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Topological persistence has proven to be a promising framework for dealing with prob-
lems concerning the analysis of data. In this context, it was originally introduced by
taking into account 1-dimensional properties of data, modeled by real-valued functions.
More recently, topological persistence has been generalized to consider multidimensional

properties of data, coded by vector-valued functions. This extension enables the study
of multidimensional persistent Betti numbers, which provide a representation of data
based on the properties under examination. In this contribution we establish a new link
between multidimensional topological persistence and Pareto optimality, proving that

discontinuities of multidimensional persistent Betti numbers are necessarily pseudocrit-
ical or special values of the considered functions.
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Introduction

Topological data analysis aims at studying stable properties of data, in order to in-

fer their global structure and capture meaningful information about the phenomena

they represent. Topological persistence (hereafter simply persistence) is a possible

approach to topological data analysis, based on the assumption that meaningful

information may be described as (sets of) functions defined on data. In the classical

persistence setting, data are represented by a topological space X, and each consid-

ered function f is real-valued, that is, f : X → R. The collection of sub-level sets

Xu = f−1((−∞, u]), u ∈ R, forms a nested sequence and induces a filtration of X.

Homology allows for tracking the occurrence of meaningful topological events along
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the filtration, such as the birth or the death of connected components, tunnels and

void, and to rank these events by importance, that is, according to their life length.

In this way, it is possible to provide a multi-scale description of data: long-lived fea-

tures provide a coarse, global information, whereas short-lived ones stand for noise

and details. All the information can then be encoded in a parameterized version

of Betti numbers, known in the literature as persistent Betti numbers [29], a rank

invariant [11] and, for the 0th homology, a size function [30].

The constantly growing interest for the persistence approach to data analysis is

due to the fact that persistent Betti numbers (PBNs) can be stored in compact, yet

informative descriptors called persistent diagrams, which are robust to functions’

perturbations [13,18,22]. Roughly, this means that global topological features are

stable under small changes in the considered functions, whereas variations may

happen at a local scale.

From the application viewpoint, stability implies resistance to noise, thus per-

sistence emerged as a viable option for concretely analyzing and comparing data

from the topological perspective. The first results in this sense were reached us-

ing size functions for shape analysis [41,42]. After that, persistence has revealed

to be useful for a wide range of applications, including point cloud data analysis

[19,33], holes detection in sensor networks [23] segmentation [37,39] and image anal-

ysis [3,20], beyond confirming its potential for shape description, comparison and

retrieval [6,15,18,26].

Multidimensional persistence

However, a common scenario in applications is to deal with multi-parameter infor-

mation. This is usually the case, for example, in the analysis and comparison of

time-varying CT scans in medical imaging. Moreover, sometime the properties of

data to be studied are intrinsically multidimensional, such as the coordinates of an

object in a 2D or 3D image (e.g. for tracking applications), or photometric prop-

erties, which are usually taken into account in digital image segmentation. These

considerations drove the attention to the concept of size homotopy group [34] and,

later on, to the theory of multidimensional persistence [11]. Here the term multidi-

mensional, or equivalently k-dimensional, refers to the fact that data properties are

described through functions taking values in R
k [9,28,35].

While scalar-valued functions induce 1-parameter filtrations, the use of vector-

valued functions give rise to multi-parameter filtrations, which in turn enables the

study of multidimensional persistent Betti numbers. An approach to this research

is the one proposed in [5,7], which is based on the foliation method : The authors

show that, when k > 1, a dimensionality reduction can be used to decompose

k-dimensional PBNs into a family of 1-dimensional PBNs. This allows for the defi-

nition of a proven stable distance between k-dimensional PBNs [13], which can be

effectively evaluated through suitable approximation techniques [4,12]. Beyond sta-

bility, the foliation method has led to prove that multidimensional PBNs allow for
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the reconstruction of planar curves, thus providing the first advancement towards

the solution of the inverse problem in persistence [32].

Motivations and contribution of the paper

Previous work says not so much about the intrinsic structure of multidimensional

persistent Betti numbers, which is therefore still not clear. This is actually in con-

trast with the 1-dimensional situation, since the basic properties of PBNs associated

with scalar functions are well-known.

Increasing the knowledge about the structure of multidimensional PBNs would

be interesting not only from the theoretical point of view, but also from the ap-

plication perspective, since it may open the way toward new techniques for their

evaluation and comparison, possibly giving insights on how to improve the existing

methods.

In this paper we start to fill this gap by proving some new result result about the

discontinuities of multidimensional PBNs. By making use of the foliation method,

we establish a connection between multidimensional persistence and Pareto Op-

timality, which is a central notion in the field of Multi-Objective Optimization.

More precisely, we show that the discontinuities of a multidimensional PBNs can

be located just at points with at least one pseudocritical (a.k.a. Pareto critical)

coordinate (Theorem 2.4).

To establish the correlation between PBNs and Pareto Optimality, we first need

to consider multi-parameter filtrations given by C1 functions. However, many inter-

esting situations arise when the properties under study are modeled by less regular

functions: for example, the distance function from a point cloud. Therefore, as a fur-

ther contribution we refine the previous result to the case of continuous functions,

by using the notions of special point and special value (Theorem 2.5).

This paper is organized in two sections. In Section 1 the basic results about

multidimensional size functions are recalled, while in Section 2 our main theorems

are proved.

1. Preliminary Results on Persistence

In this section we recall some basic definitions and results about multidimensional

persistence, by focusing on those that will be useful for what follows. According to

the topic of this paper, the main reference here is [13]. For further details about

persistence in the multidimensional setting, the reader is also referred to [11,34].

In the classical persistence framework, the main object of study is the so-called

filtration, that is, a nested sequence of subspaces of a given space X. In [24], it

has been shown that every complete, compact and stable filtration consists in the

sublevel sets of a suitable continuous function defined on X.

Unless clearly stated, hereafter X is a compact, triangulable topological space.

Any function from X to R
k is called a filtering function, and is supposed to be

continuous. The relations � and ≺ are defined in R
k as follows: for u = (u1, . . . , uk)
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and v = (v1, . . . , vk), we write u � v (resp. u ≺ v) if and only if ui ≤ vi (resp.

vi < vi) for every i = 1, . . . , k. Moreover, Rk is equipped with the usual max-norm,

that is, ‖u‖∞ = maxi |ui|.

For every function f : X → R
k, the sublevel set {x ∈ X : f(x) � u} is

denoted by X〈f � u〉. We also introduce the following notations: the open set

{(u, v) ∈ R
k × R

k : u ≺ v} will be referred to as ∆+, while ∆ = ∂∆+; ∆∗ will

denote the set ∆+ ∪ {(u,∞) : u ∈ R
k}. Finally, ∆∗ = ∆∗ ∪∆.

Whenever u ≺ v, we consider the inclusion of X〈f � u〉 into X〈f � v〉. Such

inclusion induces in turn a homomorphism of homology groups ιu,vj : Hj(X〈f �

u〉) → Hj(X〈f � v〉). Following [13], we assume here to make use of Čech homology,

and refer the reader to that paper for a detailed explanation about preferring this

homology theory to others. The image of ιu,vj consists of the j-homology classes of

cycles which “are born” no later than u and are “still alive” at v, and is called the

multidimensional jth persistent homology group of (X, f) at (u, v).

Our requirements onX imply that multidimensional persistent homology groups

are finitely generated [8,13]. Moreover, by further assuming to work with coefficients

in a field K, we have that homology groups are vector spaces, and homomorphisms

induced in homology by continuous maps are linear maps. Thus the rank of ιu,vj ,

i.e. the dimension of its image, completely determines persistent homology groups,

leading to the notion of persistent Betti numbers.

Definition 1.1 (Persistent Betti Numbers). The persistent Betti numbers

function (briefly PBNs function) of f : X → R
k is the function βf : ∆+ → N

taking each (u, v) ∈ ∆+ to

βf (u, v) = rk ιu,vj .

Note that, for each j ∈ Z, we have different PBNs for f (which should be denoted

βf,j , say). However, for the sake of notational simplicity, we omit any reference to

j. This will also apply to the notations used for other concepts in this paper, such

as multiplicities. In what follows, we will also refer to the case of filtering functions

taking values in R
k by the term “k-dimensional”.

Among the properties of PBNs, it is worth mentioning monotonicity, which will

be useful in the rest of the paper. For v ∈ R
k, we denote by βf (·, v) the function

taking each u ≺ v to the value βf (u, v). A similar meaning will be given to βf (u, ·).

Proposition 1.1 (Monotonicity). The function βf (·, v) is non-decreasing in u,

while the function βf (u, ·) is non-increasing in v (with respect to �).

1.1. The case k = 1

We now briefly review the particular case when f is real-valued. We start with an

example. Figure 1(a) shows a curve depicted by a solid line, i.e. the space X, filtered

by the ordinate function f . In Figure 1(b) the associated PBNs function βf for the

0th homology is given.
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Fig. 1. (a) The topological space X and the function f . (b) The PBNs function βf .

As can be seen, the domain ∆+ = {(u, v) ∈ R
2 : u < v} of βf is divided

into bounded and unbounded regions, in each of which the PBNs function takes

a constant value: The displayed numbers coincide with the values of βf in each

region. For example, in order to compute the value of βf at the point (a, b), it is

sufficient to count how many of the three connected components in the sublevel

set X〈f ≤ a〉, which “are born” no later than a, are “still alive” at b. One can

check that βf (a, b) = 2: Indeed, a “death” occurs when the two green connected

components merge together at some level between a and b.

Persistence diagrams

1-dimensional PBNs can be compactly described by the corresponding persistence

diagram, a multiset of points lying on ∆∗ [22]. Persistence diagrams can be formally

defined via the concept of cornerpoint [13,31].

Definition 1.2 (Proper cornerpoint). For every point p = (u, v) ∈ ∆+, the

multiplicity µ(p) is defined as the minimum, over all the positive real numbers ε

with u+ ε < v − ε, of

βf (u+ ε, v − ε)− βf (u− ε, v − ε)− βf (u+ ε, v + ε) + βf (u− ε, v + ε).

When µ(p) is strictly positive, the point p is said to be a proper cornerpoint for βf .

Definition 1.3 (Cornerpoint at infinity). For every point p = (u,∞) ∈ ∆∗,

the multiplicity µ(p) is defined as the minimum, over all the positive real numbers

ε with u+ ε < 1/ε, of

βf (u+ ε, 1/ε)− βf (u− ε, 1/ε).

When µ(p) is strictly positive, the point p is said to be a cornerpoint at infinity for

βf .
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Definition 1.4 (Persistence diagram). The persistence diagram Dgm(f) is the

multiset of all cornerpoints (both proper and at infinity) for βf , counted with their

multiplicity, union the points of ∆, counted with infinite multiplicity.

For example, the persistence diagram associated to the PBNs function in Fig-

ure 1(b) is given by a cornerpoint at infinity (represented by a red line) and four

proper cornerpoints (still highlighted in red), together with the points of ∆ : u = v.

The following Representation Theorem 1.1 shows that persistence diagrams

uniquely determine 1-dimensional PBNs (the inverse also holds by definition of

persistence diagram). Roughly, the theorem claims that, for (ū, v̄) ∈ ∆+, the value

βf (ū, v̄) equals the number of cornerpoints lying above and on the left of (ū, v̄).

Theorem 1.1 (Representation Theorem). For every (ū, v̄) ∈ ∆+, it holds that

βf (ū, v̄) =
∑

u≤ū ,v>v̄

µ((u, v)) +
∑

u≤ū

µ((u,∞)).

Matching distance

A consequence of the Representation Theorem 1.1 is that every distance between

persistence diagrams naturally induces a distance between 1-dimensional PBNs.

This leads to introducing the so-called matching (or bottleneck) distance [13,22].

Suppose that two 1-dimensional PBNs β1 and β2 are given, together with

the corresponding persistent diagrams Dgm1, Dgm2. The matching distance

dmatch(β
1, β2) is defined as

dmatch

(
β1, β2

)
= min

σ
max

p∈Dgm1
δ(p, σ(p)),

where σ varies among all the bijections between Dgm1 and Dgm2 and

δ((u, v), (u′, v′)) = min

{
max {|u− u′|, |v − v′|} ,max

{
v − u

2
,
v′ − u′

2

}}
,

for every (u, v), (u′, v′) ∈ ∆∗. Here we assume the convention about ∞ that ∞−v =

v − ∞ = ∞ when v 6= ∞, ∞ − ∞ = 0, ∞
2 = ∞, |∞| = ∞, min{c,∞} = c and

max{c,∞} = ∞.

In plain words, the matching distance between two PBNs functions measures the

minimum cost of a correspondence between the points of the associated persistence

diagrams. In doing this, the pseudometric δ is used to evaluate the pseudodistance

between two points (u, v) and (u′, v′) as the minimum between the cost of moving

one point onto the other and the cost of moving both points onto the diagonal, with

respect to the max-norm and under the assumption that two points on the diagonal

have vanishing pseudodistance.

1-dimensional PBNs functions are stable with respect to dmatch: Small changes in

the considered functions induces only small changes in the position of cornerpoints.

This is formally stated in the following Matching Stability Theorem [13,22]:
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Theorem 1.2 (Matching Stability Theorem). If f, g : X → R are continuous

functions with maxx∈X |f(x)− g(x)| ≤ ε, then dmatch(βf , βg) ≤ ε.

1.2. Reduction to the case k = 1: The foliation method

We now review the approach to multidimensional persistence proposed in [5,7].

In those works, the authors prove that the case k > 1 can be reduced to the

framework of scalar functions by a change of variable and the use of a suitable

foliation. Roughly, a foliation allows for a well-behaved decomposition of an n-

dimensional manifold as a disjoint union of sub-manifolds having smaller dimension.

In particular, it has been showed that a parameterized family of half-planes in

R
k ×R

k exists, such that the restriction of a k-dimensional PBNs function to each

of these half-planes can be seen as a particular 1-dimensional PBNs function. The

foliation method will play a central role in proving the main results of the present

paper.

In what follows, elements of Rk will be denoted by using overarrows in case they

are explicitly used as direction vectors.

Definition 1.5 (Admissible pairs). For every unit vector ~m = (m1, . . . ,mk) of

R
k such that mi > 0 for i = 1, . . . , k, and for every point b = (b1, . . . , bk) of R

k such

that
∑k

i=1 bi = 0, we shall say that the pair (~m, b) is admissible. We shall denote

the set of all admissible pairs in R
k×R

k by Admk. Given an admissible pair (~m, b),

we define the half-plane π(~m,b) of R
k × R

k by the following parametric equations:

{
u = s~m+ b

v = t~m+ b

for s, t ∈ R, with s < t.

The following proposition implies that the collection of half-planes given in Def-

inition 1.5 is actually a foliation of ∆+.

Proposition 1.2. For every (u, v) ∈ ∆+ there exists one and only one admissible

pair (~m, b) such that (u, v) ∈ π(~m,b).

Now we can show the reduction to the case k = 1. Intuitively, on each half-plane

π(~m,b) one can find the PBNs of a certain scalar function, encoding the birth and the

death of topological events that occur in the filtration induced on X by sweeping the

line through u and v parameterized by γ(~m,b) : R → R
k, with γ(~m,b)(τ) = τ ~m + b.

In doing this, each point of γ(~m,b) is associated with a sublevel set of a certain

real-valued continuous function depending on both f and (~m, b).

These facts are formally stated in the following Reduction Theorem 1.3, and are

illustrated in Figure 2.

Theorem 1.3 (Reduction Theorem). Let (~m, b) be an admissible pair, and let
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f(~m,b) : X → R be defined by setting

f(~m,b)(x) = max
i=1,...,k

{
fi(x)− bi

mi

}
.

Then, for every (u, v) = (s~m+ b, t~m+ b) ∈ π(~m,b) the following equality holds:

βf (u, v) = βf(~m,b)
(s, t).

sm
+
b

tm+b

u

v~m

b

s

t

(~m, b)

b1 + b2 = 0

f1

f2

π(~l,~b)

γ(~m,b)

Fig. 2. Dimensional reduction for the PBNs function of f : X → R2. Left: the line γ(~m,b) through

u and v. A unit vector ~m and a point b are used to parameterize this line as γ(~m,b)(τ) = τ ~m+ b.
Right: the 1-dimensional PBNs function associated with γ(~m,b) can be found on the leaf π(~m,b) of
the foliation.

The Reduction Theorem 1.3 implies that each k-dimensional PBNs function

can be represented as a parameterized family of persistence diagrams, following the

description introduced in Subsection 1.1 for the case k = 1. Indeed, each admissible

pair (~m, b) can be associated with a persistence diagram Dgm(f(~m,b)) describing the

PBNs of f(~m,b). Therefore, on each π(~m,b), the Matching Stability Theorem 1.2 can

be applied. Moreover, the family
{
Dgm(f(~m,b)) : (~m, b) ∈ Admk

}
turns out to be

a complete descriptor for βf , because two k-dimensional PBNs functions coincide

if and only if the corresponding parameterized families of persistence diagrams

coincide.

The next result proves the stability of dmatch with respect to the choice of the

half-planes of the foliation. Indeed, small enough changes in (~m, b) with respect to

the max-norm induce only small changes in βf(~m,b)
with respect to the matching

distance [13, Thm. 4.5].

Proposition 1.3. If (~m, b) ∈ Admk and ε is a real number with 0 < ε <

mini=1,...,k mi, then for every admissible pair (~m′, b′) with ‖(~m, b)− (~m′, b′)‖∞ ≤ ε,
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it holds that

dmatch(βf(~m,b)
, βf(~m′,b′)

) ≤ ε ·
maxx∈X ‖f(x)‖∞ + ‖~m‖∞ + ‖b‖∞

mini=1,...,k{mi(mi − ε)}
.

Analogously, it is possible to prove [13, Thm. 4.4] that dmatch is stable with

respect to the chosen filtering function, i.e. small enough changes of f : X → R
k

with respect to the max-norm induce small changes of βf(~m,b)
with respect to the

matching distance. Together with Proposition 1.3, this guarantees the stability of

the whole approach.

2. Main Results

In this section we present new results about the discontinuities of the PBNs of a

function f : X → R
k. We will start with some preliminary results for the case k = 1,

which will be preparatory to prove our main theorems for the case k > 1.

2.1. Case k = 1: Cornerpoints and discontinuity points

A consequence of the Representation Theorem 1.1 is the following corollary. Its proof

mimics the one of [31, Cor. 6], which is confined to the 0th homology situation.

Corollary 2.1. Each discontinuity point (u, v) for βf is such that either u is a

discontinuity point for βf (·, v), or v is a discontinuity point for βf (u, ·), or both

these conditions hold.

If we assume that f : X → R is C1, then the (finite) coordinates of a cornerpoint

for βf are critical values of f . Even if this result can be easily deduced from the

related literature, to the best of our knowledge it has never been explicitly proved

until now. Therefore, for the sake of completeness we formalize here this statement,

which will be useful later.

Theorem 2.1. Let X be a closed, C1 Riemannian manifold, and let f ∈ C1(X,R).

Then if (ū, v̄) is a proper cornerpoint for βf , it follows that both ū and v̄ are critical

values of f . If (ū,∞) is a cornerpoint at infinity for βf , it follows that ū is a critical

value of f .

Proof. We confine ourselves to prove the former statement, since the proof of

the latter is analogous. First of all, note that there exists a closed C∞ Riemannian

manifold X̃ that is C1-diffeomorphic to X through a C1-diffeomorphism h : X̃ → X

[36, Thm. 2.9]. Set f̃ = f ◦ h. Obviously, the PBNs functions associated with

f̃ : X̃ → R and f : X → R coincide. Therefore, (ū, v̄) is also a cornerpoint for βf̃ .

We observe that the claim of our theorem holds for a closed C∞ Riemannian

manifold endowed with a Morse filtering function. This is a consequence of [25,

Prop. 29] and the correspondence between critical values and homological critical

values for a Morse function [2].
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Now, for every real value ε > 0 we can find a Morse function fε : X̃ → R such

that max
y∈X̃

|f̃(y)−fε(y)| ≤ ε and max
y∈X̃

∥∥∥∇f̃(y)−∇fε(y)
∥∥∥ ≤ ε: We can obtain

fε by considering first the smooth function given by the convolution of f̃ and an

opportune “regularizing” function, and then a Morse function fε approximating

in C1(X̃,R) the previous function [38, Cor. 6.8]. Therefore, from the Matching

Stability Theorem 1.2 it follows that for every ε > 0 we can find a cornerpoint

(ūε, v̄ε) for the PBNs function βfε with ‖(ū, v̄)− (ūε, v̄ε)‖∞ ≤ ε and ūε, v̄ε as critical

values for fε. Passing to the limit for ε → 0 we obtain that both ū and v̄ are critical

values for f̃ . The claim follows by observing that, since f̃ and f have the same

critical values, both ū and v̄ are also critical values for f .

From the Representation Theorem 1.1 and Theorem 2.1 we obtain the following

corollary, refining Corollary 2.1 in the C1 case (we skip the easy proof):

Corollary 2.2. Let X be a closed, C1 Riemannian manifold, and let f ∈ C1(X,R).

Let also (ū, v̄) be a discontinuity point for βf . Then at least one of the following

statements holds:

(i) ū is both a discontinuity point for βf (·, v̄) and a critical value for f ;

(ii) v̄ is both a discontinuity point for βf (ū, ·) and a critical value for f .

2.2. Case k > 1: necessary conditions for discontinuities of PBNs

The generalization of Corollary 2.2 to the case k > 1 is not straightforward, and

requires new ideas which will be given in this section, together with our main results.

In order to do that, we will confine ourselves to the case when X is a closed (i.e.

compact and without boundary) C1 Riemannian n-manifold.

From now to Theorem 2.5, we shall assume that an admissible pair (~m, b) ∈

Admk is fixed, and consider the PBNs function βF with F : X → R defined by

setting F (x) = maxi=1,...,k
fi(x)−bi

mi
. We shall say that F and βF are the filter-

ing function and the 1-dimensional PBNs function corresponding to the half-plane

π(~m,b), respectively.

The main results of this section are stated in Theorem 2.4 and Theorem 2.5,

showing a necessary condition for a point (u, v) ∈ ∆+ to be a discontinuity point

for the PBNs function βf , under the assumption that f is C1 and C0, respectively.

For the sake of clarity, we will provide now a sketch of the arguments that will lead

us to the proof of our main results.

Theorem 2.4 is a generalization for k > 1 of Corollary 2.2. In order to prove

it, the first step is to adapt Theorem 2.1 to the 1-dimensional PBNs function βF

corresponding to the half-plane π(~m,b). We recall that, according to Theorem 2.1,

each finite coordinate of a cornerpoint has to be a critical value for the consid-

ered C1 filtering function. However, in our case the scalar function F is not C1 in

general (even if f is C1), and therefore we need to prove a modified version of The-

orem 2.1. To this end, we generalize the concepts of critical point and critical value
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by introducing the definitions of (~m, b)-pseudocritical point and (~m, b)-pseudocritical

value for a C1 function (Definition 2.1). These notions, together with an approx-

imation in C0(X,R) of the function F by C1 functions, are used to prove that, if

f ∈ C1(X,Rk), each finite coordinate of a cornerpoint for βF has to be an (~m, b)-

pseudocritical value for f (Theorem 2.2).

Next, we show (Proposition 2.1) that a correspondence exists between the dis-

continuity points of βF and the ones of βf . Theorem 2.2 and Proposition 2.1 lead

us to the relation (Theorem 2.3) between those discontinuity points for βf lying

on the half-plane π(~m,b), and the (~m, b)-pseudocritical values for f . This last result

is refined in Theorem 2.4 under the assumption that f is C1, providing a neces-

sary condition for discontinuities of βf that does not depend on the half-planes of

the foliation. This can be done by introducing the concepts of pseudocritical point

and pseudocritical value (a.k.a. Pareto critical point and Pareto critical value) for

an R
k-valued C1 function (Definition 2.2), and considering a suitable projection

ρ : Rk → R
h. The necessary condition given in Theorem 2.4 is finally extended to

the case of continuous filtering functions (Theorem 2.5), once more by means of an

approximation technique, and the notions of special point and special value.

Before going on, we need the following definition:

Definition 2.1. Assume that f ∈ C1(X,Rk). For every x ∈ X, set Ix =
{
i ∈

{1, . . . , k} : fi(x)−bi
mi

= F (x)
}
. We shall say that x is an (~m, b)-pseudocritical point

for f if the convex hull of the gradients ∇fi(x), i ∈ Ix, contains the null vector,

i.e. for every i ∈ Ix there exists a real value λi such that
∑

i∈Ix
λi∇fi(x) = 0, with

0 ≤ λi ≤ 1 for i ∈ Ix and
∑

i∈Ix
λi = 1. If x is an (~m, b)-pseudocritical point for f ,

the value F (x) will be called an (~m, b)-pseudocritical value for f .

The concept of (~m, b)-pseudocritical point is strongly connected, via the func-

tion F introduced in Definition 2.1, with the notion of generalized gradient by

F. H. Clarke [21]. For a point x ∈ X, the condition of being (~m, b)-pseudocritical

for f corresponds to the one of being “critical” for the generalized gradient of F [21,

Prop. 2.3.12]. However, in this context we prefer to adopt a terminology highlighting

the dependence on the considered half-plane.

Theorem 2.2. Assume that f ∈ C1(X,Rk). If (σ, τ) is a proper cornerpoint of βF ,

then both σ and τ are (~m, b)-pseudocritical values for f . If (σ,∞) is a cornerpoint

at infinity of βF , then σ is an (~m, b)-pseudocritical value for f .

Proof. We confine ourselves to proving the former statement. Indeed, the proof

of the latter is analogous. The idea is to show that our statement holds for a

C1 function approximating the filtering function F : X → R in C0(X,R), and

verify that this property passes to the limit. Let us now set gi(x) = fi(x)−bi
mi

and

choose c ∈ R such that minx∈X gi(x) > −c, for every i = 1, . . . , k. Consider the

function sequence (Fp), p ∈ N
+ = N \ {0}, whith Fp : X → R and Fp(x) =

(∑k
i=1(gi(x) + c)p

) 1
p

− c: Such a sequence converges uniformly to the function F .
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Indeed, for every x ∈ X and for every index p we have that

|F (x)− Fp(x)|=

∣∣∣∣∣∣
max

i
gi(x)−



(

k∑

i=1

(gi(x) + c)p

) 1
p

− c




∣∣∣∣∣∣
=

=

∣∣∣∣∣∣
max

i
{gi(x) + c} −

(
k∑

i=1

(gi(x) + c)p

) 1
p

∣∣∣∣∣∣
=

=

(
k∑

i=1

(gi(x) + c)p

) 1
p

−max
i

{gi(x) + c} ≤

≤max
i

{gi(x) + c} · (k
1
p − 1).

Let us now consider a proper cornerpoint C̄ = (ū, v̄) of βF . By the Matching

Stability Theorem 1.2 it follows that it is possible to find a large enough p and a

proper cornerpoint Cp = (up, vp) of the 1-dimensional PBNs function βFp
such that

Cp is arbitrarily close to C̄. Being Cp a proper cornerpoint of βFp
, Theorem 2.1

implies that its coordinates are critical values of the C1 function Fp. By focusing on

the abscissa of Cp (similar arguments hold for the ordinate of Cp), it follows that

there exists xp ∈ X with up = Fp(x
p) and (in local coordinates x1, . . . , xn of the

n-manifold X)

0 =
∂Fp

∂x1
(xp) =

(
k∑

i=1

(gi(x
p) + c)p

) 1−p
p

·

(
k∑

i=1

(gi(x
p) + c)p−1 ·

∂gi
∂x1

(xp)

)

...

0 =
∂Fp

∂xn

(xp) =

(
k∑

i=1

(gi(x
p) + c)p

) 1−p
p

·

(
k∑

i=1

(gi(x
p) + c)p−1 ·

∂gi
∂xn

(xp)

)
.

Hence we have

k∑

i=1

(gi(x
p) + c)p−1 ·

∂gi
∂x1

(xp) = 0

...
k∑

i=1

(gi(x
p) + c)p−1 ·

∂gi
∂xn

(xp) = 0 .

Therefore, by setting

wp = (wp
1 , . . . , w

p
k) =

(
(g1(x

p) + c)p−1, . . . , (gk(x
p) + c)p−1

)
,

we can write tJ(xp) ·twp = 0, where J(xp) is the Jacobian matrix of g = (g1, . . . , gk)

computed at the point xp. By the compactness of X, we can assume (possibly by
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extracting a subsequence) that (xp) converges to a point x̄. Let us define zp =
wp

‖wp‖
∞

. Again by compactness (indeed, ‖zp‖∞ = 1) we can also assume, possibly

by considering a subsequence, that the sequence (zp) converges to a vector z̄ =

(z̄1, . . . , z̄k), where z̄i = limp→∞
w

p
i

‖wp‖
∞

and ‖z̄‖∞ = 1. Obviously tJ(xp) ·tzp = 0

and hence we have

tJ(x̄) ·tz̄ = 0. (2.1)

Now, for every index p and for every i = 1, . . . , k the relation 0 < zpi ≤ 1 holds,

thus the condition 0 ≤ z̄i = limp→∞ zpi ≤ 1 is satisfied for each i = 1, . . . , k. Let

us now recall that F (x̄) = maxi gi(x̄) by definition, and consider the set Ix̄ = {i ∈

{1, . . . , k} : gi(x̄) = F (x̄)} = {i1, . . . , ih}. For every r 6∈ Ix̄ the component z̄r is equal

to 0, because 0 ≤ zpr =
(

gr(x
p)+c

maxi{gi(xp)+c}

)p−1

and limp→∞
gr(x

p)+c

maxi{gi(xp)+c} = gr(x̄)+c

F (x̄)+c
,

which is strictly less than 1 for gr(x̄) < F (x̄). Hence we have z̄ = z̄i1 ·ei1+· · ·+z̄ih ·eih ,

where ei is the ith vector of the standard basis of Rk. Thus, from equality (2.1) we

have
∑h

j=1 z̄ij ·
∂gij
∂x1

(x̄) = 0, . . . ,
∑h

j=1 z̄ij ·
∂gij
∂xn

(x̄) = 0, that is,
∑h

j=1

z̄ij
mij

·
∂fij
∂x1

(x̄) =

0, . . . ,
∑h

j=1

z̄ij
mij

·
∂fij
∂xn

(x̄) = 0, since gi = fi−bi
mi

. Hence,
∑h

j=1

z̄ij
mij

∇fij (x̄) = 0.

By recalling that z̄ij ≥ 0, mij > 0 and z̄ is a non–vanishing vector, it follows

immediately that
∑h

j=1

z̄ij
mij

> 0 and therefore the convex hull of the gradients

∇fi1(x̄), . . . ,∇fih(x̄) contains the null vector. Thus, x̄ is an (~m, b)-pseudocritical

point for f and hence F (x̄) is an (~m, b)-pseudocritical value for f . Moreover, from

the uniform convergence of the sequence (Fp) to F and from the continuity of the

function F , we have (recall that C̄ = limp→∞ Cp)

ū = lim
p→∞

up = lim
p→∞

Fp(xp) = F (x̄).

In other words, the abscissa ū of a proper cornerpoint of βF is the image of an

(~m, b)-pseudocritical point x̄ through F , i.e. an (~m, b)-pseudocritical value for f .

An analogous reasoning holds for the ordinate v̄ of a proper cornerpoint.

Our next result shows that each discontinuity of βf corresponds to a disconti-

nuity of the 1-dimensional PBNs function associated with a suitable half-plane of

the foliation.

Proposition 2.1. A point (u, v) = (s · ~m+ b, t · ~m+ b) ∈ π(~m,b) is a discontinuity

point for βf if and only if (s, t) is a discontinuity point for βF .

Proof. Obviously, if (s, t) is a discontinuity point for βF , then (u, v) = (s · ~m +

b, t · ~m+ b) ∈ π(~m,b) is a discontinuity point for βf , because of the Reduction Theo-

rem 1.3. In order to prove the inverse implication, we shall verify the contrapositive

statement, i.e. if (s, t) is not a discontinuity point for βF , then (s·~m+b, t·~m+b) is not

a discontinuity point for βf . Indeed, if (s, t) is not a discontinuity point for βF , then

βF is locally constant at (s, t) (recall that each PBNs function is natural-valued).
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Therefore it will be possible to choose a real number η > 0 such that

βF (s− η, t+ η) = βF (s+ η, t− η). (2.2)

Before proceeding in our proof, we need the following result:

Lemma 2.1. Let g, g′ : X → R. If dmatch(βg, βg′) ≤ 2ε, then it holds that

βg(s− ε, t+ ε) ≤ βg′(s+ ε, t− ε),

for every (s, t) with s+ ε < t− ε.

Proof of Lemma 2.1. Recall that ∆∗ is the set ∆+ ∪ {(a,∞) : a ∈ R}. For every

(s, t) with s < t, let us define the set L(s,t) = {(σ, τ) ∈ ∆∗ : σ ≤ s, τ > t}. By

the Representation Theorem 1.1 we have that βg(s − ε, t + ε) equals the number

of cornerpoints (both proper and at infinity) for βg belonging to the set L(s−ε,t+ε).

Being dmatch(βg, βg′) ≤ 2ε, the number of proper cornerpoints and cornerpoints at

infinity for βg′ in the set L(s+ε,t−ε) is not less than βg(s−ε, t+ε). The reason is that

the change from g to g′ does not move the cornerpoints more than 2ε, with respect

to the max-norm, because of the Matching Stability Theorem 1.2. By applying the

Representation Theorem 1.1 once again to βg′ , we get our claim. �

Let us go back to the proof of Proposition 2.1. By Proposition 1.3, we can

then consider a real value ε = ε(η) with 0 < ε < mini=1,...,k mi such that for every

admissible pair (~m′, b′) with ‖(~m, b)−(~m′, b′)‖∞ ≤ ε, the relation dmatch(βF , βF ′) ≤
η
2 holds, where βF ′ is the 1-dimensional PBNs function corresponding to the half-

plane π(~m′,b′). By applying Lemma 2.1 twice and the monotonicity of βF ′ in each

variable (cf. Proposition 1.1), we get the inequalities

βF (s− η, t+ η) ≤ βF ′(s−
η

2
, t+

η

2
)

≤ βF ′(s+
η

2
, t−

η

2
) ≤ βF (s+ η, t− η). (2.3)

By equality (2.2) we have that the inequalities (2.3) imply

βF (s− η, t+ η) = βF ′(s−
η

2
, t+

η

2
)

= βF ′(s+
η

2
, t−

η

2
) = βF (s+ η, t− η). (2.4)

Therefore, once again because of the monotonicity of βF ′ in each variable, for every

(s′, t′) with ‖(s, t)− (s′, t′)‖∞ ≤ η
2 and for every (~m′, b′) with ‖(~m, b)−(~m′, b′)‖∞ ≤

ε the equality βF ′(s′, t′) = βF (s, t) holds. By applying the Reduction Theorem 1.3

we get βf (s
′ · ~m′ + b′, t′ · ~m′ + b′) = βf (s · ~m + b, t · ~m + b). In other words, βf is

locally constant at the point (u, v), and hence (u, v) is not a discontinuity point for

βf .

Let us observe that Proposition 2.1 holds under weaker hypotheses, i.e. in the

case that X is a non-empty, compact and locally connected Hausdorff space. How-

ever, for the sake of simplicity, we prefer here to confine ourselves to the setting

assumed at the beginning of the present section.
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The following theorem associates the discontinuities of βf to the (~m, b)-

pseudocritical values of f .

Theorem 2.3. Assume that f ∈ C0(X,Rk). Let (u, v) ∈ ∆+ with (u, v) = (s · ~m+

b, t · ~m+ b) ∈ π(~m,b). If (u, v) is a discontinuity point for βf then at least one of the

following statements holds:

(i) s is a discontinuity point for βF (·, t);

(ii) t is a discontinuity point for βF (s, ·).

Moreover, (i) and (ii) are equivalent to

(i′) u is a discontinuity point for βf (·, v);

(ii′) v is a discontinuity point for βf (u, ·),

respectively. If f ∈ C1(X,Rk), statement (i) implies that s is an (~m, b)-

pseudocritical value for f , and statement (ii) implies that t is an (~m, b)-pseu-

docritical value for f .

Proof. By Proposition 2.1 we have that (s, t) is a discontinuity point for βF , and

from Corollary 2.1 it follows that either s is a discontinuity point for βF (·, t) or t

is a discontinuity point for βF (s, ·), or both these conditions hold, thus proving the

first part of the theorem.

Let us now suppose that s is a discontinuity point for βF (·, t). Being the function

βF (·, t) monotonic, for every real value ε > 0 we have that βF (s−ε, t) 6= βF (s+ε, t).

Moreover, the following equalities hold from the Reduction Theorem 1.3:

βF (s− ε, t) = βf ((s− ε) · ~m+ b, t · ~m+ b) = βf (u− ε · ~m, v)

βF (s+ ε, t) = βf ((s+ ε) · ~m+ b, t · ~m+ b) = βf (u+ ε · ~m, v).
(2.5)

By setting ~ε = ε · ~m, we get βf (u−~ε, v) 6= βf (u+~ε, v). Therefore u is a discontinuity

point for βf (·, v), thus proving that (i) ⇒ (i′).

Let us now prove that (i′) ⇒ (i). If u is a discontinuity point for βf (·, v), from

the monotonicity in the variable u (cf. Proposition 1.1) it follows that βf (u − ε ·

~m, v) 6= βf (u+ ε · ~m, v) for every ε > 0. Therefore, from the equalities (2.5) we get

βF (s− ε, t) 6= βF (s + ε, t), proving that (i′) ⇒ (i). Analogously, we can show that

(ii) ⇔ (ii′).

Furthermore, if s is a discontinuity point for βF (·, t), from the Representation

Theorem 1.1 it follows that s is the abscissa of a cornerpoint (possibly at infin-

ity). Hence, if f ∈ C1(X,Rk) then by Theorem 2.2 we have that s is an (~m, b)-

pseudocritical value for f .

In a similar way, we can examine the case that t is a discontinuity point for

βF (s, ·), and get the final statement.

Before giving our first main result, we need the following definition.
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Definition 2.2. Let L : X → R
h, and suppose that L is C1 at a point x ∈ X. The

point x is said to be a pseudocritical point for L if the convex hull of the gradients

∇Li(x), i = 1, . . . , h, contains the null vector, i.e. there exist λ1, . . . , λh ∈ R such

that
∑h

i=i λi · ∇Li(x) = 0, with 0 ≤ λi ≤ 1 for 1 ≤ i ≤ h, and
∑h

i=1 λi = 1. If x is

a pseudocritical point of L, then L(x) will be called a pseudocritical value for L.

Definition 2.2 corresponds to the Fritz John necessary condition for optimality in

Nonlinear Programming [1]. We shall use the term “pseudocritical” just for the sake

of conciseness. For further references see [40]. The concept of pseudocritical point

is strongly related also to the one of Jacobi Set [27]. In literature, pseudocritical

points are also called Pareto critical points.

The next example makes Definition 2.2 clearer.

Example 2.1. Let us compute the pseudocritical points and values for the func-

tion L = (L1,L2) : X → R
2, where X is the surface coinciding with the unit

sphere S2 ⊂ R
3, and L is obtained as the restriction to X of the function

L = (L1, L2) : R
3 → R

2, with L(x1, x2, x3) = (x1, x3) (see Figure 3). Accord-

ing to Definition 2.2, it follows that a point x ∈ X is pseudocritical for L if

and only if either ∇L1(x) = 0, or ∇L2(x) = 0, or these two gradient vectors

are parallel with opposite verse. Referring to our example, ∇L1(x) and ∇L2(x)

are the orthogonal projections of ∇L1(x) = (1, 0, 0) and ∇L2(x) = (0, 0, 1)

onto the tangent space of X at x, respectively. Therefore, it can be easily veri-

fied that the pseudocritical points of X for the function L are given by the set

{(cosα, 0, sinα) : 0 ≤ α ≤ π
2 ∨ π ≤ α ≤ 3

2π}. Hence, the corresponding pseudocrit-

ical values are the elements of the set {(cosα, sinα) : 0 ≤ α ≤ π
2 ∨ π ≤ α ≤ 3

2π}.

x1

x2

x3

x

x

∇L1(x)

∇L2(x)

∇L1(x)

∇L2(x)

Fig. 3. (a) The sphere S2 ⊆ R3 endowed with the filtering function L = (L1,L2) : S2 → R2,

defined as L(x1, x2, x3) = (x1, x3) for each (x1, x2, x3) ∈ S2. The pseudocritical points of L are
depicted in bold red. (b) The point x is a pseudocritical point for L, because the vectors ∇L1(x)
and ∇L2(x) are parallel with opposite verse.
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Let (i1, ..., ih) ∈ {1, ..., k}h with h ≤ k and i1 < ... < ih. In the following, we

shall say that ρ : Rk → R
h is a projection associated with the h-tuple (i1, . . . , ih)

if ρ((u1, . . . , uk)) = (ui1 , . . . , uih), for every u = (u1, . . . , uk) ∈ R
k. In other words,

such a function ρ is used to delete some components of u ∈ R
k.

We are now ready to give the first main result of this paper.

Theorem 2.4. Assume that f ∈ C1(X,Rk). Let (u, v) ∈ ∆+ be a discontinuity

point for βf . Then at least one of the following statements holds:

(i) u is a discontinuity point for βf (·, v);

(ii) v is a discontinuity point for βf (u, ·).

Moreover, if (i) holds, then a projection ρ exists such that ρ(u) is a pseudocritical

value for ρ ◦ f . If (ii) holds, then a projection ρ exists such that ρ(v) is a pseudo-

critical value for ρ ◦ f .

Proof. By Proposition 1.2, an admissible pair (~m, b) exists, such that (u, v) =

(s · ~m+ b, t · ~m+ b) for a suitable pair (s, t). Statements (i) and (ii) are guaranteed

by Theorem 2.3, assuring that either u is a discontinuity point for βf (·, v) and s is

an (~m, b)- pseudocritical value for f , or v is a discontinuity point for βf (u, ·) and t

is an (~m, b)-pseudocritical value for f , or both these conditions hold.

Let us now confine ourselves to assume that u is a discontinuity point for βf (·, v)

and s is an (~m, b)-pseudocritical value for f . We shall prove that a projection ρ

exists such that ρ(u) is a pseudocritical value for ρ ◦ f . The proof in the case

that v is a discontinuity point for βf (u, ·) and t is an (~m, b)-pseudocritical value

for f works in quite a similar way. Being s an (~m, b)-pseudocritical value for f ,

by Definition 2.1 there exist a point x ∈ X, some indices i1, . . . , ih ∈ {1, . . . , k}

with h ≤ k and i1 < · · · < ih, and an h-tuple (λ1, . . . , λh) such that s = F (x) =
fi1 (x)−bi1

mi1
= · · · =

fih (x)−bih
mih

and
∑h

j=1 λj · ∇fij (x) = 0, with 0 ≤ λj ≤ 1 for

j = 1, . . . , h, and
∑h

j=1 λj = 1. Let us now consider the projection ρ : Rk → R
h

defined by setting ρ(u) = (ui1 , . . . , uih). Being (u, v) = ((u1, . . . , uk), (v1, . . . , vk)) =

((s ·m1 + b1, . . . , s ·mk + bk), (t ·m1 + b1, . . . , t ·mk + bk)), we observe that uij =(
fij (x)−bij

mij

)
·mij + bij = fij (x), for every j = 1, . . . , h. Therefore, ρ(u) = ρ ◦ f(x).

Being x a pseudo-critical point for ρ◦f , it follows that ρ(u) is a pseudocritical value

for ρ ◦ f .

Note that Theorem 2.4 refines the result obtained in Theorem 2.3, providing a

relation between discontinuities of PBNs functions and pseudo-criticality without

any reference to the foliation of ∆+.

2.3. Refining Theorem 2.4 to less regular filtering functions

In this section we generalize Theorem 2.4 to the case of continuous filtering func-

tions. In what follows, we shall call a special point for a continuous function
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L : X → R
h any point in the closure of the set where L is not C1. If x is a

special point for L, the value L(x) will be called a special value for L.

Theorem 2.5. Assume that f ∈ C0(X,Rk). Let (u, v) ∈ ∆+ be a discontinuity

point for βf . Then at least one of the following statements holds:

(i) u is a discontinuity point for βf (·, v);

(ii) v is a discontinuity point for βf (u, ·).

Moreover, if (i) holds, then a projection ρ exists such that ρ(u) is either a special

value or a pseudocritical value for ρ◦f . If (ii) holds, then a projection ρ exists such

that ρ(v) is either a special value or a pseudocritical value for ρ ◦ f .

Proof. By Proposition 1.2, an admissible pair (~m, b) exists, such that (u, v) =

(s · ~m+ b, t · ~m+ b) for a suitable pair (s, t). Statements (i) and (ii) are guaranteed

by Theorem 2.3, assuring that either u is a discontinuity point for βf (·, v) and s is

a discontinuity point for βF (·, t), or v is a discontinuity point for βf (u, ·) and t is a

discontinuity point for βF (s, ·), or both these conditions hold. (We recall that F is

given by maxj=1,...,k

{
fj−bj
mj

}
).

Let us now assume that u is a discontinuity point for βf (·, v) and s is a discon-

tinuity point for βF (·, t). We shall prove that a projection ρ exists such that ρ(u) is

either a special value or a pseudocritical value for ρ ◦ f .

Call Sj the set of special points of fj : X → R, for j = 1, . . . , k. By definition,

the set Sj is closed. For every i ∈ N
+ = N \ {0} and j = 1, . . . , k, consider the

compact set Ki
j defined as {x ∈ X : d(x, Sj) ≥ 1

i
} if Sj is non-empty, and as X

otherwise. Furthermore, take a C1 function f i
j : X → R such that

(1) maxx∈X |fj(x)− f i
j(x)| ≤

1
i
;

(2) if Ki
j 6= ∅, maxx∈Ki

j
‖∇fj(x)−∇f i

j(x)‖ ≤ 1
i
.

This can be done by considering the convolution of each component fj , j = 1, . . . , k,

with a suitable “regularizing” function.

We now set F i = maxj=1,...,k

{
fi
j−bj

mj

}
, with f i = (f i

1, . . . , f
i
k) for every i ∈ N

+.

Being s a discontinuity point for βF (·, t), by the Representation Theorem 1.1 it

follows that a cornerpoint of βF (proper or at infinity) of coordinates (s, t̄ ) exists,

with t̄ > t. Moreover, by condition (1) we have that the sequence (F i) uniformly con-

verges to F . Therefore, the Matching Stability Theorem 1.2 implies that a sequence

((si, t̄i)) exists, such that (si, t̄i) is a cornerpoint for βF i and ((si, t̄i)) converges

to (s, t̄ ). For every large enough index i, once more by the Representation Theo-

rem 1.1, si is then a discontinuity point for βF i(·, t), and hence by Theorem 2.3 we

have that ui = si · ~m + b is a discontinuity point for βfi(·, v). From Theorem 2.4

it follows that a projection ρi exists, such that ρi(ui) is a pseudocritical value for

ρi ◦ f i. Possibly by considering a subsequence, we can suppose that all the ρi equal

a projection ρ associated with the h-tuple (j1, . . . , jh). Moreover, we can consider
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a sequence (xi) such that xi ∈ X, ρ ◦ f i(xi) = ρ(ui) and xi is a pseudocritical

point for ρ ◦ f i. Furthermore, by the compactness of X, possibly by extracting a

subsequence we can assume (xi) converging to a point x ∈ X. From the continuity

of f and from the uniform convergence of (f i) to f , we deduce

(3) ρ ◦ f(x) = limi→∞ ρ ◦ f(xi) = limi→∞ ρ ◦ f i(xi) = limi→∞ ρ(ui) = ρ(u).

If ρ(u) is a special value for ρ ◦ f then our claim is proved.

If ρ(u) = (uj1 , . . . , ujh) is not a special value for ρ ◦ f then x 6∈ Sj1 ∪ . . . ∪ Sjh .

Hence, for any large enough index i, it follows that x, xi ∈ Ki
j1

∩ . . . ∩ Ki
jh
. By

recalling that each point xi is a pseudocritical point for ρ ◦ f i, and by observing

that the property of being a pseudocritical point passes to the limit, we get that

ρ(u) is a pseudocritical value for ρ ◦ f . In other words, we have just proved that if

u is a discontinuity point for βf (·, v), then a projection ρ exists such that ρ(u) is

either a special value or a pseudocritical value for ρ ◦ f .

Analogously, it is possible to prove that if v is a discontinuity point for βf (u, ·),

then a projection ρ exists such that ρ(v) is either a special value or a pseudocritical

value for ρ ◦ f .

2.4. Toward applications

The results proved in this paper imply several relevant consequences. First of all,

they contribute to clarifying the structure of multidimensional PBNs. In order to

explain this point let us consider the case of a compact smooth surface S endowed

with a smooth function f = (f1, f2) : S → R
2. It is immediate to verify that

all pseudocritical points belong to the Jacobi set of f , that is the set where the

gradients ∇f1 and ∇f2 are parallel. This implies [27] that in the generic case the

pseudocritical points belong to a 1-submanifold J of S (in local coordinates such a

manifold is determined by the vanishing of the Jacobian of f). For the computation

of J and related algorithms we refer to [27]. Now, let P be the set of pseudocritical

values for f , and let C1 (respectively C2) be the set of critical values for f1 (resp.

f2). Following these notations, if we assume that A1 = C1 ×R
3, A2 = R×C2 ×R

2,

B1 = R
2 ×C1 ×R, B2 = R

3 ×C2, P1 = P ×R
2 and P2 = R

2 ×P, then Theorem 2.5

allows us to claim that all discontinuity points (u1, u2, v1, v2) of the PBNs function

βf belong to the set K = ∆+ ∩ (A1 ∪ A2 ∪ B1 ∪ B2 ∪ P1 ∪ P2) (with a little abuse

of notation, we identify our sets as subsets of R4).

In light of this, we can imagine the possibility of designing new algorithms

to speed-up the computation of multidimensional PBNs [10]. Let us consider the

connected components in which the domain of βf is divided by the set K. Being

PBNs functions locally constant at each point of continuity (we recall that they are

natural-valued), we immediately obtain that βf is constant at each of those con-

nected components. It follows that the computation of βf just requires the compu-

tation of its value at only one point for each connected component. These arguments

open the way to new and more efficient methods of computation for multidimen-
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sional PBNs.

Also, our results may be of help in case the computation is achieved through

the use of the foliation method. Indeed, this alternative approach has revealed to

be useful in the development of possible distances between multidimensional PBNs

[4,14]. In this context, Example 2.1 suggests that, by virtue of Proposition 1.3 and

our new Theorem 2.2, it could be possible to track leaf by leaf the movements of

cornerpoints associated with the 1-dimensional restrictions of PBNs functions, thus

avoiding to compute such restrictions from scratch every time a new leaf in the

foliation is visited.

Last, our results also make new pseudodistances between PBNs functions com-

putable in an easier way. Indeed, let us consider two functions g : X → R
k,

g′ : Y → R
k and the value δH giving the Hausdorff distance between the sets

where βg and βg′ are discontinuous. It is trivial to check that the function dD de-

fined by setting dD (βg, βg′) = δH is a pseudodistance between multidimensional

PBNs. Helping us to localize the discontinuities of PBNs functions, Theorem 2.5

makes the computation of dD easier.

Conclusions and future work

In this paper we have investigated on the intrinsic structure of multidimensional

persistent Betti numbers. In particular, we have proved that the discontinuity points

of k-dimensional PBNs have at least one special or pseudocritical coordinate, under

the hypothesis that the considered filtering function is (at least) continuous. We

think that this work may contribute to fill the existing gap between the development

of persistence theory for scalar- and vector-valued filtering functions, respectively,

with potential implications also from the application viewpoint.

We conclude by observing that the results presented here are deeply connected

with the fairly new concept of persistence space [16,17]. This is a generalization of

a persistence diagram, providing a stable and complete representation of multidi-

mensional PBNs. A persistence space is defined through the notion of cornerpoint,

which are indeed introduced by extending Definitions 1.2 and 1.3 to the case of Rk-

valued filtering functions. In this context, our results imply that the cornerpoints

of a persistence space have coordinates that are special or pseudocritical values of

the associated filtering function.
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