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Our basic questions

We are interested in these questions:

• Is there a general metric model to compare data in TDA?

• What should be the role of the observer in such a model?

• How could we approximate the metric used in that model?

Our talk will be devoted to illustrate these questions and to propose
some answers by means of a mathematical approach based on
persistent homology and group invariant non-expansive operators.
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Assumptions in our model

Truth often depends on the observer’s perspective:

Multiple perspectives are usually unavoidable! In the past this
observation was mostly confined to the philosophical debate, but
nowadays it starts to be quite relevant also in several scientific
applications involving Information Technology.
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Assumptions in our model

We will make these assumptions:

1. No object can be studied in a direct and absolute way. Any object
is only knowable through acts of measurement made by an
observer.

2. Any act of measurement can be represented as a function defined
on a topological space.

3. The observer usually acquires measurement data by applying
operators to the functions describing these data. These operators
are frequently endowed with some invariances that are relevant for
the observer.

4. Only the observer is entitled to decide about data similarity.
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Assumptions in our model

In some sense, we could summarize our assumptions by saying that

DATA ANALYSIS IS ALWAYS THE ANALYSIS OF AN OBSERVER

Our goal is not to approximate objects but to approximate observers.
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Assumptions in our model

The observer usually acquires measurement data by applying
operators to the functions describing the data.

Let us give some examples of measurements and operators.
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An example of measurement

Φ = set of continuous functions from S1 to C 0(R2,R)
(in the case of grey level images).
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Another example of measurement

Φ = set of continuous functions from R to R.
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Another example of measurement

Φ = set of functions from a singleton to R.
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An example of operator

F (ϕ)(x) :=
1

2πσ2

∫
R2

ϕ(y)e−
‖x−y‖2

2σ2 dy .

F is G -invariant for G equal to the group of isometries of R2.
F is also non-expansive with respect to the sup-norm.
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Another example of operator

F is G -invariant for G equal to the group of translations of R.
F is also non-expansive with respect to the sup-norm.
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Another example of operator

F is G -invariant for G equal to the group of homeomorphisms of R.
F is also non-expansive with respect to the sup-norm.
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Choice of the operators

• The observer cannot usually choose the functions representing the
measurement data, but he/she can often choose the operators that
will be applied to those functions.

• The choice of the operators reflects the invariances that are
relevant for the observer.

• In some sense we could state that the observer can be represented
as a collection of (suitable) operators, endowed with the invariance
he/she has chosen.

In the first part of this talk we will mainly examine the case of
operators that act on a space Φ of continuous functions and take Φ
to itself. We will also assume that these operators preserve the
self-homeomorphisms of X .
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From comparing sets in Rn to comparing functions

Instead of directly focusing on the objects we are interested in, we
focus on the filtering functions describing the measurements we make
on them, and on the “glasses” that we use “to observe” the
functions. In our approach, these “glasses” are G -operators which act
on the filtering functions.
These operators represent the observer’s perspective.

In some sense, the family of operators defines the observer.
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Natural pseudo-distance associated with a group G

First of all we need a definition allowing us to formalize the
comparison of data in our model.

Definition

Let X be a compact space. Let G be a subgroup of the group
Homeo(X ) of all homeomorphisms f : X → X . The pseudo-distance
dG : C 0(X ,R)×C 0(X ,R)→ R defined by setting

dG (ϕ,ψ) = inf
g∈G

max
x∈X
|ϕ(x)−ψ(g(x))|

is called the natural pseudo-distance associated with the group G .

In plain words, the definition of dG is based on the attempt of finding
the best correspondence between the functions ϕ,ψ by means of
homeomorphisms in G .
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A possible objection

A possible objection: “The use of the group of homeomorphisms
makes the natural pseudo-distance dG difficult to apply. For example,
in shape comparison two objects are usually not homeomorphic, hence
this pseudo-metric cannot be applied to real problems.”

This objection can be faced by recalling that the homeomorphisms
do not concern the “objects” but the space where the
measurements are made. For example, if we take a grey level
image, our measurement space can be modelled as the real plane and
each image can be represented as a function from R2 to R. Therefore,
the space X is not given by the (possibly non-homeomorphic) objects
displayed in the picture, but by the topological space R2.
Analogously, each subset of the 3D space can be associated with a
probability density describing the probability that each point p ∈ R3

belongs to the considered object. In this case the space X is R3.
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G -invariant non-expansive operators

The natural pseudo-distance dG represents our ground truth.

Unfortunately, dG is difficult to compute. This is also a consequence
of the fact that we can easily find subgroups G of Homeo(X ) that
cannot be approximated with arbitrary precision by smaller finite
subgroups of G (i.e. G = group of rigid motions of X = R3).

Nevertheless, in this talk we will show that dG can be approximated
with arbitrary precision by means of a DUAL approach based on
persistent homology and G -invariant non-expansive operators.

This research is based on an ongoing joint research project with
Grzegorz Jab loński (IST - Austria)
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G -invariant non-expansive operators

Let us consider the following objects:

• A triangulable space X with nontrivial homology in degree k (e.g.,
for k = 0, X = the real plane).

• A set Φ of continuous functions from X to R, containing at least
the set of the constant functions taking every finite value c with
|c| ≤ supϕ∈Φ ‖ϕ‖∞ (e.g., Φ = set of grey level pictures, i.e.
functions from the real plane to [0,1]).

• A topological subgroup G of Homeo(X ) that acts on Φ by
composition on the right (e.g., G = group of rigid motions of R2).

• A subset F of the set F all(Φ,G ) of all non-expansive G -operators
from Φ to Φ.
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The operator space F all(Φ,G )

In plain words, F ∈F all(Φ,G ) means that

1. F : Φ→ Φ

2. F (ϕ ◦g) = F (ϕ)◦g . (F is a G -operator)

3. ‖F (ϕ1)−F (ϕ2)‖∞ ≤ ‖ϕ1−ϕ2‖∞. (F is non-expansive)

The operator F is not required to be linear.

The operators verifying properties 1, 2, 3 are called
G -invariant non-expansive operators (GINOs) for (Φ,G ).
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The operator space F all(Φ,G )

Some simple examples of F , taking Φ equal to the set of all
continuous functions ϕ : S1→ R and G equal to the group of all
rotations of S1:

• F (ϕ) := the constant function ψ : S1→ R taking the value maxϕ;

• F (ϕ) defined by setting F (ϕ)(x) := max
{

ϕ
(
x− π

8

)
,ϕ
(
x + π

8

)}
;

• F (ϕ) defined by setting F (ϕ)(x) := 1
2

(
ϕ
(
x− π

8

)
+ ϕ

(
x + π

8

))
.
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What is persistent homology?

If ϕ : X → R is a continuous functions, we can consider the sublevel
sets Xt := {x ∈ X : ϕ(x)≤ t}. When t varies we see the birth and
death of k-dimensional holes.
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What is persistent homology?

If ϕ : X → R is a continuous functions, we can consider the sublevel
sets Xt := {x ∈ X : ϕ(x)≤ t}. When t varies we see the birth and
death of k-dimensional holes.
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What is persistent homology?

In plain words, the persistence diagram in degree k of ϕ is the
collection of the pairs (bi ,di ) where bi and di are the times of birth
and death of the i-th hole of dimension k .

The points of the persistence diagram are endowed with multiplicity.
Each point of the diagonal u = v is assumed to be a point of the
persistence diagram, endowed with infinite multiplicity.
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What are persistent Betti number functions?

Persistence diagrams are not quite suitable for statistical purposes,
because no good definition of average of persistence diagrams exists.

Persistent Betti number functions are more suitable for statistics.

Definition

The k-th persistent Betti number βk(u,v) is the number of holes of
dimension k whose time of birth is greater than u and whose time of
death is smaller than v .

The average of persistent Betti number functions can be trivially
defined as the usual average of real-valued functions.
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What are persistent Betti number functions?

The use of averages of persistent Betti number functions in degree 0
firstly appeared in the papers

• Pietro Donatini, Patrizio Frosini, Alberto Lovato, Size functions for
signature recognition, Proceedings of SPIE, Vision Geometry VII,
vol. 3454 (1998), 178183.

• Massimo Ferri, Patrizio Frosini, Alberto Lovato, Chiara Zambelli,
Point selection: A new comparison scheme for size functions (With
an application to monogram recognition), Proceedings Third Asian
Conference on Computer Vision, Lecture Notes in Computer
Science 1351, vol. I, R. Chin, T. Pong (editors) Springer-Verlag,
Berlin Heidelberg (1998), 329337.
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What are persistent Betti number functions?

If we use Čech homology, persistence diagrams are equivalent to
persistent Betti number functions.
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Comparison of persistent Betti number functions

Persistence diagrams (and hence persistent Betti number functions)
can be compared by means of the bottleneck distance. The bottleneck
distance between two persistence diagrams D1, D2 is the minimum
cost of changing the points of D1 into the points of D2, where the
cost of moving each point is given by the max-norm distance in R2.
Moving a point to the diagonal is equivalent to delete it.
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The pseudo-metric DF
match

Choose a set F ⊆F all(Φ,G ). For every ϕ1,ϕ2 ∈ Φ we set

DF
match(ϕ1,ϕ2) := sup

F∈F
dmatch(βk(F (ϕ1)),βk(F (ϕ2)))

where βk(ψ) denotes the persistent Betti number function (i.e. the
rank invariant) of ψ in degree k , while dmatch denotes the usual
bottleneck distance that is used to compare the persistence diagrams
associated with βk(F (ϕ1)) and βk(F (ϕ2)).

Proposition

DF
match is a G-invariant and stable pseudo-metric on Φ.

The G -invariance of DF
match means that for every ϕ1,ϕ2 ∈Φ and every

g ∈ G the equality DF
match(ϕ1,ϕ2 ◦g) = DF

match(ϕ1,ϕ2) holds.
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An equivalence result

We observe that the pseudo-distance DF
match and the natural

pseudo-distance dG are defined in quite different ways.

In particular, the definition of DF
match is based on persistent homology,

while the natural pseudo-distance dG is based on the group of
homeomorphisms G .

In spite of this, the following statement holds:

Theorem

If F = F all(Φ,G ), then the pseudo-distance DF
match coincides with the

natural pseudo-distance dG on Φ.
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Our main idea

The previous theorem suggests to study DF
match instead of dG .

To this end, let us choose a finite subset F ∗ of F , and consider the
pseudo-metric

DF ∗
match(ϕ1,ϕ2) := max

F∈F ∗
dmatch(βk(F (ϕ1)),βk(F (ϕ2)))

for every ϕ1,ϕ2 ∈ Φ.

Obviously, DF ∗
match ≤ DF

match.

Furthermore, if F ∗ is dense enough in F , then the new
pseudo-distance DF ∗

match is close to DF
match.

In order to make this point clear, we need the next theoretical result.
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Compactness of F all(Φ,G )

The following result holds:

Theorem

If Φ is a compact metric space with respect to the sup-norm, then
F all(Φ,G ) is a compact metric space with respect to the distance d
defined by setting

d(F1,F2) := max
ϕ∈Φ
‖F1(ϕ)−F2(ϕ)‖∞

for every F1,F2 ∈F .
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Approximation of F all(Φ,G )

This statement follows:

Corollary

Assume that the metric space Φ is compact with respect to the
sup-norm. Let F be a subset of F all(Φ,G ). For every ε > 0, a finite
subset F ∗ of F exists, such that∣∣∣DF ∗

match(ϕ1,ϕ2)−DF
match(ϕ1,ϕ2)

∣∣∣≤ ε

for every ϕ1,ϕ2 ∈ Φ.

This corollary implies that the pseudo-distance DF
match can be

approximated computationally, at least in the compact case.
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Two references

• Patrizio Frosini, Grzegorz Jab loński, Combining persistent
homology and invariance groups for shape comparison, Discrete &
Computational Geometry, vol. 55 (2016), n. 2, pages 373-409.

• Patrizio Frosini, Towards an observer-oriented theory of shape
comparison, Proceedings of the 8th Eurographics Workshop on 3D
Object Retrieval, Lisbon, Portugal, May 7-8, 2016, A. Ferreira, A.
Giachetti, and D. Giorgi (Editors), 5-8.
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Recap

We have seen that dG (our ground truth about measurements)
can be approximated by means of the pseudo-distance DF ∗

match,
which is based on persistent homology and the concept of group
invariant non-expansive operator. This result is important for
applications in shape comparison and topological data analysis.

This fact naturally leads us to the need of studying the
topological space of group invariant non-expansive operators.
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An experiment concerning functions from R to R

We conclude this talk by illustrating another experiment, concerning
functions from R to R.
We have considered

1. a dataset of 10000 functions from S1 to R, depending on five
random parameters (#);

2. these three invariance groups:
◦ the group Homeo(S1) of all self-homeomorphisms of S1;
◦ the group R(S1) of all rotations of S1;
◦ the trivial group I(S1) = {id}, containing just the identity of S1.

Obviously,
Homeo(S1)⊃ R(S1)⊃ I(S1).

(#) For 1≤ i ≤ 10000 we have set ϕ̄i (x) = r1 sin(3x) + r2 cos(3x) + r3 sin(4x) + r4 cos(4x), with r1 , .., r4 randomly chosen
in the interval [−2,2]; the i-th function in our dataset is the function ϕi := ϕ̄i ◦ γi , where γi (x) := 2π( x

2π
)r5 and r5 is

randomly chosen in the interval [ 1
2 ,2].
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Let us check what happens in practice

The choice of Homeo(S1) as an invariance group implies that the
following two functions are considered equivalent. Their graphs are
obtained from each other by applying a horizontal stretching. Also
shifts are accepted as legitimate transformations.
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Let us check what happens in practice

The choice of R(S1) as an invariance group implies that the following
two functions are considered equivalent. Their graphs are obtained
from each other by applying a rotation of S1. Stretching is not
accepted as a legitimate transformation.

Finally, the choice of I(S1) = {id} as an invariance group means that
two functions are considered equivalent if and only if they coincide
everywhere.
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The results of an experiment: the group Homeo(S1)

What happens if we decide to assume

that the invariance group is the group Homeo(S1)

of all self-homeomorphisms of S1?
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The results of an experiment: the group Homeo(S1)

If we choose G = Homeo(S1), to proceed we need to choose a finite
set of non-expansive Homeo(S1)-operators. In our experiment we
have considered these three non-expansive Homeo(S1)-operators:

• F0 := id (i.e., F0(ϕ) := ϕ);

• F1 :=−id (i.e., F0(ϕ) :=−ϕ);

• F2(ϕ) := the constant function ψ : S1→ R taking the value
1
5 · sup{−ϕ(x1) + ϕ(x2)− 1

2 ϕ(x3) + 1
2 ϕ(x4)−ϕ(x5) + ϕ(x6)},

(x1, . . . ,x6) varying among all the counterclockwise 6-tuples on S1.

This choice produces the Homeo(S1)-invariant pseudo-distance

DF ∗
match(ϕ1,ϕ2) := max

0≤i≤2
dmatch(βk(Fi (ϕ1)),βk(Fi (ϕ2))).
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An important remark

It is important to use several operators. The use of just one operator
still produces a pseudo-distance DF ∗

match that is invariant under the
action of the group G , but this choice is far from guaranteeing a good
approximation of the natural pseudo-distance dG .

As an example in the case G = Homeo(S1), if we use just the identity
operator (i.e., we just apply classical persistent homology), we cannot
distinguish these two functions ϕ1,ϕ2 : S1→ R, despite the fact that
they are different for dG :
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The results of an experiment: the group Homeo(S1)

Here is a query (in blue), and the first four retrieved functions (in
black):
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The results of an experiment: the group Homeo(S1)

Let’s have a closer look at the query and at the first retrieved
function:
Here is the query:
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The results of an experiment: the group Homeo(S1)

Here is the first retrieved function with respect to DF ∗
match:
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The results of an experiment: the group Homeo(S1)

Here is the query function after aligning it to the first retrieved
function by means of a shift (in red).
The first retrieved function is represented in black.
The figure shows that the retrieved function is approximately
equivalent to the query function, by applying a shift and a stretching.
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The results of an experiment: the group Homeo(S1)

Here is the query function after aligning it to the first four retrieved
functions by means of a shift (in red).
The first four retrieved functions are represented in black.
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The results of an experiment: the group R(S1)

What happens if we decide to assume

that the invariance group is the group R(S1)

of all rotations of S1?
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The results of an experiment: the group R(S1)

If we choose G = R(S1), in order to proceed we need to choose a
finite set of non-expansive R(S1)-operators. Obviously, since F0, F1

and F2 are Homeo(S1)-invariant, they are also R(S1)-invariant. In our
experiment we have added these five non-expansive R(S1)-operators
(which are not Homeo(S1)-invariant) to F0, F1 and F2:
• F3(ϕ)(x) := max{ϕ(x),ϕ(x + π)}
• F4(ϕ)(x) := 1

2 ·
(
ϕ(x) + ϕ(x + π

4 )
)

• F5(ϕ)(x) := max{ϕ(x),ϕ(x + π/10),ϕ(x + 2π

10 ),ϕ(x + 3π

10 )}
• F6(ϕ)(x) := 1

3 ·
(
ϕ(x) + ϕ(x + π

3 ) + ϕ(x + π

4 )
)

• F7(ϕ)(x) := 1
3 ·
(
ϕ(x) + ϕ(x + π

3 ) + ϕ(x + 2π

3 )
)

This choice produces the R(S1)-invariant pseudo-distance

DF ∗
match(ϕ1,ϕ2) := max

0≤i≤7
dmatch(βk(Fi (ϕ1)),βk(Fi (ϕ2))).
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The results of an experiment: the group R(S1)

Here is a query (in blue), and the first four retrieved functions (in
black):
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The results of an experiment: the group R(S1)

Let’s have a closer look at the query and at the first retrieved
function:
Here is the query:
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The results of an experiment: the group R(S1)

Here is the first retrieved function with respect to DF ∗
match:
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The results of an experiment: the group R(S1)

Here is the query function after aligning it to the first retrieved
function by means of a shift (in red).
The first retrieved function is represented in black.
The figure shows that the retrieved function is approximately
equivalent to the query function, via a shift.
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The results of an experiment: the group R(S1)

Here is the query function after aligning it to the first four retrieved
functions by means of a shift (in red).
The first four retrieved functions are represented in black.
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The results of an experiment: the group I(S1)

Finally, what happens if we decide to assume

that the invariance group is the group I(S1) = {id}

containing only the identity of S1?

This means that the “perfect” retrieved function

should coincide with our query.
Remark: This is exactly the case where we should

not use our dual approach! (Just compute
dI(S1)(ϕ1,ϕ2) = ‖ϕ1−ϕ2‖∞ directly!)
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The results of an experiment: the group I(S1)

If we choose G = I(S1) = {id}, in order to proceed we need to choose
a finite set of non-expansive operators (obviously, every operator is an
I(S1)-operator).
In our experiment we have considered these three non-expansive
operators (which are not R(S1)-operators):
• F8(ϕ)(x) := sin(x)ϕ(x)

• F9(ϕ)(x) :=
√

2
2 sin(x)ϕ(x) +

√
2

2 cos(x)ϕ(x + π

2 )
• F10(ϕ)(x) := sin(2x)ϕ(x)

We have added F8, F9, F10 to F1, . . . ,F7.

This choice produces the pseudo-distance

DF ∗
match(ϕ1,ϕ2) := max

0≤i≤10
dmatch(βk(Fi (ϕ1)),βk(Fi (ϕ2))).
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The results of an experiment: the group I(S1)

Here is a query (in blue), and the first four retrieved functions (in
black):
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The results of an experiment: the group I(S1)

Let’s have a closer look at the query and at the first retrieved
function:
Here is the query:
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The results of an experiment: the group I(S1)

Here is the first retrieved function with respect to DF
match:
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The results of an experiment: the group I(S1)

The first retrieved function is represented in black.
As expected, no aligning shift is necessary here.
The figure shows that the retrieved function is approximately equal to
the query function.
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The results of an experiment: the group I(S1)

Here we show again the query function and the first four retrieved
functions (in black).
The figure shows that the retrieved functions are approximately
coinciding with the query function.
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GIPHOD

Joint project with Grzegorz Jab loński (IST - Austria) and Marc Ethier
(Université de Saint-Boniface - Canada)
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GIPHOD (Group Invariant Persistent Homology
On-line Demonstrator)

GIPHOD is an on-line demonstrator, allowing the user to choose an
image and an invariance group. GIPHOD searches for the most similar
images in the dataset, with respect to the chosen invariance group.
Purpose: to show the use of our theoretical approach for image
comparison.
Dataset: 10.000 quite simple grey level synthetic images obtained by
adding randomly chosen bell-shaped functions. The images are coded
as functions from R2 to [0,1].

GIPHOD can be tested at http://giphod.ii.uj.edu.pl/index2.
All suggestions are greatly appreciated and welcomed (please send
them to grzegorz.jablonski@uj.edu.pl)
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GIPHOD (Group Invariant Persistent Homology
On-line Demonstrator)

We will now show some results obtained by GIPHOD when the
invariance group G is the group of isometries:
Some data about the pseudo-metric DF

match in this case:

• The images are coded as functions from R2→ [0,1];

• Mean distance between images: 0.2984;

• Standard deviation of distance between images: 0.1377;

• Number of GINOs that have been used: 5.
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GIPHOD (Group Invariant Persistent Homology
On-line Demonstrator)

List of GINOs that have been used in the following image
retrievals, where the invariance group G is the group of
isometries:

• F (ϕ) = ϕ.

• F (ϕ) := constant function taking each point to the value∫
R2 ϕ(x) dx .

• F (ϕ) defined by setting

F (ϕ)(x) :=
∫
R2

ϕ(x−y) ·β (‖y‖2) dy

where β : R→ R is an integrable function with∫
R2 |β (‖y‖2)| dy ≤ 1. Three GINOs of this kind have been used.
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GIPHOD: Examples for the group of isometries
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GIPHOD: Examples for the group of isometries
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GIPHOD: Examples for the group of isometries

72 of 76



Our basic questions

Assumptions in our model

Mathematical setting and theoretical results

An experiment concerning functions from R to R

A first step towards the application of our model: GIPHOD

Some work in progress

73 of 76



Some work in progress

Some work is in progress, concerning these three lines of research:

• Change of the topologies used on X and G .

• Extension of our approach to operators taking the space Φ (where
a group G acts) to a different space of functions Ψ (where another
group H acts). These operators also act on the group G , changing
each g ∈ G into an h ∈ H.

• Study of the metric space of GINOs both in the case
(Φ,G ) = (Ψ,H) and in the case (Φ,G ) 6= (Ψ,H).

(Joint work with Nicola Quercioli - University of Bologna)

I will speak about this subject in my next talk.
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Conclusions

In this talk we have supported these statements:

• Data comparison is based on acts of measurement made by an
observer. The acts of measurement can be represented as a
function defined on a topological space X . The observer can be
seen as a collection of G -invariant non-expansive operators, applied
to the functions describing the data.

• These functions can be compared by means of the natural
pseudo-distance associated with any subgroup G of Homeo(X ).

• Persistent homology can be used to approximate the natural
pseudo-metric dG . This can be done by means of a method that is
based on G -invariant non-expansive operators. This method is
stable with respect to noise.
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