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Abstract

In content-based image retrieval a major problem is the presence of noisy shapes. Noise
can present itself not only in the form of continuous deformations, but also as topological
changes. It is well known that persistent Betti numbers are a shape descriptor that admits
dissimilarity distances stable under continuous shape deformations. In this paper we focus
on the problem of dealing with noise that alters the topology of the studied objects. We
present a general method to turn persistent Betti numbers into stable descriptors also in
the presence of topological changes. Retrieval tests on the Kimia-99 database show the
effectiveness of the method.
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1. Introduction1

Persistence is a theory for studying ob-2

jects related to computer vision and com-3

puter graphics, by adopting different func-4

tions (e.g., distance from the center of5

mass, distance from the medial axis, height,6

geodesic distance, color mapping) to mea-7

sure the shape properties of the object8

under study (e.g., roundness, elongation,9

bumpiness, color). The object, consid-10

ered as a topological space, is explored11

through the sequence of nested sub-level12
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sets of the considered measuring function.13

A shape descriptor, called a persistent ho-14

mology group, can be constructed by en-15

coding at which scale a topological feature16

(e.g., a connected component, a tunnel, a17

void) is created, and when it is annihilated18

along this filtration. For application pur-19

poses, these groups are further encoded by20

considering only their dimension, yielding21

a parametrized version of Betti numbers,22

known in the literature as persistent Betti23

numbers [1], a rank invariant [2], and, for24

the 0th homology, a size function [3].25

In the literature, a large number of meth-26

ods for shape matching has been proposed,27

such has the shape-context [4], the shock28
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graph [5], and the inner distance [6], to29

name a few. Persistent Betti numbers are30

shape descriptors belonging to the class31

of shape-from-functions methods which are32

widely reviewed in [7].33

The stability of persistent Betti numbers34

(hereafter, PBNs, for brevity) is quite an35

important issue, every data measurement36

being affected by noise. The stability prob-37

lem involves both stability under perturba-38

tions of the topological space that repre-39

sents the object, and stability under per-40

turbations of the function that measures the41

shape properties of the object.42

The problem of stability with respect to43

perturbations of the measuring function has44

been studied in [8] for scalar-valued mea-45

suring functions. For vector-valued measur-46

ing functions, the multidimensional match-47

ing distance between PBNs is introduced in48

[9], and is shown to provide stability in [10].49

For the case of 0th homology, this problem50

is treated in [11] and [12] for scalar- and51

vector-valued functions, respectively.52

In this paper we consider the problem of53

stability of PBNs with respect to changes54

of the topological space. This topic has55

been studied in [13] for sub-level sets of56

smooth functions satisfying certain condi-57

tions on the norm of the gradient. Unfortu-58

nately these conditions seem not to be satis-59

fied in a wide variety of situations common60

in object recognition, such as point cloud61

data, curves in the plane, domains affected62

by salt & pepper noise.63

We propose a general approach to the64

problem of stability of PBNs with respect65

to domain perturbations that applies to66

more general domains, i.e. compact sub-67

sets of R
n. Moreover, according to the68

type of noise affecting the data, we pro-69

pose to choose an appropriate set distance70

to measure the domain perturbation (for71

example, the Hausdorff distance in case of72

small position errors, the symmetric differ-73

ence pseudo-distance in the presence of out-74

liers). The core of our approach is to choose75

an appropriate continuous function to rep-76

resent the domain, so that the problem of77

stability for noisy domains with respect to78

a given set distance can be reduced to that79

of stability with respect to changes of the80

functions. This is achieved by substituting81

the domain K with an appropriate function82

fK defined on a fixed set X containing K.83

Assuming we were interested in the shape84

of K, as seen through the restriction to K85

of a measuring function ~ϕ : X → R
k, we86

actually study the function ~Φ : X → R
k+1,87

with ~Φ = (fK , ~ϕ). Persistent Betti num-88

bers of ~Φ can be compared using the mul-89

tidimensional matching distance, thus ob-90

taining robustness of PBNs under domain91

perturbations.92

In particular, we use this strategy when93

sets are compared by the Hausdorff distance94

and by the symmetric difference pseudo-95

distance. In both these cases we show sta-96

bility results (Theorems 4.1 and 4.3). More-97

over we show the relation existing between98

the shape of K as described by ~ϕ|K and99

the shape described by ~Φ = (fK , ~ϕ) (Theo-100

rem 4.2).101

We also consider the situation where sets102

are described in a fuzzy sense, by means103

of probability density functions, easily ob-104

taining a stability result also in this case105

(Proposition 4.4).106

Finally, we conclude our paper present-107

ing some experiments in which our method108

is tested on the Kimia-99 database [14], us-109

ing as query shapes noisy versions of the110

original shapes.111
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2. Preliminaries112

2.1. Multidimensional persistent Betti113

numbers114

Persistence may be used to construct115

shape descriptors that capture both geo-116

metrical and topological properties of ob-117

jects K ⊂ R
n. Geometrical properties of118

K are studied through the choice of a func-119

tion ~ϕ = (ϕi) : K → R
k, each component120

ϕi describing a shape property. The func-121

tion ~ϕ is called a k-dimensional measuring122

(or filtering) function. Topological prop-123

erties of K as seen through ~ϕ are studied124

by considering sub-level sets K〈~ϕ � ~u 〉 =125

{x ∈ K : ϕi(x) ≤ ui, i = 1, . . . , k}. For126

~u = (ui), ~v = (vi) ∈ R
k with ui ≤ vi for127

every index i (briefly, ~u � ~v), the sub-level128

set K〈~ϕ � ~u 〉 is contained in the sub-level129

set K〈~ϕ � ~v 〉. A classical transform of al-130

gebraic topology, called homology, provides131

topological invariants. Working with ho-132

mology coefficients in a field, it transforms133

topological spaces into vector spaces, and134

continuous maps (e.g., inclusions) into lin-135

ear maps. This leads to the following defini-136

tion, where the symbol ~u ≺ ~v means ui < vi137

for i = 1, . . . , k.138

Definition 2.1. Let q ∈ Z. Let π
(~u,~v)
q :139

Ȟq(K〈~ϕ � ~u〉)→ Ȟq(K〈~ϕ � ~v〉) be the ho-140

momorphism induced by the inclusion map141

π(~u,~v) : K〈~ϕ � ~u〉 →֒ K〈~ϕ � ~v〉 with142

~u � ~v, where Ȟq denotes the qth Čech143

homology group. The qth persistent Betti144

number function of ~ϕ is the function β~ϕ :145

{(~u,~v) ∈ R
k × R

k : ~u ≺ ~v} → N ∪ {∞}146

defined as β~ϕ(~u,~v) = dim im π
(~u,~v)
q .147

The motivation for using Čech homology148

is that, unlike ordinary homology theories,149

it has the continuity axiom (cf. [15, Ch.150

X]). This will be important when we want151

to obtain information on homology groups152

by passing to the limit as in Theorem 4.2.153

If K is a triangulable space embedded in154

some R
n, then β~ϕ(~u,~v) < +∞, for every155

~u ≺ ~v and every q ∈ Z [16]. We point out156

that, in our setting, the finiteness of PBNs157

would not be guaranteed if they were de-158

fined on the set {(~u,~v) ∈ R
k × R

k : ~u � ~v}159

instead of ∆+ = {(~u,~v) ∈ R
k×R

k : ~u ≺ ~v}.160

This motivates our choice of working only161

on ∆+.162

We refer to PBNs of functions taking163

values in R
k with k > 1 as to multidi-164

mensional PBNs, whereas PBNs of func-165

tions taking values in R are called one-166

dimensional PBNs. However, we simply use167

the term PBNs when it does not generate168

ambiguities.169

The use of multidimensional PBNs in-170

stead of one-dimensional ones is crucial for171

the method presented here because adding172

the function fK to the measuring functions173

makes the dimensionality increase from k to174

k + 1, that is always greater than 1.175

2.2. Comparison of sets176

The problems of description and compar-177

ison of sets can be dealt with in a myriad of178

different ways, each one more or less suit-179

able than another for a given application180

task.181

In classical set theory, the membership of182

elements in a set is assessed in binary terms183

according to a bivalent condition – an ele-184

ment either belongs or does not belong to185

the set. By contrast, in fuzzy set theory186

[17, 18], a fuzzy set A in X is characterized187

by a membership function fA : X → [0, 1],188

with the value fA(x) representing the grade189

of membership of x in A. Usually, the190

nearer the value of fA(x) to 1, the higher the191

grade of membership of x in A. The fuzzy192

set theory can be used in a wide range of193
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domains in which information is incomplete194

or imprecise.195

If classical set theory is adopted, then a
number of different dissimilarity measures
exist to compare two sets [19, 20]. A fre-
quently used dissimilarity measure is the
Hausdorff distance, which is defined for ar-
bitrary non-empty compact subsets K1, K2

of Rn. Let us assume that K1, K2 are con-
tained in a compact subset X of Rn, and,
for a compact subset K of X, let us de-
note by dK the distance to K, that is the
function dK : X → R defined by dK(x) =
miny∈K ‖x− y‖, ‖ · ‖ being any norm on R

n

(e.g., the Euclidean norm). The Hausdorff
distance can be defined by

δH(K1, K2) = max{max
x∈K2

dK1(x),max
y∈K1

dK2(y)}.

This can be reformulated as follows (cf. [21,196

Ch. 4, Sect. 2.2]):197

δH(K1, K2) = max
x∈X
|dK1(x)− dK2(x)|

= ‖dK1 − dK2‖∞. (1)

The Hausdorff distance is robust against198

small deformations, but it is sensitive to199

outliers: a single far-away noise point dras-200

tically increases the Hausdorff distance. For201

example, with respect to the Hausdorff dis-202

tance, the sets in Figure 1(a), (b), and (c)203

are similar to each other, whereas they are204

very dissimilar from the set in Figure 1 (d).205

A dissimilarity measure that is based on206

the volume of the symmetric difference,207

such as the symmetric difference pseudo-208

metric, overcomes the problem of outliers.209

Denoting by µ the Lebesgue measure on R
n,210

the symmetric difference pseudo-metric d△211

is defined between two measurable sets A,B212

with finite measure by d△(A,B) = µ(A△B)213

where A△B = (A∪B)\ (A∩B) is the sym-214

metric difference of A and B. It holds that215

d△(A,B) = 0 if and only if A and B are216

equal almost everywhere. Identifying two217

sets A and B if µ(A△B) = 0, we obtain the218

symmetric difference metric.219

Other dissimilarity measures are, for ex-220

ample, the bottleneck distance between fi-221

nite point sets of the same cardinality, and222

the Lp-Hausdorff distance. However, since223

many other distances could be considered,224

we will limit our research to consider stabil-225

ity with respect to the Hausdorff and sym-226

metric difference distances.227

When fuzzy sets are used, their dissimi-228

larity can be measured by any distance be-229

tween functions. In this case we will confine230

ourselves to consider the max-norm distance231

between fuzzy sets.232

3. Working assumptions233

We will model objects under study as sub-234

sets K of some compact domain X ⊆ R
n.235

Shape properties of the objects under study236

will be described by vector-valued functions237

~ϕ : X → R
k, with the measuring function ~ϕ238

defined on the entire ambient space X be-239

cause the domain K will vary.240

We think that this setting, which is used241

also in [13], is not very restrictive. Although242

apparently it prevents one from using filter-243

ing functions intrinsic of the domainsK and244

K ′, and very common in applications (e.g.,245

the distance from the center of mass, or the246

geodesic distance from a point), from a the-247

oretical point of view this is not the case.248

Indeed, the well known Tietze’s extension249

theorem states that if X is normal, K is a250

closed subset of X, and f : K → R is a con-251

tinuous function, then there is a continuous252

function F : X → R such that F|K = f [22].253

Noise on the measuring function ~ϕ will254

always be quantified using the max-norm,255

4



(a) (b) (c) (d)

Figure 1: Four binary images of an octopus. (b), (c), and (d) are noisy versions of (a).

as is standard (cf. [8, 12]):
∥

∥

∥
~ϕ− ~ψ

∥

∥

∥

∞
=256

maxx∈X max1≤i≤k |ϕi(x)− ψi(x)|.257

On the other hand, since there is no stan-258

dard way to measure the noise on the do-259

main K, we confine our study to a selection260

of possible distances (the Hausdorff distance261

and the symmetric difference distance for262

classical sets, and the max-norm distance263

for fuzzy sets), indicating how our results264

can be adapted in other situations.265

In order to measure perturbations on266

PBNs, we assume we are given a distance267

D on {β~ϕ | ~ϕ : X → R
k continuous} having268

the following property:269

(S) D(β~ϕ, β~ψ) ≤
∥

∥

∥
~ϕ− ~ψ

∥

∥

∥

∞
.270

Property (S) will be called the Stability271

Property. Distances with this property ex-272

ist: the multidimensional matching distance273

Dmatch introduced in [9] and proven to have274

Property (S) in [10] (see also [12] for the275

case q = 0), and the one induced by the in-276

terleaving distance presented in [23]. The277

reader can refer to Appendix B for details278

on Dmatch.279

4. Stability of PBNs with respect to280

noisy domains281

Our method to achieve stability of PBNs282

with respect to changes of the topologi-283

cal space K, even under perturbations that284

change its topology, is to consider K em-285

bedded in a larger space X in which K and286

its noisy version are similar with respect to287

some metric.288

Next we substitute the set K with an ap-289

propriate function fK defined on X, so that290

the perturbation of the set K becomes a291

perturbation of the function fK . As a con-292

sequence, instead of studying the shape of293

K as seen through a measuring function294

~ϕ|K : K → R
k, we study a new measuring295

function ~Φ : X → R
k+1, with ~Φ = (fK , ~ϕ).296

PBNs of ~Φ can be compared using the dis-297

tance D in a stable way, as a consequence298

of the Stability Property (S) for measuring299

function perturbations. The key issue here300

is that we can prove that the PBNs of ~Φ are301

still descriptors of the shape of K.302

4.1. Stability with respect to Hausdorff dis-303

tance304

In order to achieve stability under set per-305

turbations that are measured by the Haus-306

dorff distance, we can take the function fK307

equal to the distance from K as the follow-308

ing result shows. In some sense this smooths309

spaces by a uniform thickening. A related310

method to do this in the applied algebraic311

topology literature is through the Rips fil-312

tration.313

Theorem 4.1. Let K1, K2 be non-empty

closed subsets of a triangulable subspace X
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of Rn. Let dK1 , dK2 : X → R be their re-

spective distance functions. Moreover, let

~ϕ1, ~ϕ2 : X → R
k be vector-valued continu-

ous functions. Then, defining ~Φ1, ~Φ2 : X →
R
k+1 by ~Φ1 = (dK1 , ~ϕ1) and ~Φ2 = (dK2 , ~ϕ2),

the following inequality holds:

D
(

β~Φ1
,β~Φ2

)

≤max{δH(K1,K2),‖~ϕ1−~ϕ2‖∞}.

Proof. The Stability Property (S) implies

that D
(

β~Φ1
, β~Φ2

)

≤ ‖~Φ1 − ~Φ2‖∞. It follows
that

D
(

β~Φ1
,β~Φ2

)

≤max{‖dK1
−dK2

‖∞,‖~ϕ1−~ϕ2‖∞}.

Hence, by equality (1), the claim is proved.314

315

In plain words, Theorem 4.1 states that316

small changes in the domain and in the317

measuring function imply small changes in318

the PBNs, i.e. in the shape descriptors.319

Clearly, the inequality of Theorem 4.1 tends320

to the classic bottleneck stability inequality321

[8] when K1 tends to K2 with respect to the322

Hausdorff distance.323

An example illustrating Theorem 4.1 is324

shown in Figure 2. Figure 2(a), (b), and325

(c) show the 0th PBNs of the sets of black326

pixels K1, K2, K3 of Figure 1(a), (b), and327

(c), respectively, with the measuring func-328

tion equal to minus the distance from the329

center of mass of K1. The PBNs βϕ|K1
dis-330

plays eight relevant points in the persistence331

diagram, corresponding to the eight tenta-332

cles of the octopus. Only one of these points333

is at infinity (and therefore depicted by a334

vertical line rather than by a circle) since335

K1 has only one connected component. As336

for βϕ|K2
, due to the presence of a great337

quantity of connected components in the338

noisy octopus, its PBNs display a very large339

number of points at infinity, and a figure340

showing them all would be hardly readable.341

For this reason we show only a small subset342

of its persistence diagram. Finally, βϕ|K3
,343

due to the presence of 11 connected com-344

ponents in Figure 1(c), shows 11 points at345

infinity. Figure 2 (a’), (b’), and (c’) show a346

2-dimensional slice of the 0th PBNs β(dKi ,ϕ),347

i = 1, 2, 3 (more details on how multidimen-348

sional PBNs can be studied by slicing their349

domain can be found in Appendix A). It is350

easily perceivable how similar Figure 2(a’),351

(b’), and (c’) are to each other, especially352

in contrast to the dissimilarity between (a),353

(b), and (c).354

355

The key point of our approach is that the356

PBNs of ~Φ still provide a shape descriptor357

for K as seen through ~ϕ|K . This fact is358

shown by the next result.359

Theorem 4.2. Let K be a non-empty tri-

angulable subset of a triangulable subspace

X of R
n. Moreover, let ~ϕ : X → R

k be

a continuous function. Setting ~Φ : X →
R
k+1, ~Φ = (dK , ~ϕ), for every ~u,~v ∈ R

k with

~u ≺ ~v, there exists a real number η̂ > 0
such that, for any η ∈ R with 0 < η ≤ η̂,

there exists a real number ε̂ = ε̂(η), with
0 < ε̂ < η, for which

β~ϕ|K
(~u,~v) = β~Φ ((ε, ~u), (η,~v)) ,

for every ε ∈ R with 0 ≤ ε ≤ ε̂. In particu-360

lar,361

β~ϕ|K
(~u,~v) = lim

η→0+
β~Φ ((0, ~u), (η,~v)) .

362

Proof. For every ~u ∈ R
k, we have363

K〈~ϕ|K � ~u〉 = {x ∈ K : ~ϕ(x) � ~u}

= {x ∈ X : dK(x) ≤ 0}

∩{x ∈ X : ~ϕ(x) � ~u}

= {x ∈ X : ~Φ(x) � (0, ~u)}

= X〈~Φ � (0, ~u)〉.
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Figure 2: (a-c): The 0th PBNs βϕ|Ki

, i = 1, 2, 3, with K1 the original octopus image, and K2,K3 two noisy
versions, with respect to the same measuring function ϕ. (a’-c’): The 0th PBNs β(dKi

,ϕ), with Ki and ϕ as
before (slice).

Hence, for every q ∈ Z, denoting by
π
(ε,~u),(η,~v)
q the homology homomorphism in-

duced by the inclusion X〈~Φ � (ε, ~u)〉 →

X〈~Φ � (η,~v)〉, with (ε, ~u) � (η,~v), it holds
that

β~ϕ|K
(~u,~v) = dim im π(0,~u),(0,~v)

q .

We claim that there exists a positive real
number η̂ such that

im π(0,~u),(0,~v)
q

∼= im π(0,~u),(η,~v)
q

for every η with 0 < η ≤ η̂ (the claim is triv-364

ial for η = 0). In particular, this fact proves365

that β~ϕ|K
(~u,~v) = limη→0+ β~Φ ((0, ~u), (η,~v)) .366

In order to prove this claim, we con-367

sider the inverse system of homomorphisms368

π
(0,~u),(η,~v)
q : Ȟq(X〈~Φ � (0, ~u〉)→ Ȟq(X〈~Φ �369

(η,~v〉) over the directed set {η ∈ R : η > 0}370

decreasingly ordered. The following isomor-371

phisms hold:372

im π(0,~u),(0,~v)
q

∼= im lim
←−

π(0,~u),(η,~v)
q

∼= lim
←−

im π(0,~u),(η,~v)
q .

Indeed, im π
(0,~u),(0,~v)
q

∼= im lim
←−

π
(0,~u),(η,~v)
q373

by the continuity of Čech homology, and374

im lim
←−

π
(0,~u),(η,~v)
q

∼= lim
←−

im π
(0,~u),(η,~v)
q because375

the inverse limit of vector spaces is an exact376

functor and therefore it preserves epimor-377

phisms, and hence images.378

It remains to prove that there exists a379

positive real number η̂ such that, for every380

0 < η ≤ η̂, im π
(0,~u),(η,~v)
q is isomorphic to381

lim
←−

im π
(0,~u),(η,~v)
q . To this end, let us con-382

sider the following commutative diagram,383

with 0 < η′ ≤ η′′:384
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Ȟq(X〈~Φ�(0,~u)〉)
id

//

π
(0,~u),(η′,~v)
q

��

Ȟq(X〈~Φ�(0,~u)〉)

π
(0,~u),(η′′,~v)
q

��

Ȟq(X〈~Φ�(η′,~v)〉)
π
(η′,~v),(η′′,~v)
q

// Ȟq(X〈~Φ�(η′′,~v)〉).

(2)

From the above diagram (2), we see that385

each π
(η′,~v),(η′′,~v)
q induces a map τ

(η′,η′′)
q :386

im π
(0,~u),(η′,~v)
q → im π

(0,~u),(η′′,~v)
q . From dia-387

gram (2) we see that these maps are surjec-388

tive. On the other hand, by the finiteness of389

the dimension of im π
(0,~u),(0,~v)
q and the mono-390

tonicity of PBNs, there exists η̂ > 0 such391

that the dimension of π
(0,~u),(η′,~v)
q is finite and392

equal to the dimension of π
(0,~u),(η′′,~v)
q , when-393

ever 0 < η′ ≤ η′′ ≤ η̂. Hence the maps394

τ
(η′,η′′)
q are surjections between vector spaces395

of the same finite dimension, i.e. isomor-396

phisms for every 0 < η′ ≤ η′′ ≤ η̂. Thus,397

lim
←−

im π
(0,~u),(η,~v)
q is the inverse limit of a sys-398

tem of finite dimensional vector spaces iso-399

morphic to im π
(0,~u),(η̂,~v)
q , proving the claim.400

We now claim that for every strictly pos-
itive real number η, there exists a strictly
positive real number ε̂ < η such that

im π(0,~u),(η,~v)
q

∼= im π(ε,~u),(η,~v)
q

for every ε with 0 ≤ ε ≤ ε̂.401

This claim can be proved in much the402

same way as the previous one. We con-403

sider the inverse system of homomorphisms404

π
(ε,~u),(η,~v)
q : Ȟq(X〈~Φ � (ε, ~u〉) → Ȟq(X〈~Φ �405

(η,~v〉) over the directed set {ε ∈ R : 0 ≤406

ε < η} decreasingly ordered. The following407

isomorphisms follow again from the conti-408

nuity of Čech homology and the exacteness409

of the inverse limit functor for vector spaces:410

im π(0,~u),(η,~v)
q

∼= im lim
←−

π(ε,~u),(η,~v)
q

∼= lim
←−

im π(ε,~u),(η,~v)
q .

To prove that there exists a strictly pos-411

itive real number ε̂ such that, for every412

0 ≤ ε ≤ ε̂, im π
(ε,~u),(η,~v)
q is isomorphic to413

lim
←−

im π
(ε,~u),(η,~v)
q , let us consider the follow-414

ing commutative diagram, with 0 ≤ ε′ ≤ ε′′:415

Ȟq(X〈~Φ�(ε′,~u)〉)
π
(ε′,~u),(ε′′,~u)
q

//

π
(ε′,~u),(η,~v)
q

��

Ȟq(X〈~Φ�(ε′′,~u)〉)

π
(ε′′,~u),(η,~v)
q

��

Ȟq(X〈~Φ�(η,~v)〉)
id

// Ȟq(X〈~Φ�(η,~v)〉).

(3)

From the above diagram (3), we see that416

each π
(ε′,~u),(ε′′,~u)
q induces a map σ

(ε′,ε′′)
q :417

im π
(ε′,~u),(η,~v)
q → im π

(ε′′,~u),(η,~v)
q . From dia-418

gram (3) we see that these maps are injec-419

tive. On the other hand, by the finiteness420

of the dimension of im π
(ε,~u),(η,~v)
q , for any ε421

with 0 < ε < η, and the monotonicity of422

PBNs, there exists ε̂, with 0 < ε̂ < η, such423

that the dimension of π
(ε′,~u),(η,~v)
q is finite424

and equal to the dimension of π
(ε′′,~u),(η,~v)
q ,425

whenever 0 ≤ ε′ ≤ ε′′ ≤ ε̂. Hence the426

maps σ
(ε′,ε′′)
q are injections between vector427

spaces of the same finite dimension, i.e. iso-428

morphisms for every 0 ≤ ε′ ≤ ε′′ ≤ ε̂.429

Thus, lim
←−

im π
(ε,~u),(η,~v)
q is the inverse limit430

of a system of finite dimensional vector431

spaces isomorphic to im π
(ε̂,~u),(η̂,~v)
q , proving432

the claim.433

In other words, Theorem 4.2 ensures that434

we can recover the PBNs of ~ϕ|K , i.e. a de-435

scription of the shape of K as seen by ~ϕ,436

from the PBNs of ~Φ, simply by passing to437

the limit.438

To illustrate this result we have consid-439

ered again the octopus in Figure 1(a), to-440

gether with the measuring function ϕ :441

X → R equal to minus the distance from442

the center of mass of the set of black443

pixels K1. Here X is the bounding box444

8



Table 1: The values taken by the 0th PBNs
β(dK1

,ϕ) of the octopus image of Figure 1(a) at
((ε,−100), (η,−80)), as ε and η tend to 0, tend to
the value βϕ|K1

(−100,−80) = 8.

ε η β(dK1
,ϕ) ((ε,−100), (η,−80))

0.5 24 1
0.5 8 3
0.5 1 8
0.5 0.65 8
0.3 0.45 8
0.1 0.25 8

of the image, thus containing black and445

white pixels. We compared the value446

taken by the 0th PBNs βϕ|K1
at the point447

(u, v) = (−100,−80), that is 8, with the448

value obtainable from β(dK1
,ϕ) by passing449

to the limit as in Theorem 4.2. Com-450

putations show that βϕ|K1
(−100,−80) =451

β(dK1
,ϕ) ((ε,−100), (η,−80)) = 8 for small452

but positive values of ε and η. The PBNs453

β(dK1
,ϕ) ((ε,−100), (η,−80)) for the choices454

of ε and η considered in Table 1 are dis-455

played in Figure 3 via a restriction to an456

appropriate slice of ∆+.457

4.2. Stability with respect to the symmetric458

difference pseudo-distance459

In order to achieve stability under set per-
turbations that are measured by the sym-
metric difference pseudo-distance, we can
take the function fK to be the convolution
of the characteristic function of K with that
of a ball. More precisely, let λǫK : Rn → R,
with ǫ ∈ R, ǫ > 0, be defined as

λǫK(x) = µ(Bǫ)
−1 ·

∫

y∈Bǫ(x)

χK(y) dy

where Bǫ(x) denotes the n-ball centered at460

x with radius ǫ, Bǫ = Bǫ(0), and χK de-461

notes the characteristic function of K. In462

other words, in this case, we smooth sets by463

convolving with the characteristic function464

of a ball.465

In this case we have the following stability466

result.467

Theorem 4.3. Let K1, K2 be non-empty468

closed subsets of a triangulable subspace X469

of Rn. Moreover, let ~ϕ1, ~ϕ2 : X → R
k be470

vector-valued continuous functions. Then,471

defining ~Ψǫ
1,
~Ψǫ

2 : X → R
k+1 by ~Ψǫ

1 =472

(−λǫK1
, ~ϕ1) and ~Ψǫ

2 = (−λǫK2
, ~ϕ2), the fol-473

lowing inequality holds:474

D

(

β~Ψǫ1
,β~Ψǫ2

)

≤max

{

d△(K1,K2)

µ(Bǫ)
,‖~ϕ1−~ϕ2‖∞

}

. (4)

Proof. For every x ∈ X,475

|λεK1
(x)−λεK2

(x)|

= µ(Bε)−1·|
∫

y∈Bε(x)
χK1

(y)−χK2
(y) dy|

≤ µ(Bε)−1·
∫

X
|χK1

(y)−χK2
(y)| dy

= µ(Bε)−1·µ(K1△K2).

Thus ‖λεK1
−λεK2

‖∞ ≤ µ(Bε)
−1 ·µ(K1△K2).

The Stability Property (S) for measuring
function perturbations guarantees that

D
(

β~Ψε1
, β~Ψε2

)

≤ ‖~Ψε
1 − ~Ψε

2‖∞.

It follows that476

D

(

β~Ψε1
,β~Ψε2

)

≤ max{‖λεK1
−λεK2

‖∞,‖~ϕ1−~ϕ2‖∞}

≤ max{µ(Bε)−1·µ(K1△K2),‖~ϕ1−~ϕ2‖∞}

= max{µ(Bε)−1·d△(K1,K2),‖~ϕ1−~ϕ2‖∞}.

477

The previous theorem shows that, un-478

der our hypotheses, if two compact subsets479

K1, K2 of the real plane are close to each480

other in the sense that their symmetric dif-481

ference has a small measure, and ~ϕ1 is close482

to ~ϕ2, then also the PBNs constructed us-483

ing the functions ~Ψε
1, ~Ψ

ε
2 are close to each484

other.485
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ε = 0.5, η = 24

−75 −70 −65 −60 −55 −50 −45 −40 −35

−75

−70

−65

−60

−55

−50

−45

−40

−35

ε = 0.5, η = 8

−85 −80 −75 −70 −65 −60 −55 −50 −45 −40

−85

−80

−75

−70

−65

−60

−55

−50

−45

−40

ε = 0.5, η = 1

−120 −110 −100 −90 −80 −70 −60

−120

−110

−100

−90

−80

−70

−60

ε = 0.5, η = 0.65

−160 −140 −120 −100 −80 −60

−160

−140

−120

−100

−80

−60

ε = 0.3, η = 0.45

−150 −140 −130 −120 −110 −100 −90 −80 −70 −60

−150

−140

−130

−120

−110

−100

−90

−80

−70

−60

ε = 0.1, η = 0.25

−120 −110 −100 −90 −80 −70 −60

−120

−110

−100

−90

−80

−70

−60

Figure 3: The 0th PBNs β(dK1
,ϕ) of the octopus image of Figure 1(a) as ε and η tend to 0, restricted

to an appropriate 2-dimensional slice of ∆+. Red circles and red lines denote the points (proper or at
infinity) of the corresponding persistence diagram. The blue diamond denotes the point corresponding to
((ε,−100), (η,−80)).
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We observe that, for any x ∈ X,486

∣

∣

∣

∣

∫

y∈Bε(x)

χK1(y)− χK2(y) dy

∣

∣

∣

∣

≤

∫

y∈Bε(x)

|χK1(y)− χK2(y)| dy

= µ ((K1△K2) ∩ Bǫ(x)) ≤ µ(K1△K2)

= d△(K1, K2).

Moreover, since µ ((K1△K2) ∩ Bǫ(x)) ≤487

µ(Bǫ(x)), if µ(Bǫ) < µ(K1△K2), then488

maxx∈Rn
∣

∣

∣

∫

y∈Bε(x)
χK1(y)− χK2(y) dy

∣

∣

∣
<489

d△(K1, K2). Therefore the estimate490

in inequality (4) can be improved491

by substituting d△(K1, K2) with492

maxx∈Rn
∣

∣

∣

∫

y∈Bε(x)
χK1(y)− χK2(y) dy

∣

∣

∣
.493

4.3. Stability with respect to perturbations494

of fuzzy sets495

Now we consider the case when sets are496

defined according to fuzzy theory, that is497

through functions representing the grade of498

membership of points to the considered set.499

One obtains a fuzzy set, for example, when500

a probability density p(x) is given, p(x) ex-501

pressing the probability that a point of the502

considered set belongs to an infinitesimal503

neighborhood of x. We confine ourselves to504

considering only probability densities with505

compact support contained in a triangula-506

ble subspace X of Rn. From the Stability507

Property (S) for measuring function pertur-508

bations we immediately deduce the follow-509

ing result, whose simple proof is omitted,510

concerning the stability with respect to per-511

turbations of fuzzy sets defined by probabil-512

ity densities.513

Proposition 4.4. Let p1, p2 be two proba-

bility density functions having support con-

tained in a compact and triangulable sub-

space X of Rn. Defining ~Ψ1, ~Ψ2 : X → R
k+1

by ~Ψ1 = (−p1, ~ϕ1) and ~Ψ2 = (−p2, ~ϕ2), the
following statement holds:

D
(

β~Ψ1
,β~Ψ2

)

≤max{‖p1−p2‖∞,‖~ϕ1−~ϕ2‖∞}.

5. Experimental results514

In this section first we describe the more515

practical aspects of our method to compare516

PBNs in a way that is stable against do-517

main perturbations, and next we present518

some numerical results.519

5.1. Practical aspects520

In view of the experiments that will be521

presented in the next subsection, here we il-522

lustrate how the method can work in prac-523

tice on black and white images.524

First of all the method requires some525

choices: the spaces K and X, the function526

~ϕ, and the distance D.527

As for the set K, this is the set that con-528

tains the relevant information on the stud-529

ied object. Generally, in a black and white530

image, this is the set of black pixels.531

The space X must be a sort of ambient532

space for K, thus in the chosen setting it533

could be the set of all the pixels in the im-534

age. It is easy to make X a triangulable535

space by using the 8-adjacency relation be-536

tween pixels. In this way pixels correspond537

to vertices of a triangulation.538

The function ~ϕ : X → R
k is only re-539

quired to be continuous. Therefore, we can540

assume it is defined on vertices of X, and541

extend it to other simplices by interpola-542

tion to achieve continuity. In practice, we543

can confine ourselves to compute ~ϕ at each544

pixel. This topic is widely treated in [24].545

The distance D between PBNs can be546

taken to be the multidimensional match-547

ing distance Dmatch. Details on Dmatch can548

be found in Appendix B. The definition of549
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Dmatch is based on a foliation method re-550

ported in Appendix A. Intuitively, by the551

foliation method the set ∆+ is sliced into552

infinitely many half-planes such that the re-553

striction of multidimensional PBNs to each554

of these half-planes gives one-dimensional555

PBNs. Actually, Dmatch can be computed556

only up to some tolerance error [25] and the557

computation is very time consuming.558

Another possibility is to compute a sta-559

ble lower bound D̃ of Dmatch. This can560

be obtained by considering only some half-561

planes of the foliation, and taking the one-562

dimensional matching distance dmatch to563

compare the one-dimensional PBNs we find564

on these half-planes, as described in Remark565

5 of [12].566

After these choices are made, the pipeline567

of our method to compare PBNs of black568

and white images in a way that is stable569

against domain perturbations that are small570

with respect to the Hausdorff distance con-571

sists of the following steps.572

Given two black and white images I and573

I ′ with set of black pixels K and K ′, re-574

spectively, with bounding box X, and given575

a function ~ϕ : X → R
k,576

Step 1. Set ~Φ = (dK , ~ϕ), ~Φ
′ = (dK′ , ~ϕ).577

Step 2. Fix a finite set of half-planes πh578

associated with the pairs (~lh,~bh) from579

the foliation described in Appendix A.580

Step 3. For each h, compute the values of581

F h = min1≤i≤k+1 l
h
i · max1≤i≤k+1

Φi−b
h
i

lhi
582

at each pixel of I, and the values of583

F ′h = min1≤i≤k+1 l
h
i · max1≤i≤k+1

Φ′
i−b

h
i

lhi
584

at each pixel of I ′.585

Step 4. For each h, compute the PBNs of586

F h and F ′h.587

Step 5. Set D̃ equal to the maximum,588

varying h, of the one-dimensional589

matching distance dmatch between the590

PBNs of F h and F ′h.591

In order to obtain stability against do-592

main perturbations that are small with re-593

spect to the symmetric difference distance,594

it is sufficient to substitute dK and dK′ with595

−λεK and −λεK′ , respectively, in Step 1.596

The complexity of computing the PBNs597

for the image I in Step 4 is O(h · (n log n+598

m · α(2m + n, n))) operations, where n is599

the number of pixels of I, m behaves as600

4n or 8n according to the chosen 4− or601

8−neighborhood relation among pixels, and602

α is the inverse of the Ackermann func-603

tion. The complexity of computing the one-604

dimensional matching distance dmatch be-605

tween the PBNs of F h and F ′h, for all h, in606

Step 5 is O(h ·(p2.5+k)), with p the number607

of points in the persistence diagrams (see608

Section B).609

5.2. Experiments610

In order to demonstrate the effectiveness611

of the approach presented here, we per-612

formed some tests on the Kimia data set of613

99 shapes [14], a selection of which is shown614

in Table 2. The dataset is classified in nine615

categories with 11 shapes in each category.616

Each of the shapes has been corrupted by617

adding salt & pepper noise to a neighbor-618

hood of the set of its black pixels, as shown619

for some instances in Figure 3(Top). Salt &620

pepper noise is a form of noise typically seen621

on images, usually caused by errors in the622

data transmission. It appears as randomly623

occurring white and black pixels, the per-624

centage of pixels which are corrupted quan-625

tifying the noise. For each image, the set of626

black pixels of the image obtained by adding627

salt & pepper noise as in Figure 3(Top) is628
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Table 2: Some instances from the database of 99 shapes with 9 categories and 11 shapes in each category
used in our experiments. The complete database can be found in [14].

close to the set of black pixels of the orig-629

inal image with respect to the symmetric630

difference distance.631

Salt & pepper noise can be partially re-632

moved by applying a morphological open-633

ing, thus obtaining shapes such as those in634

Figure 3(Bottom). The set of black pixels635

in the images so obtained is close to the set636

of black pixels of the original image with637

respect to the Hausdorff distance.638

In both cases the topology of the set of639

black pixels in the noisy images is very dif-640

ferent from that of the original images.641

Three retrieval tests from the Kimia642

dataset were performed.643

In order to provide a point of reference,644

the first retrieval test was performed with-645

out noise by matching each shape in the646

Kimia-99 dataset against every other shape647

in the database.648

In the second retrieval test we used as649

models to be compared with all the shapes650

of the Kimia-99 database, the 99 images ob-651

tained by adding the salt & pepper noise652

and performing the morphological opening653

(examples of query shapes are given in Ta-654

ble 3(bottom)).655

Finally, in the third experiment, we com-656

pared the images corrupted by the salt &657

pepper noise with all the original images658

(examples of query shapes are given in Ta-659

ble 3(top)).660

In all cases, ideal result would be that the661

11 closest matches (including the queried662

model itself) all be of the same category663

as the query shape. The actual results664

we obtained are reported in Table 4. For665

each experiment, a string of 11 numbers de-666

scribes the performance rate, the nth num-667

ber corresponding to the rate at which the668

nth nearest match was in the same cat-669

egory as the model. This performance670

test has been applied to retrieval experi-671

ments from the Kimia-99 database by sev-672

eral authors testing their methods (see, e.g.,673

[26, 27, 14, 28, 29]). However, our re-674

sults are not directly comparable with theirs675

since we aim at a method tolerant under676

noise that modifies the shape topology.677

The results of Table 4 were obtained fol-678

lowing the steps described in Subsection 5.1.679

As for the necessary choices, we proceeded680

as follows.681

In each case we have used only the PBNs682

of zeroth homology (a.k.a. size functions).683

As for the choice of ~ϕ : X → R
k, we have684

considered three different functions, with685

k = 1: ϕ0, ϕ1, ϕ2 : X → R, where ϕ0 is686

equal to minus the distance from the cen-687

troid of K, and ϕ1, ϕ2 are equal to minus688

the distance from the first and second axis689

of inertia of K, respectively.690

In the first experiment, without noise,691

for each shape we computed three one-692

dimensional PBNs, corresponding to the693

functions ϕ0, ϕ1, ϕ2 restricted to the set of694

black pixels K.695

In the second experiment, the query696

shapes were corrupted by noise and par-697

tially cleaned by the morphological opening,698
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Table 3: Top: Shapes with salt & pepper noise. Bottom: The same shapes after morphological opening.

Table 4: The retrieval rates of our method for the Kimia-99 database.

Experiment 1st2nd3rd4th5th6th7th8th9th10th11th
without noise 99 95 91 88 85 82 80 76 63 53 40
with noise after opening 99 95 88 82 81 75 71 69 60 42 39
with noise without opening 99 91 87 78 76 71 69 62 57 45 38

and the remaining noise was taken care of699

using the function dK in Step 1. As for the700

choice of the half-planes in Step 2, we took701

the half-planes corresponding to the param-702

eters ~b = (b,−b) with b = 10, 13, 16 and703

~l = (cos θ, sin θ) with θ = 10◦, 20◦, . . . , 80◦,704

with reference to Appendix A. Indeed, for705

these choices of b and θ the function dK re-706

ally interacts with the functions ϕ0, ϕ1, and707

ϕ2.708

In the third experiment, the query shapes709

were corrupted by noise and no prepro-710

cessing was performed. All the noise is711

smoothed out using in Step 1 the function712

−λεK , with ǫ = 10, instead of dK . As for the713

choice of the half-planes in Step 2, in this714

case we took those corresponding to the pa-715

rameters ~b = (b,−b) with b = 3, 5, 7, 9 and716

~l = (cos θ, sin θ) with θ = 10◦, 20◦, . . . , 80◦.717

The motivation for these choices for b and718

θ is the same as before.719

In all three experiments, the obtained720

one-dimensional PBNs were compared us-721

ing the Hausdorff distance, as a lower bound722

of the matching distance to speed up com-723

putations. Next, these distances were nor-724

malized with mean equal to 0 and standard725

deviation equal to 1 so to obtain comparable726

values for different functions. Finally, as a727

dissimilarity measure between two shapes,728

we took the sum of the normalized Haus-729

dorff distances.730

The results proposed in Table 5 describe,731

for the octopus shape Figure 1(c) (269x256732

pixels), the average time taken to extract733

the 1-dimensional PBNs for 0th homology734

on a half-plane of the foliation out of 40 half-735

planes, the total time required to compute736

the size function on the 40 half-planes con-737

sidered, and the average and the total num-738

ber of points of the persistence diagrams on739

the 40 half-planes.740
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Table 5: Time requirements for the computation of the PBNs of the octopus image of Figure 1(c). Avg.
time is the average time required to compute the PBNs on a single half-plane of the foliation, while Total
time refers to the computation of the PBNs on 40 half-planes. Analogously, Avg. |C| is the average number
of points of a persistence diagram on a single half-plane of the foliation, and Total |C| is the sum of the
number of points of the persistence diagrams on 40 half-planes. These results are obtained using a processor
T2400 at 1.83 GHz with 1 GB RAM.
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Appendices852

A. Foliation method853

An effective way of studying multidimen-854

sional PBNs, whose domain ∆+ is a subset855

of Rk × R
k, is via a reduction to the one-856

dimensional case. This amounts to choose,857

for each (~u,~v) ∈ ∆+, a strictly increasing858

path through ~u and ~v, and to consider the859

one-dimensional filtration defined by this860

path.861

An appropriate choice of these paths al-862

lows us to obtain a foliation in half-planes of863

∆+ such that the restriction of the multidi-864

mensional PBNs to these half-planes turns865

out to give one-dimensional PBNs with re-866

spect to a filtration corresponding to the867

lower level sets of a certain (computable)868

scalar-valued function.869

We start by recalling that the following870

parameterized family of half-planes in R
k×871

R
k is a foliation of ∆+.872

Definition A.1 ([12]). For every unit vec-

tor ~l = (l1, . . . , lk) of Rk such that li > 0

for i = 1, . . . , k, and for every vector ~b =
(b1, . . . , bk) of R

k such that
∑k

i=1 bi = 0, we

shall say that the pair
(

~l,~b
)

is admissible.

We shall denote the set of all admissible
pairs in R

k × R
k by Admk. Given an ad-

missible pair
(

~l,~b
)

, we define the half-plane

π(~l,~b) of R
k×Rk by the following parametric

equations:

{

~u = s~l +~b

~v = t~l +~b

for s, t ∈ R, with s < t.873

Since these half-planes π(~l,~b) constitute a874

foliation of ∆+, for each (~u,~v) ∈ ∆+ there875

exists one and only one
(

~l,~b
)

∈ Admn876

such that (~u,~v) ∈ π(~l,~b). Observe that ~l877

and ~b only depend on (~u,~v). Intuitively,878

on each half plane π(~l,~b) one can find the879

PBNs corresponding to the filtration ob-880

tained by sweeping the line through ~u and881

~v parameterized by γ(~l,~b) : R → R
k, with882

γ(~l,~b)(τ) = τ~l +~b.883

We now recall that this filtration corre-884

sponds to the one given by the lower level885

sets of a certain scalar-valued continuous886

function.887
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Theorem A.1 ([9, 10]). For every (~u,~v) ∈

∆+, let
(

~l,~b
)

be the only admissible pair

such that (~u,~v) ∈ π(~l,~b). Let moreover

ϕ(~u,~v) : X → R be the continuous filtering

function defined by setting

ϕ(~u,~v)(x) = min
i
li ·max

i

ϕi(x)− bi
li

.

Then X〈~ϕ � ~u〉 = X〈(mini li)
−1ϕ(~u,~v) ≤ s〉.

Therefore

β~ϕ(~u,~v) = β(mini li)−1ϕ(~u,~v)
(s, t) .

Finally, the most important property of888

this foliation method is that it allows us889

to obtain a distance for multidimensional890

PBNs, denoted by Dmatch and described in891

Appendix B, having a particularly simple892

form, yet yielding the Stability Property893

(S).894

B. Multidimensional matching dis-895

tance896

We now recall the construction of the dis-897

tance Dmatch to compare multidimensional898

PBNs. The key property of Dmatch is that899

it has the Stability Property (S). The con-900

struction is based on the foliation method901

described in Appendix A.902

Dmatch was presented, and proved to yield903

stability of (multidimensional) PBNs, in904

[12] for 0th homology, and in [9] under a re-905

strictive max-tameness assumption on the906

filtering functions. In [10], it was proved907

to yield stability of PBNs also in the wider908

setting of just continuous functions.909

Definition B.1. Let X be a triangulable910

space endowed with continuous functions911

~ϕ : X → R
k, ~ψ : X → R

k. The multidimen-912

sional matching distance Dmatch between β~ϕ913

and β~ψ is defined as914

Dmatch(β~ϕ,β~ψ)

= sup(~u,~v)∈∆+ dmatch

(

βϕ(~u,~v) ,βψ(~u,~v)

)

. (B.1)

We recall that dmatch is a distance be-915

tween one-dimensional PBNs that measures916

multi-bijections between persistence dia-917

grams ([11, 8]). When k = 1, Dmatch coin-918

cides with the usual distance dmatch between919

one-dimensional PBNs.920

The following theorem states the Sta-921

bility Property of multidimensional PBNs922

with respect to this distance: Small changes923

in a vector-valued filtering function induce924

small changes in the associated multidimen-925

sional PBNs, with respect to the distance926

Dmatch.927

Theorem B.1 ([10]). If X is a triangulable928

space, then Dmatch is a distance on the set929

{β~ϕ | ~ϕ : X → R
k continuous}. Moreover,930

Dmatch

(

β~ϕ, β~ψ

)

≤
∥

∥

∥
~ϕ− ~ψ

∥

∥

∥

∞
.
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