of vectors v ∈ R2g such that v · =p = 1, while keeping the period =p fixed, we see
that H ·p already contains all the periods q such that =q = =p and such that V (q) = V (p) = 1.
Since, Γ acts transitively on the set of primitive elements of Z2g, we infer that ΓHp = Γ · p
contains all the periods q with volume V (p) = 1 and with a primitive integer imaginary part.
Since any periods of Γ · p is of this form, we deduce that this situation is exactly the second
case of the proposition. The proof of this latter is now complete.

Applying Moore’s ergodic theorem in [55] to each case H above we deduce the final ergod-
icity part of Proposition 3.10.

10. Appendix II: proof of Lemma 3.9

Up to composing p by an element of GL+
2 (R) we can assume that the image of p is the

set of Gaussian integers. By Lemma 9.1, we can assume that there exists a symplectic basis
a1, b1, . . . , ag, bg in which the period p has the following form:

p(a1) = p(a2) = 1, p(b1) = p(b2) = i and p(ak) = p(bk) = 0 for k ≥ 3.

This basis permits to identify H1(Σg,Z) with Z2g equipped with the symplectic form

u · v = u1v2 − u2v1 + . . .+ u2g−1v2g − u2gv2g−1,

and the group Aut(H1(Σg,Z)) with Sp(2g,Z). In these coordinates we have

p(u1, . . . , u2g) = (u1 + u3) + (u2 + u4)i.

The form u1 + u3 ∈ (Z2g)∗ is dual to the vector P1 = −(b1 + b2) (meaning that u1 + u3 =
−(b1 + b2) ·u), whereas the form u2 +u4 ∈ (Z2g)∗ is dual to P2 = a1 + a2 (meaning u2 +u4 =
(a1 + a2) · u). We then have that an edomorphism of Z2g given by a matrix M stabilizes p if
and only if M(Pk) = Pk for k = 1, 2, and similarly an endomorphism of (Z/2Z)2g given by a
matrix M [2] stabilizes p[2] if and only if M [2](Pk[2]) = Pk[2] for k = 1, 2. The condition can
be read in the columns of the matrices. If Ck (resp. Ck[2]) denotes the k-th columun of M
(resp. M [2]) then

(63) C1 + C3 = a1 + a2 and C2 + C4 = b1 + b2.

(64) (resp. C1[2] + C3[2] = a1[2] + a2[2] and C2[2] + C4[2] = b1[2] + b2[2])

Let M [2] ∈ StabSp(2g,Z/2Z)(p[2]) a symplectic isomorphism whose columns C1[2], . . . , C2g[2]

satisfy (64). Let C ′k ∈ Z2g be representatives of the classes Ck[2] ∈ (Z/2Z)2g, for k = 1, . . . , 2g,
and M ′ be the square matrix whose columns are the C ′k. Up to changing the representative in
each class, we can suppose (63) is valid for the columns of M ′. We will assume in the sequel
that these equations are always satisfied.

Our goal is to modify the vectors C ′k by defining

Ck := C ′k + 2Ek, with Ek ∈ Z2g
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in such a way that the matrix M := (C1, . . . , C2g) not only stabilizes p (satisfying (63)) but
also belongs to Sp(2g,Z). It is therefore necessary to impose

(65) E1 + E3 = 0 and E2 + E4 = 0.

(66) C1, . . . , C2g forms a symplectic basis of Z2g

Main step: construction of C1, C2, C3, C4. The conditions we need to satisfy are

(1) C1 · C2 = 1
(2) C1 · C3 = 0, or equivalently C1 · (a1 + a2) = 0
(3) C1 · C4 = 0, or equivalently, knowing (1): C1 · (b1 + b2) = C1 · C2 = 1
(4) C2 · C3 = 0, or equivalently, knowing (1): C2 · (a1 + a2) = C2 · C1 = −1
(5) C2 · C4 = 0, or equivalently, C2 · (b1 + b2) = 0
(6) C3 · C4 = 1, or equivalently, ((a1 + a2)− C1) · ((b1 + b2)− C2) = 1

If (63) and (1)–(5) are true, we have that (6) is automatically satisfied

((a1 + a2)− C1) · ((b1 + b2)− C2) =

= (a1 + a2) · (b1 + b2)− (a1 + a2) · C2 − C1 · (b1 + b2) + C1 · C2 = 2− 1− 1 + 1 = 1.

Let us first find C1, C2, C3, C4 so that conditions (2)–(5) are satisfied. In real and imaginary
coordinates this is equivalent to

p(E1) =

(
1− C ′1 · (b1 + b2)

2
,
C ′1 · (a1 + a2)

2

)
,

and

p(E2) =

(
(b1 + b2) · C ′2

2
,
1 + C ′2 · (a1 + a2)

2

)
.

Observe that the right hand sides of the last two equations are integers because C ′k’s are lifts
of - the elements of the symplectic basis- Ck[2]’s and satisfy (63). By surjectivity of p there
exist solutions to the equations (2)–(5), and so we can assume that the C ′k’s satisfy (2)–(5).
We can now replace C ′k by Ck = C ′k + 2Ek for k = 1, 2 with

Ek ∈ (a1 + a2)⊥ ∩ (b1 + b2)⊥ for k = 1, 2.

to preserve conditions (2)–(5). Condition (1) is equivalent to

1 = C1 · (C ′2 + 2E2) = C1 · C ′2 + 2C1 · E2,

and we know that C1 · C ′2 is odd. So we are done if we can choose C1 so that the map

(67) E2 ∈ (a1 + a2)⊥ ∩ (b1 + b2)⊥ 7→ C1 · E2 ∈ Z

is onto. We have (a1 + a2)⊥ ∩ (b1 + b2)⊥ = Z(a1 − a2) + Z(b1 − b2) +
∑

k≥3 Zak + Zbk So the

map (67) is onto if and only if

(68) gcd(C1 · (a1 − a2), C1 · (b1 − b2), C1 · a3, C1 · b3, . . . , C1 · ag, C1 · bg) = 1.

However, observe the following:

• C1 · (b1 − b2) = C1 · (b1 + b2)[2] = 1[2] is odd, and
• If g ≥ 3, choosing E1 appropriately, we can assume that the value of C1 · a3 is either

1 or 2.
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So (68) is satisfied with these choices of E1. Hence the main step is achieved.

To conclude the proof of Lemma 3.9, we need to construct the columns C5, . . . , C2g. We
will inductively find the pair C5, C6, then the pair C7, C8, etc.. Let us construct the first one.
We need to find E5, E6 so that

C5, C6 ∈ (C1, C2, C3, C4)⊥ and C5 · C6 = 1.

This means that the equations

(69) (Ek · C1, . . . , Ek · C4) = −1

2
(C ′k · C1, . . . , C

′
k · C4) for k = 5, 6

and

(70) C5 · (C ′6 + 2E6) = 1

hold. We can find E5 and E6 so that (69) is satisfied, since C1, C2, C3, C4 is a symplectic
family (i.e. C1 · C2 = C3 · C4 = 1 and other products are zero). So we can assume that C ′5
and C ′6 belong to the orthogonal of C1, C2, C3, C4, which is a symplectic submodule of Z2g

isomorphic to Z2g−4 with the canonical symplectic product. In these coordinates, one of the
coordinates of C ′5 is odd (since C5[2], the reduction of C ′5 modulo 2, is non zero) so by adding
to C5 an even vector of Z2g−4 one can assume that one of the coordinates of C5 is equal to

1. Hence, equation (70) being equivalent to C5 · E6 =
−C5·C′6

2 and the product C5 · C6 being
even, equation (70) can be solved for some suitable choice of E6. We get C5 and C6 in this
way. For the construction of the other pairs by induction, the argument is similar.

The first part of the lemma follows, namely the surjectivity of the map StabAut(H1(Σg ,Z))(p)→
StabAut(H1(Σg ,Z/2Z))(p[2]).

For the second part, it suffices to remark that the stabilizer of p[2] in Aut(H1(Σg,Z/2Z))
is the stabilizer of a pair of non colinear elements of H1(Σg,Z/2Z) that do not intersect
each other. The number of elements in this group is given by the announced formula, by
elementary considerations.

11. Appendix III: a result in Picard-Lefschetz theory

We prove here a result which is a well-known consequence of Picard-Lefschetz theory, but
which we cannot find as such in the literature.

Let h : S → C be a holomorphic map from a compact complex surface S to a compact
complex curve C. We assume both S and C are non singular, that the critical points of h are
non degenerate, and that the fibers of h are connected.

Lemma 11.1. For every c ∈ C, the sequence

(71) π1(h−1(c))→ π1(S)→ π1(C)

where the map on the left is induced by inclusion and the one on the right by h∗, is exact.

Proof. Let us first prove the claim for c a regular value of h. To do so, given a lift w ∈ h−1(c),
we will use some useful loops µ̃i : [0, 1] → S starting and ending at w that do not intersect
the critical fibers of h.

Denote by ci, i = 1, . . . , r the critical values of h. At any regular point pi of the curve
h−1(ci), the map h induces a biholomorphism between a compact disc Di transversal to h−1(ci
at pi and a neighborhood δi of ci in C. We can assume that the discs δi := h(Di) are disjoint.
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Given a point wi ∈ ∂Di, let γi : [0, 1] → E \ ∪iInt(δi) be a family of paths with origin c
and end point h(wi), having the property of being disjoint appart from their origin. Since
h induces a C∞-fibration with connected fibers from S \ ∪ih−1(ci) to C \ {ci}, given a lift
w ∈ h−1(c), we can lift the path γi to a path γ̃i starting at w and ending at wi. We denote
by µi the concatenation γi ? ∂δi ? γ

−1
i and by µ̃i its lift γ̃i ? ∂Di ? γ̃i

−1. Notice the following
two facts:

(1) µ̃i is homotopically trivial in S,
(2) the representatives of the loops µi in π1(C \ {ci}, c) generate the kernel of the map

(72) π1(C \ {zi}, c)→ π1(C, c)

induced by inclusion.

(The first is clear, and the second comes from the fact that the paths γi are disjoint appart
from their origin.)

We are now in a position to prove the claim in the case of a regular fiber. Consider an
element in the kernel of the map h? : π1(S,w)→ π1(C, c) represented by a loop ε : [0, 1]→ S
starting and ending at w. Up to homotopy, we can assume that ε intersects none of the critical
fibers of h. The image h ◦ ε is then a loop starting and ending at c which defines an element
of the fundamental group of π1(C \ {zi}, c) belonging to the kernel of the map (72). Hence,
h ◦ ε is homotopic to a word W (µ1, . . . , µr). Consider the path ε′ = ε ? W (µ̃1, . . . , µ̃r)

−1; by
construction,

(i) ε′ is homotopic to ε is S
(ii) it intersects none of the critical fibers of h,

(iii) its image h ◦ ε′ with fixed extremities c is homotopic in C \ {ci} to the constant path
c.

Since the restriction of h induces a locally trivial C∞ fibration from S \ ∪ih−1(ci) to C \ {ci}
— this is a proper submersion, so this is Ehresmann’s fibration theorem — we can lift the
homotopy found in (iii) to a homotopy in S \∪ih−1(ci) between ε′ and a loop contained in the
fiber h−1(c). This establishes that ε is homotopic with fixed extremities to a loop contained
in the fiber h−1(c), and ends the proof of the claim in the case of a regular fiber.

It remains to prove the claim for the singular fibers of h. For each i, there exists a
neighborhood U of h−1(ci) that retracts by deformation on h−1(ci) (see [3, Chapter X, Section
9]); in particular, the images of π1(h−1(ci)) and π1(U) in π1(S) coincide. Since U contains
a regular fiber, we know from the prerceeding discussion that the image of π1(U) in π1(S)
contains Ker(h?). On the other hand, the image of π1(h−1(ci)) in π1(S) is contained in
Ker(h?) since h is constant on h−1(ci), so the sequence (71) is exact for the critical value
c = ci, and the Lemma follows. �

Corollary 11.2. For every c ∈ C, the sequence

(73) H1(h−1(c),Z)→ H1(S,Z)→ H1(C,Z)

where the map on the left is induced by inclusion and the one on the right by h∗, is exact.

Proof. This is a consequence of Lemma 11.1 and Hurewicz’ theorem. �
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