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Abstract.We introduce a metric on Outer space defined via stretch-
ing factors, and we discuss its basic properties. Such a metric is the
analogous of the Thurston metric on Teichmuller space. We refer the
reader to the beautiful survey [Vog02] for detailed introduction to Outer
space.

1. Introduction

This is a LATEXversion of the talk I gave at CIRM of Luminy during
the workshop Outer space and Teichmuller space. The style of expo-
sition is informal and many details are missing. I refer the reader to
the forthcoming joint work with A. Martino [FM07] for a full detailed
discussion.

Sections 2-7 contain more or less the original talk, while Section 8 is
an addendum wrote after the problems session of the workshop.

Many thanks to my collaborator A. Martino, to the organizers A.
Hilion and P. Hubert, and to M. Lustig (also organizer) and J. Los
because their comments and suggestions are never useless.

2. Notation

• F is a free group of finite rank.
• The Outer space of F is denoted by CV. Elements of CV are

triples A = (A, dA, α) where A is a graph, with all vertices of
valence at least three, whose fundamental group is F ; dA is a
simplicial metric on A (i.e. the assignment of a positive length
for each edge), and α is an homotopy equivalence from the
standard rose with rank(F ) equal petals R to A. Two triples
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(A, dA, α) and (B, dB, β) are equivalent whenever there is an
homothety h : A → B such that β ∼ h ◦ α. We will often use
the short notation A for (A, dA, α).

• The actions of F and Aut(F ) on CV are by composition with
α, that is to say, Φ(A, dA, α) = (A, dA, α ◦ Φ).

3. Curves, Currents and Lengths

Geodesic currents are a generalization of reduced, simplicial curves.
Namely, one can think of the space Curr(F ) of the geodesic currents as
the positive cone of the closure of the vector space generated by reduced
closed curves on the standard rose R, with the weak-∗ topology. We do
not want to be more precise here because in what follows currents are
not strictly necessary. In fact, everything we do here can be done using
only reduced closed simplicial curves on graphs. We refer to [Kap06] for
a good introduction on the theory of geodesic currents on free groups
(see also [Fra06].)

Introducing currents has two main advantages:

• We can use its linear structure for studying curves.
• Curr(F ) is a compact convex set (in an infinite dimensional

space.)

Definition 3.1 (Translation length). For any A ∈ CV the translation
length LA(γ) of a closed curve γ is the length of the geodesic represen-
tative of γ in A. The definition of lengths is extended by linearity to
the space of geodesic currents.

Lengths of currents can be explicitly computed by the formula

LA(η) =
∑

LA(e)η(Cyl(e))

where the sum runs over all edges e of the graph A, LA(e) is the length
of e with respect to dA, and Cyl(e) denotes the cylinder of e, which is
roughly speaking the set of geodesics passing trough e. If η is a closed
geodesic, then η(Cyl(e)) is simply the number of occurrences of e in η.

Fact 3.2. LA determines A. In fact, CV is homeomorphic to a subset
of the space of length-functions on geodesics, with the topology of point-
wise convergence.

Remark 3.3. The length is a bilinear operator!

That remark makes no sense if we do not specify the linear structures.
Let’s give more details.
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Definition 3.4 (Simplices of CV). For A = (A, dA, α) in CV the sim-
plex of A is the set

σA = {(B, dB, β) : B = A, β = α}.
Let e1, · · · , ek be the edges of A. Then σA has a natural linear

structure given by the following identification with the positive cone of
Rk

B ∈ σA → (LB(e1), · · · , LB(ek)).

Also, there is a natural projection of the space of currents to Rk given
by

η → (η(Cyl(e1)), · · · , η(Cyl(ek))).

By the above formula, the length of a current only depends on its
projection on Rk, and in such cohordinates the length becomes simply
the usual Euclidean scalar product, which is obviously bilinear.

Lemma 3.5. The length is equivariant with respect to the action of
Aut(F ). That is to say, for any η ∈ Curr(F )

LA(Φ(η)) = LΦA(η)

for any Φ ∈ Aut(F ).

Proof. We have to say what exactly LA(η) means. If η is a geodesic on
R, we can push it forward to a curve in A using α and then compute the
length of its geodesic representative in A. The same holds for currents,
and the claim is now tautological. ¤

4. The distance

We have now all the ingredients for cocking a distance.

Definition 4.1 (Distance). For any A,B ∈ CV we define

Λ(A,B) = sup
x∈Curr(F )

LA(x)

LB(x)
· sup

x∈Curr(F )

LB(x)

LA(x)

d(A,B) = log(Λ(A,B)).

Remark 4.2. Since in general sup 1/f(x) = 1/ inf f(x), we have

Λ(A,B) = sup
LB(x)

LA(x)
/ inf

LB(x)

LA(x)
.

In particular, Λ(A,B) ≥ 1. Moreover, the space of currents is compact
(note that sup and inf can be taken over currents or simply over all
curves because curves are dense in currents) so sup and inf are attained.
Thus

Λ(A,B) = max
LB(x)

LA(x)
/ min

LB(x)

LA(x)
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In particular, Λ(A,B) < ∞.

The basic properties of d(A,B) are readily checked:

(1) d(A,B) is scale-invariant, so it is well-defined CV.
(2) By Remark 4.2 we get 0 ≤ d(A,B) < ∞.
(3) d(A,B) = 0 if and only if A = B as classes of graphs in CV. In-

deed, d(A,B) = 0 if and only if the function LB/LA is constant
(as its max coincide with its min.) By Fact 3.2 this implies that
A = λB for some λ, and therefore A and B are equivalent in
CV.

(4) Obviously d(A,B) = d(B, A).
(5) The triangular inequality holds. Indeed, let η0 a current that

realizes max LB/LA and let C a third point in CV. We have

max
LB

LA

=
LB(η0)

LA(η0)
=

LB(η0)

LC(η0)
· LC(η0)

LA(η0)
≤ max

LB

LC

max
LC

LA

and the same holds for min LB/LA.

We therefore get that d is a well-defined distance on CV.

Remark 4.3. Suppose that there is a k-Lipschitz map f : A → B
which is homotopic to β ◦ α−1. Then sup LB/LA ≤ k.

Fact 4.4 (The topology). The topology induced by d on CV is the
usual one. Namely, it is the one of pointwise convergence on the space
of translation lengths.

Proof. We show that the two topologies have the same converging se-
quences, that being enough since both topologies have countable basis.
Let An = (An, dAn , αn) and (A, dA, α) be in CV.

If d(An, A) → 0, then Λ(An, A) → 1, i.e.

sup(LAn/LA)

inf(LAn/LA)
→ 1

whence we deduce ∀x [LAn(x) → LA(x)].
Vice versa, if LAn → LA, then there exist a sequence kn → 1 and

kn-Lipschitz maps ϕn : An → A and ψn : A → An such that ϕn is
homotopic to α ◦ α−1

n and ψn to αn ◦ α−1. By Remark 4.3 we get
d(An, A) → 0. ¤

Remark 4.5 (Compact balls, completeness). The proof of Fact 4.4
proves more. Indeed, its argument shows that for any radius r and for
any A ∈ CV the d-ball of centre A and radius r is compact. This in
particular implies that the metric d is complete.
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Fact 4.6 (Iterations of automorphisms). Let Φ ∈ Aut(F) be an auto-
morphism of exponential growth. Then for any A ∈ CV the sequence
ΦnA is a quasi-geodesic (as a map of Z→ CV.)

Proof. If Φ has exponential growth so does Φ−1. That means that
supx L(Φ(x))/L(x) > kcn for some k > 0 and c > 1, where the length
L is calculated in your favourite, fixed, free basis (and the same holds
for Φ−1.)

Recall that by Lemma 3.5 we have LΦA(η) = LA(Φ∗η). Moreover,

LA(Φn+m
∗ η)

LA(Φm∗ η)
=

LA(Φn
∗ (Φ

m
∗ η))

LA(Φm∗ η)

so

sup
η

LA(Φn+m
∗ η)

LA(Φm∗ η)
= sup

η

LA(Φn
∗η)

LA(η)
= sup

η

LA(Φn
∗η)

L(Φn∗η)
· L(Φn

∗η)

L(η)
· L(η)

LA(η)

In the last term of above inequality, the first and the last factor are
bounded below by constants because A lies at finite distance from the
rose used for calculating L. The middle term is bounded below by kcn

by our hypothesis of exponential growth. Similarly, using that also Φ−1

has exponential growth, we can show that

Λ(Φn+mA, ΦmA) > kcn

for some constants k > 0 and c > 1, this giving

d(Φn+mA, ΦmA) > log k + n log c

The other inequality is even easier, and does not need any assumption
on Φ:

sup
η

LA(Φn+m
∗ η)

LA(Φm∗ η)
= sup

η

LA(Φn+m
∗ η)

LA(Φn+m−1∗ η)
· LA(Φn+m−1

∗ η)

LA(Φn+m−2∗ η)
· · · LA(Φ1+m

∗ η)

LA(Φm∗ η)

which is bounded above by
(

sup
η

LA(Φ∗η)

LA(Φ∗η)

)n

whence

Λ(Φn+mA, ΦmA) ≤ Λ(ΦA, A)n

and

d(Φn+mA, ΦmA) ≤ nd(ΦA,A).

¤
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5. Best Lipschitz constants

The following lemma, originally proved by T. White, is contained in
a never published preprint. Thanks to M. Bestvina (White’s advisor)
who gave the preprint to M. Lustig, who gave it to A. Martino, we now
know that result.

Lemma 5.1 (White map). Let A,B ∈ CV . Let k the infimum of
Lipschitz constants of maps from A to B in the homotopy-class of β ◦
α−1. Then, there is a map f : A → B in the class of β ◦α−1 such that:

• f is k-Lipschitz.
• f has constant speed on edges.
• The union of edged stretched exactly by a factor k contains a

closed geodesic whose image is a geodesic.

Corollary 5.2. Let A, B, k as in Lemma 5.1. Then

sup
LB

LA

= k.

Moreover, such a supremum is realized by a closed curve.

Corollary 5.3. Let A,B ∈ CV let KAB be the best Lipschitz constants
of maps A → B. Then

d(A,B) = log KAB + log KBA.

So we have that the distance d is the analogous on CV of the sym-
metrized version of Thurston and Teichmuller metrics on Teichmuller
space.

Remark 5.4. The construction of the White map tells us more. In-
deed, one can show that the curves realizing sup LB/LA has one of the
following shapes. Either an O-curve (i.e. an embedded circle), or an
8-curve (i.e. an embedded bouquet of two circles) or an O-O-curve (i.e.
two circles joined by an arc.)

Corollary 5.5. The distance d(A,B) is computable in a finite number
of steps.

Proof. Just compute the stretching factor of all (finitely many) possible
O-, 8-, and O-O-curves. ¤

6. Geodesics

The following are the leading observations we used to study geodesics
for the metric d.
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• Suppose one wants to find a geodesic between two point A,B ∈
CV . It is enough to show that there is a path At such that the
triangular inequality d(A,At) ≤ d(At, B) is an equality at each
time t.

• Let A, C, B ∈ CV . Suppose that one knows that there are
currents η0 and η1 such that

– η0 realizes both sup LB/LC and sup LC/LA

– η1 realizes both sup LA/LC and sup LC/LB.
Then, the triangular inequality becomes equality.

Fact 6.1. In each simplex of CV, segments are geodesics.

Proof. . We proof the following: for any line in a simplex of CV there
are currents η0, η1 such that for any X < Y in that line we have

sup
LX

LY

=
LX(η0)

LY (η0)
sup

LY

LX

=
LY (η1)

LX(η1)
.

This follows from the fact that LX/LY is the ratio of two linear
function and hence has no critical points. ¤

Fact 6.2. Geodesics are not unique.

Proof. Let A,B ∈ CV be two points in the same simplex, and let
C be the middle point of the segment AB. It is easy to check that,
generically, for C ′ sufficiently close to C the curve consisting of the two
segments AC ′ and C ′B is a geodesic. ¤

So, the metric d looks like the path metric in the Eixample of Barcelona.
One can also consider the two asymmetric factors of the Λ function,

and define the left and right part of the distance as follows

dR(A,B) = log(sup
LB

LA

) dL(A, B) = log(sup
LA

LB

).

The notation left and right is because the right part is the logarithm
of the minimal Lipschitz constant of maps A → B, so ”we go to right.”

We say that a path At from A to B is a right-geodesic if the ordered
triangular inequality is an equality at each t

dR(A,B) = dR(A,At) + dR(At, B).

A folding argument starting from a White map provides right- and
left-geodesics.

Fact 6.3. For any A,B ∈ CV there is a right- and a left-geodesic
between them.
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Usually, the asymmetric geodesic that one founds are different. This
makes more complicated the problem to find a geodesic for the sym-
metric metric. At the moment we do not know in general whether
(CV, d) is or not a geodesic space (see also the discussion if Section 8.)

7. Boundaries

Once one has a metric space, one can start to search for compact-
ifications and boundaries at infinity. In particular one can give the
following definition

Definition 7.1. The boundary at infinity ∂∞CV of Outer space consist
of equivalent classes of quasi-geodesics sequences in CV, where

(Xn) ∼ (Yn) ⇔ d(Xn, Yn) < c

for a positive constant c uniform in n.

This gives a nice filtration of the usual boundary of CV consisting
of length functions. Namely, if X,Y ∈ CV and Xn → X and Yn → Y
are quasi-geodesic in the same class, then the quantity

sup LX/LY

inf LX/LY

is well defined, and its logarithm has the properties of a metric. So we
can say that a boundary point of ∂∞CV is a metric space, which has
a boundary at infinity, etc...

8. Symmetric Vs Asymmetric

Following M. Lustig, a good metric on Outer space should, at least:

• be a possibly asymmetric metric on CV (non-negative, distin-
guishes points, and satisfies ordered triangular inequality;)

• have a natural action of Aut(F ) (i.e. by isometries;)
• induce the usual topology on CV;
• characterize the north-south dynamic of iwip automorphisms.

The choice of a symmetric complete metric is of course more elegant,
but there are reasons for thinking that the nature of Outer space is
asymmetric because, as in real life, going from A to B is not the same
that going from B to A.

We summarize here the difference of the symmetric and asymmetric
metrics described so far, namely d and dR.
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8.1. Du côté de chez d.
Advantages: The metric d is a metric. That is is a well-defined func-
tion on CV which is symmetric, non-negative and d(A,B) if and only
if A = B; it satisfies the triangular inequality. The metric is complete
and balls are compact. The topology induced on CV is the usual one
and Aut(F ) acts by isometries on (CV, d). An iwip automorphism has
quasi-geodesic orbits.

Problems: We still do not know whether (CV, d) is a geodesic space,
and whether a geodesic axis (if any) of an automorphism with north-
south dynamic is related to other constructions like train-tracks and
folding paths.

8.2. Du côté de chez dR.
Advantages: It can be proved that the sub-level sets of dR induces
the usual topology on CV (namely, An → A in CV if and only if
dR(An, A) → 0. We notice that here the assumption of total volume
1 is crucial.) Ordered triangular inequality holds, and Aut(F ) acts
by isometries. (CV, dR) is geodesic, and geodesics can be described in
terms of folding procedures. In particular, the folding procedure from
a train-track for an iwip gives a geodesic axis.

Problems: The metric dR is not a metric. It is not scale-invariant,
but once we choose, for any element of CV , the representative with
total volume 1, then dR is well-defined. It is not complete (there are
points in the boundary that are at finite distance from the standard
rose.)

As a final remak we just notice that a geodesic for d is also a geodesic
for both dR and dL.
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