Persistent Betti numbers for a noise tolerant shape-based approach to image retrieval

Patrizio Frosini^{a,c}, Claudia Landi^{b,c}

^aDipartimento di Matematica, Università di Bologna ^bDiSMI, Università di Modena e Reggio Emilia ^cARCES, Università di Bologna

Abstract

In content-based image retrieval a major problem is the presence of noisy shapes. Noise can present itself not only in the form of continuous deformations, but also as topological changes. It is well known that persistent Betti numbers are a shape descriptor that admits dissimilarity distances stable under continuous shape deformations. In this paper we focus on the problem of dealing with noise that alters the topology of the studied objects. We present a general method to turn persistent Betti numbers into stable descriptors also in the presence of topological changes. Retrieval tests on the Kimia-99 database show the effectiveness of the method.

13

15

16

20

22

25

Keywords: Multidimensional persistent homology, Hausdorff distance, symmetric difference distance 2010 MSC: Primary: 55N35, Secondary: 68T10, 68U05, 65D18, 55-04

1 1. Introduction

Persistence is a theory for studying ob-2 jects related to computer vision and com-3 puter graphics, by adopting different func-4 tions (e.g., distance from the center of 5 mass, distance from the medial axis, height, 6 geodesic distance, color mapping) to mea-7 sure the shape properties of the object 8 under study (e.g., roundness, elongation, 9 bumpiness, color). The object, consid-10 ered as a topological space, is explored 11 through the sequence of nested sub-level 12

Email addresses:

sets of the considered measuring function. A shape descriptor, called a persistent homology group, can be constructed by encoding at which scale a topological feature (e.g., a connected component, a tunnel, a void) is created, and when it is annihilated along this filtration. For application purposes, these groups are further encoded by considering only their dimension, yielding a parametrized version of Betti numbers, known in the literature as *persistent Betti numbers* [1], a *rank invariant* [2], and, for the 0th homology, a *size function* [3].

In the literature, a large number of methods for shape matching has been proposed,
such has the shape-context [4], the shock

patrizio.frosini@unibo.it (Patrizio Frosini), claudia.landi@unimore.it (Claudia Landi)

Preprint submitted to Pattern Recognition Letters

graph [5], and the inner distance [6], to 72 29 name a few. Persistent Betti numbers are 73 30 shape descriptors belonging to the class 74 31 of shape-from-functions methods which are 75 32 widely reviewed in [7]. 33

The stability of persistent Betti numbers 77 34 (hereafter, PBNs, for brevity) is quite an 78 35 important issue, every data measurement 79 36 being affected by noise. The stability prob-80 37 lem involves both stability under perturba- 81 38 tions of the topological space that repre- 82 39 sents the object, and stability under per-83 40 turbations of the function that measures the 84 41 shape properties of the object. 42

The problem of stability with respect to 86 43 perturbations of the measuring function has 87 44 been studied in [8] for scalar-valued mea- ⁸⁸ 45 suring functions. For vector-valued measur-89 46 ing functions, the multidimensional match-90 47 ing distance between PBNs is introduced in 91 48 [9], and is shown to provide stability in [10]. 92 49 For the case of 0th homology, this problem 50 is treated in [11] and [12] for scalar- and 93 51 vector-valued functions, respectively. 52

In this paper we consider the problem of 95 53 stability of PBNs with respect to changes 96 54 of the topological space. This topic has 97 55 been studied in [13] for sub-level sets of 98 56 smooth functions satisfying certain condi- 99 57 tions on the norm of the gradient. Unfortu- 100 58 nately these conditions seem not to be satis-59 fied in a wide variety of situations common 60 in object recognition, such as point cloud 102 61 data, curves in the plane, domains affected 103 62 by salt & pepper noise. 63 104 We propose a general approach to the 105 64 problem of stability of PBNs with respect 106 65 to domain perturbations that applies to 66

more general domains, i.e. compact sub- 107 67 Moreover, according to the 108 sets of \mathbb{R}^n . 68 type of noise affecting the data, we pro- 109 69 pose to choose an appropriate set distance 110 70 to measure the domain perturbation (for 111 71

example, the Hausdorff distance in case of small position errors, the symmetric difference pseudo-distance in the presence of outliers). The core of our approach is to choose an appropriate continuous function to represent the domain, so that the problem of stability for noisy domains with respect to a given set distance can be reduced to that of stability with respect to changes of the functions. This is achieved by substituting the domain K with an appropriate function f_K defined on a fixed set X containing K. Assuming we were interested in the shape of K, as seen through the restriction to Kof a measuring function $\vec{\varphi} : X \to \mathbb{R}^k$, we actually study the function $\vec{\Phi}: X \to \mathbb{R}^{k+1}$, with $\vec{\Phi} = (f_K, \vec{\varphi})$. Persistent Betti numbers of $\vec{\Phi}$ can be compared using the multidimensional matching distance, thus obtaining robustness of PBNs under domain perturbations.

In particular, we use this strategy when sets are compared by the Hausdorff distance and by the symmetric difference pseudodistance. In both these cases we show stability results (Theorems 4.1 and 4.3). Moreover we show the relation existing between the shape of K as described by $\vec{\varphi}_{|K}$ and the shape described by $\vec{\Phi} = (f_K, \vec{\varphi})$ (Theorem 4.2).

We also consider the situation where sets are described in a fuzzy sense, by means of probability density functions, easily obtaining a stability result also in this case (Proposition 4.4).

Finally, we conclude our paper presenting some experiments in which our method is tested on the Kimia-99 database [14], using as query shapes noisy versions of the original shapes.

76

85

112 2. Preliminaries

113 2.1. Multidimensional persistent Betti 154 114 numbers 155

Persistence may be used to construct ¹⁵⁶ 115 shape descriptors that capture both geo-¹⁵⁷ 116 metrical and topological properties of ob-¹⁵⁸ 117 jects $K \subset \mathbb{R}^n$. Geometrical properties of ¹⁵⁹ 118 K are studied through the choice of a func- $^{\scriptscriptstyle 160}$ 119 tion $\vec{\varphi} = (\varphi_i) : K \to \mathbb{R}^k$, each component ¹⁶¹ 120 φ_i describing a shape property. The func- ¹⁶² 121 tion $\vec{\varphi}$ is called a k-dimensional measuring ¹⁶³ 122 (or filtering) function. Topological prop-¹⁶⁴ 123 erties of K as seen through $\vec{\varphi}$ are studied ¹⁶⁵ 124 by considering sub-level sets $K\langle \vec{\varphi} \leq \vec{u} \rangle = {}^{166}$ 125 $\{x \in K : \varphi_i(x) \leq u_i, i = 1, \dots, k\}$. For ¹⁶⁷ 126 $\vec{u} = (u_i), \vec{v} = (v_i) \in \mathbb{R}^k$ with $u_i \leq v_i$ for ¹⁶⁸ 127 every index i (briefly, $\vec{u} \prec \vec{v}$), the sub-level ¹⁶⁹ 128 set $K\langle \vec{\varphi} \preceq \vec{u} \rangle$ is contained in the sub-level ¹⁷⁰ 129 set $K\langle \vec{\varphi} \prec \vec{v} \rangle$. A classical transform of al- ¹⁷¹ 130 gebraic topology, called homology, provides ¹⁷² 131 topological invariants. Working with ho-¹⁷³ 132 mology coefficients in a field, it transforms ¹⁷⁴ 133 topological spaces into vector spaces, and ¹⁷⁵ 134 continuous maps (e.g., inclusions) into lin-135 176 ear maps. This leads to the following defini-136 tion, where the symbol $\vec{u} \prec \vec{v}$ means $u_i < v_i^{177}$ 137 178 for i = 1, ..., k. 138

Definition 2.1. Let $q \in \mathbb{Z}$. Let $\pi_q^{(\vec{u},\vec{v})}$: 180 139 $\check{H}_q(K\langle \vec{\varphi} \preceq \vec{u} \rangle) \rightarrow \check{H}_q(K\langle \vec{\varphi} \preceq \vec{v} \rangle)$ be the ho- 181 140 momorphism induced by the inclusion map 182 141 $\pi^{(\vec{u},\vec{v})}$: $K\langle \vec{\varphi} \preceq \vec{u} \rangle \hookrightarrow K\langle \vec{\varphi} \preceq \vec{v} \rangle$ with 183 142 $\vec{u} \preceq \vec{v}$, where \check{H}_q denotes the qth Čech 184 143 homology group. The *qth* persistent Betti 185 144 number function of $\vec{\varphi}$ is the function $\beta_{\vec{\varphi}}$: 186 145 $\{(\vec{u}, \vec{v}) \in \mathbb{R}^k \times \mathbb{R}^k : \vec{u} \prec \vec{v}\} \to \mathbb{N} \cup \{\infty\}$ 187 146 defined as $\beta_{\vec{\alpha}}(\vec{u}, \vec{v}) = \dim \operatorname{im} \pi_{q}^{(\vec{u}, \vec{v})}$. 188 147 189

The motivation for using Čech homology 190 is that, unlike ordinary homology theories, 191 it has the continuity axiom (cf. [15, Ch. 192 151 X]). This will be important when we want 193

to obtain information on homology groups by passing to the limit as in Theorem 4.2.

152

153

If K is a triangulable space embedded in some \mathbb{R}^n , then $\beta_{\vec{\varphi}}(\vec{u}, \vec{v}) < +\infty$, for every $\vec{u} \prec \vec{v}$ and every $q \in \mathbb{Z}$ [16]. We point out that, in our setting, the finiteness of PBNs would not be guaranteed if they were defined on the set $\{(\vec{u}, \vec{v}) \in \mathbb{R}^k \times \mathbb{R}^k : \vec{u} \preceq \vec{v}\}$ instead of $\Delta^+ = \{(\vec{u}, \vec{v}) \in \mathbb{R}^k \times \mathbb{R}^k : \vec{u} \prec \vec{v}\}$. This motivates our choice of working only on Δ^+ .

We refer to PBNs of functions taking values in \mathbb{R}^k with k > 1 as to *multidimensional PBNs*, whereas PBNs of functions taking values in \mathbb{R} are called *onedimensional PBNs*. However, we simply use the term PBNs when it does not generate ambiguities.

The use of multidimensional PBNs instead of one-dimensional ones is crucial for the method presented here because adding the function f_K to the measuring functions makes the dimensionality increase from k to k + 1, that is always greater than 1.

2.2. Comparison of sets

The problems of description and comparison of sets can be dealt with in a myriad of different ways, each one more or less suitable than another for a given application task.

In classical set theory, the membership of elements in a set is assessed in binary terms according to a bivalent condition – an element either belongs or does not belong to the set. By contrast, in fuzzy set theory [17, 18], a fuzzy set A in X is characterized by a membership function $f_A : X \to [0, 1]$, with the value $f_A(x)$ representing the grade of membership of x in A. Usually, the nearer the value of $f_A(x)$ to 1, the higher the grade of membership of x in A. The fuzzy set theory can be used in a wide range of

domains in which information is incomplete 216
or imprecise. 217

If classical set theory is adopted, then a ²¹⁸ number of different dissimilarity measures ²¹⁹ exist to compare two sets [19, 20]. A fre- ²²⁰ quently used dissimilarity measure is the ²²¹ *Hausdorff distance*, which is defined for ar- ²²² bitrary non-empty compact subsets K_1, K_2 ²²³ of \mathbb{R}^n . Let us assume that K_1, K_2 are con- ²²⁴ tained in a compact subset X of \mathbb{R}^n , and, ²²⁵ for a compact subset K of X, let us de- ²²⁶ note by d_K the distance to K, that is the ²²⁷ function $d_K: X \to \mathbb{R}$ defined by $d_K(x) = ^{228}$ min_{$y \in K$} $||x - y||, || \cdot ||$ being any norm on \mathbb{R}^n ²²⁹ (e.g., the Euclidean norm). The Hausdorff ²³⁰ distance can be defined by ²³¹

$$\delta_H(K_1, K_2) = \max\{\max_{x \in K_2} d_{K_1}(x), \max_{y \in K_1} d_{K_2}(y)\}^{^{232}}.$$

¹⁹⁶ This can be reformulated as follows (cf. [21, ²³³ ¹⁹⁷ Ch. 4, Sect. 2.2]):

$$\delta_{H}(K_{1}, K_{2}) = \max_{x \in X} |d_{K_{1}}(x) - d_{K_{2}}(x)|^{234}_{235}$$

= $||d_{K_{1}} - d_{K_{2}}||_{\infty}$. (1)²³⁶

The Hausdorff distance is robust against ²³⁸ 198 small deformations, but it is sensitive to ²³⁹ 199 outliers: a single far-away noise point dras-²⁴⁰ 200 tically increases the Hausdorff distance. For 241 201 example, with respect to the Hausdorff dis- 242 202 tance, the sets in Figure 1(a), (b), and (c) ²⁴³ 203 are similar to each other, whereas they are 244 204 very dissimilar from the set in Figure 1 (d). ²⁴⁵ 205 A dissimilarity measure that is based on ²⁴⁶ 206 the volume of the symmetric difference, 247 207 such as the symmetric difference pseudo- ²⁴⁸ 208 metric, overcomes the problem of outliers. 249 209 Denoting by μ the Lebesgue measure on \mathbb{R}^n , 250 210 the symmetric difference pseudo-metric d_{\triangle} ²⁵¹ 211 is defined between two measurable sets A, B_{252} 212 with finite measure by $d_{\triangle}(A, B) = \mu(A \triangle B)$ ²⁵³ 213 where $A \triangle B = (A \cup B) \setminus (A \cap B)$ is the sym- 254 214 metric difference of A and B. It holds that $_{255}$ 215

 $d_{\Delta}(A, B) = 0$ if and only if A and B are equal almost everywhere. Identifying two sets A and B if $\mu(A \Delta B) = 0$, we obtain the symmetric difference metric.

Other dissimilarity measures are, for example, the bottleneck distance between finite point sets of the same cardinality, and the L_p -Hausdorff distance. However, since many other distances could be considered, we will limit our research to consider stability with respect to the Hausdorff and symmetric difference distances.

When fuzzy sets are used, their dissimilarity can be measured by any distance between functions. In this case we will confine ourselves to consider the max-norm distance between fuzzy sets.

3. Working assumptions

We will model objects under study as subsets K of some compact domain $X \subseteq \mathbb{R}^n$. Shape properties of the objects under study will be described by vector-valued functions $\vec{\varphi}: X \to \mathbb{R}^k$, with the measuring function $\vec{\varphi}$ defined on the entire ambient space X because the domain K will vary.

We think that this setting, which is used also in [13], is not very restrictive. Although apparently it prevents one from using filtering functions intrinsic of the domains K and K', and very common in applications (e.g., the distance from the center of mass, or the geodesic distance from a point), from a theoretical point of view this is not the case. Indeed, the well known Tietze's extension theorem states that if X is normal, K is a closed subset of X, and $f: K \to \mathbb{R}$ is a continuous function, then there is a continuous function $F: X \to \mathbb{R}$ such that $F_{|K} = f$ [22].

Noise on the measuring function $\vec{\varphi}$ will always be quantified using the max-norm,

Figure 1: Four binary images of an octopus. (b), (c), and (d) are noisy versions of (a).

299

300

as is standard (cf. [8, 12]): $\left\| \vec{\varphi} - \vec{\psi} \right\|_{\infty} = \frac{285}{286}$ max_{$x \in X$} max_{$1 \leq i \leq k$} $|\varphi_i(x) - \psi_i(x)|$.

On the other hand, since there is no stan- $^{\rm 287}$ 258 288 dard way to measure the noise on the do-259 main K, we confine our study to a selection 260 of possible distances (the Hausdorff distance 261 291 and the symmetric difference distance for 262 292 classical sets, and the max-norm distance 263 293 for fuzzy sets), indicating how our results 264 294 can be adapted in other situations. 265

In order to measure perturbations on ²⁹⁵ PBNs, we assume we are given a distance ²⁹⁶ D on $\{\beta_{\vec{\varphi}} \mid \vec{\varphi} : X \to \mathbb{R}^k \text{ continuous}\}$ having ²⁹⁷ the following property: ²⁹⁸

270 (S)
$$D(\beta_{\vec{\varphi}}, \beta_{\vec{\psi}}) \le \left\| \vec{\varphi} - \vec{\psi} \right\|_{\infty}.$$

301 Property (S) will be called the Stability 271 Property. Distances with this property ex-272 ist: the multidimensional matching distance 273 303 D_{match} introduced in [9] and proven to have ₃₀₄ 274 Property (S) in [10] (see also [12] for the $_{305}$ 275 case q = 0), and the one induced by the in-276 306 terleaving distance presented in [23]. The 277 307 reader can refer to Appendix B for details 278 308 on D_{match} . 279 309

4. Stability of PBNs with respect to 311 noisy domains 312

Our method to achieve stability of PBNs ³¹³ with respect to changes of the topological space K, even under perturbations that change its topology, is to consider K embedded in a larger space X in which K and its noisy version are similar with respect to some metric.

Next we substitute the set K with an appropriate function f_K defined on X, so that the perturbation of the set K becomes a perturbation of the function f_K . As a consequence, instead of studying the shape of K as seen through a measuring function $\vec{\varphi}_{|K} : K \to \mathbb{R}^k$, we study a new measuring function $\vec{\Phi} : X \to \mathbb{R}^{k+1}$, with $\vec{\Phi} = (f_K, \vec{\varphi})$. PBNs of $\vec{\Phi}$ can be compared using the distance D in a stable way, as a consequence of the Stability Property (S) for measuring function perturbations. The key issue here is that we can prove that the PBNs of $\vec{\Phi}$ are still descriptors of the shape of K.

4.1. Stability with respect to Hausdorff distance

In order to achieve stability under set perturbations that are measured by the Hausdorff distance, we can take the function f_K equal to the distance from K as the following result shows. In some sense this smooths spaces by a uniform thickening. A related method to do this in the applied algebraic topology literature is through the Rips filtration.

Theorem 4.1. Let K_1, K_2 be non-empty closed subsets of a triangulable subspace X

of \mathbb{R}^n . Let $d_{K_1}, d_{K_2} : X \to \mathbb{R}$ be their re- 342 spective distance functions. Moreover, let 343 $\vec{\varphi}_1, \vec{\varphi}_2 : X \to \mathbb{R}^k$ be vector-valued continu- 344 ous functions. Then, defining $\vec{\Phi}_1, \vec{\Phi}_2 : X \to 345$ \mathbb{R}^{k+1} by $\vec{\Phi}_1 = (d_{K_1}, \vec{\varphi}_1)$ and $\vec{\Phi}_2 = (d_{K_2}, \vec{\varphi}_2)$, 346 the following inequality holds: 347

$$D\left(\beta_{\vec{\Phi}_1},\beta_{\vec{\Phi}_2}\right) \leq \max\{\delta_H(K_1,K_2), \|\vec{\varphi}_1-\vec{\varphi}_2\|_{\infty}\}.$$

Proof. The Stability Property (S) implies $_{351}$ that $D\left(\beta_{\vec{\Phi}_1}, \beta_{\vec{\Phi}_2}\right) \leq \|\vec{\Phi}_1 - \vec{\Phi}_2\|_{\infty}$. It follows $_{352}$ that

$$D\Big(\beta_{\vec{\Phi}_1},\beta_{\vec{\Phi}_2}\Big) \leq \max\Big\{ \|d_{K_1} - d_{K_2}\|_{\infty}, \|\vec{\varphi}_1 - \vec{\varphi}_2\|_{\infty} \Big\}.$$

Hence, by equality (1), the claim is proved. \square \square \square \square \square 356357

In plain words, Theorem 4.1 states that 358 316 small changes in the domain and in the 359 317 measuring function imply small changes in 318 the PBNs, i.e. in the shape descriptors. 319 Clearly, the inequality of Theorem 4.1 tends 320 to the classic bottleneck stability inequality 321 [8] when K_1 tends to K_2 with respect to the 322 Hausdorff distance. 323

An example illustrating Theorem 4.1 is 324 shown in Figure 2. Figure 2(a), (b), and 325 (c) show the 0th PBNs of the sets of black 326 pixels K_1, K_2, K_3 of Figure 1(a), (b), and 327 (c), respectively, with the measuring func-328 tion equal to minus the distance from the 329 center of mass of K_1 . The PBNs $\beta_{\varphi_{|K_1|}}$ dis-330 361 plays eight relevant points in the persistence 331 diagram, corresponding to the eight tenta-332 cles of the octopus. Only one of these points 362 333 is at infinity (and therefore depicted by a 334 363 vertical line rather than by a circle) since 335 K_1 has only one connected component. As 336 for $\beta_{\varphi_{|K_2}}$, due to the presence of a great 337 quantity of connected components in the 338 noisy octopus, its PBNs display a very large 339 number of points at infinity, and a figure 340 showing them all would be hardly readable. 341

For this reason we show only a small subset of its persistence diagram. Finally, $\beta_{\varphi_{|K_3}}$, due to the presence of 11 connected components in Figure 1(c), shows 11 points at infinity. Figure 2 (a'), (b'), and (c') show a 2-dimensional slice of the 0th PBNs $\beta_{(d_{K_i},\varphi)}$, i = 1, 2, 3 (more details on how multidimensional PBNs can be studied by slicing their domain can be found in Appendix A). It is easily perceivable how similar Figure 2(a'), (b'), and (c') are to each other, especially in contrast to the dissimilarity between (a), (b), and (c).

The key point of our approach is that the PBNs of $\vec{\Phi}$ still provide a shape descriptor for K as seen through $\vec{\varphi}_{|K}$. This fact is shown by the next result.

Theorem 4.2. Let K be a non-empty triangulable subset of a triangulable subspace X of \mathbb{R}^n . Moreover, let $\vec{\varphi} : X \to \mathbb{R}^k$ be a continuous function. Setting $\vec{\Phi} : X \to \mathbb{R}^{k+1}$, $\vec{\Phi} = (d_K, \vec{\varphi})$, for every $\vec{u}, \vec{v} \in \mathbb{R}^k$ with $\vec{u} \prec \vec{v}$, there exists a real number $\hat{\eta} > 0$ such that, for any $\eta \in \mathbb{R}$ with $0 < \eta \leq \hat{\eta}$, there exists a real number $\hat{\varepsilon} = \hat{\varepsilon}(\eta)$, with $0 < \hat{\varepsilon} < \eta$, for which

$$\beta_{\vec{\varphi}|_{K}}(\vec{u},\vec{v}) = \beta_{\vec{\Phi}}\left((\varepsilon,\vec{u}),(\eta,\vec{v})\right),\,$$

for every $\varepsilon \in \mathbb{R}$ with $0 \leq \varepsilon \leq \hat{\varepsilon}$. In particular,

$$\beta_{\vec{\varphi}_{\mid K}}(\vec{u}, \vec{v}) = \lim_{\eta \to 0^+} \beta_{\vec{\Phi}} \left((0, \vec{u}), (\eta, \vec{v}) \right).$$

Proof. For every $\vec{u} \in \mathbb{R}^k$, we have

$$\begin{split} K\langle \vec{\varphi}_{|K} \preceq \vec{u} \rangle &= \{ x \in K : \vec{\varphi}(x) \preceq \vec{u} \} \\ &= \{ x \in X : d_K(x) \le 0 \} \\ &\cap \{ x \in X : \vec{\varphi}(x) \preceq \vec{u} \} \\ &= \{ x \in X : \vec{\Phi}(x) \preceq (0, \vec{u}) \} \\ &= X \langle \vec{\Phi} \preceq (0, \vec{u}) \rangle. \end{split}$$

348

349

350

354

Figure 2: (a-c): The 0th PBNs $\beta_{\varphi|K_i}$, i = 1, 2, 3, with K_1 the original octopus image, and K_2, K_3 two noisy versions, with respect to the same measuring function φ . (a'-c'): The 0th PBNs $\beta_{(d_{K_i},\varphi)}$, with K_i and φ as before (slice).

Hence, for every $q \in \mathbb{Z}$, denoting by $_{372}$ phisms hold: $\pi_q^{(\varepsilon,\vec{u}),(\eta,\vec{v})}$ the homology homomorphism induced by the inclusion $X\langle \vec{\Phi} \preceq (\varepsilon,\vec{u}) \rangle \rightarrow$ $X\langle \vec{\Phi} \preceq (\eta,\vec{v}) \rangle$, with $(\varepsilon,\vec{u}) \preceq (\eta,\vec{v})$, it holds $\operatorname{im} \pi_q^{(0,\vec{u})}$, that

$$\beta_{\vec{\varphi}|K}(\vec{u},\vec{v}) = \dim \operatorname{im} \pi_a^{(0,\vec{u}),(0,\vec{v})}$$

We claim that there exists a positive real $_{_{373}}$ number $\hat{\eta}$ such that $_{_{374}}$

$$\operatorname{im} \pi_q^{(0,\vec{u}),(0,\vec{v})} \cong \operatorname{im} \pi_q^{(0,\vec{u}),(\eta,\vec{v})}$$

377 for every η with $0 < \eta \leq \hat{\eta}$ (the claim is triv-364 ial for $\eta = 0$). In particular, this fact proves ³⁷⁸ 365 that $\beta_{\vec{\varphi}_{\mid K}}(\vec{u}, \vec{v}) = \lim_{\eta \to 0^+} \beta_{\vec{\Phi}} \left((0, \vec{u}), (\eta, \vec{v}) \right)$. 379 366 In order to prove this claim, we con- 380 367 sider the inverse system of homomorphisms ³⁸¹ 368 $\pi_q^{(0,\vec{u}),(\eta,\vec{v})}:\check{H}_q(X\langle \vec{\Phi} \preceq (0,\vec{u}\rangle) \to \check{H}_q(X\langle \vec{\Phi} \preceq {}_{382}$ 369 (η, \vec{v}) over the directed set $\{\eta \in \mathbb{R} : \eta > 0\}$ 383 370 decreasingly ordered. The following isomor- 384 371

$$\lim \pi_q^{(0,\vec{u}),(0,\vec{v})} \cong \lim \lim \pi_q^{(0,\vec{u}),(\eta,\vec{v})} \cong \lim \pi_q^{(0,\vec{u}),(\eta,\vec{v})}.$$

Indeed, $\operatorname{im} \pi_q^{(0,\vec{u}),(0,\vec{v})} \cong \operatorname{im} \varprojlim \pi_q^{(0,\vec{u}),(\eta,\vec{v})}$ by the continuity of Čech homology, and $\operatorname{im} \varprojlim \pi_q^{(0,\vec{u}),(\eta,\vec{v})} \cong \varprojlim \pi_q^{(0,\vec{u}),(\eta,\vec{v})}$ because the inverse limit of vector spaces is an exact functor and therefore it preserves epimorphisms, and hence images.

It remains to prove that there exists a positive real number $\hat{\eta}$ such that, for every $0 < \eta \leq \hat{\eta}$, im $\pi_q^{(0,\vec{u}),(\eta,\vec{v})}$ is isomorphic to $\liminf_q \pi_q^{(0,\vec{u}),(\eta,\vec{v})}$. To this end, let us consider the following commutative diagram, with $0 < \eta' \leq \eta''$:

375

$$\begin{array}{ccc}
\overset{412}{\underset{q}{\overset{H}_{q}(X\langle\vec{\Phi} \preceq (0,\vec{u})\rangle) \longrightarrow \check{H}_{q}(X\langle\vec{\Phi} \preceq (0,\vec{u})\rangle)} & \overset{412}{\underset{q}{\overset{413}{\underset{q}{\underset{q}{\underset{q}{\atop{\pi_{q}}}}}}} \\ \pi_{q}^{(0,\vec{u}),(\eta',\vec{v})} & \sqrt{\pi_{q}^{(0,\vec{u}),(\eta'',\vec{v})} & \sqrt{\pi_{q}^{(0,\vec{u}),(\eta'',\vec{v})} & \overset{414}{\underset{q}{\atop{H}_{q}}} \\ & \check{H}_{q}(X\langle\vec{\Phi} \preceq (\eta',\vec{v})\rangle) & \longrightarrow \check{H}_{q}(X\langle\vec{\Phi} \preceq (\eta'',\vec{v})\rangle). \\ \end{array}$$

$$(2)$$

411

From the above diagram (2), we see that 385 each $\pi_q^{(\eta',\vec{v}),(\eta'',\vec{v})}$ induces a map $\tau_q^{(\eta',\eta'')}$: im $\pi_q^{(0,\vec{u}),(\eta',\vec{v})} \to \operatorname{im} \pi_q^{(0,\vec{u}),(\eta'',\vec{v})}$. From dia-386 387 gram (2) we see that these maps are surjec-388 tive. On the other hand, by the finiteness of 389 the dimension of im $\pi_q^{(0,\vec{u}),(\vec{0},\vec{v})}$ and the mono- 416 390 tonicity of PBNs, there exists $\hat{\eta} > 0$ such 417 391 that the dimension of $\pi_q^{(0,\vec{v}),(\eta',\vec{v})}$ is finite and $_{_{418}}$ 392 equal to the dimension of $\pi_q^{(0,\vec{u}),(\eta'',\vec{v})}$, when-393 ever $0 < \eta' \leq \eta'' \leq \hat{\eta}$. Hence the maps 420 394 $au_q^{(\eta',\eta'')}$ are surjections between vector spaces 421 395 of the same finite dimension, i.e. isomor- 422 396 phisms for every $0 < \eta' \leq \eta'' \leq \hat{\eta}$. Thus, 423 397 $\lim_{q \to 0} \lim_{q \to 0} \frac{1}{(0,\vec{u}),(\eta,\vec{v})}$ is the inverse limit of a sys-398 tem of finite dimensional vector spaces iso-morphic to im $\pi_q^{(0,\vec{u}),(\hat{\eta},\vec{v})}$, proving the claim. ₄₂₆ 399 400

We now claim that for every strictly positive real number η , there exists a strictly ₄₂₈ positive real number $\hat{\varepsilon} < \eta$ such that ₄₂₉

$$\operatorname{im} \pi_q^{(0,\vec{u}),(\eta,\vec{v})} \cong \operatorname{im} \pi_q^{(\varepsilon,\vec{u}),(\eta,\vec{v})}$$

401 for every ε with $0 \le \varepsilon \le \hat{\varepsilon}$.

This claim can be proved in much the 402 same way as the previous one. We con- 434 403 sider the inverse system of homomorphisms 435 404 $\pi_q^{(\varepsilon,\vec{u}),(\eta,\vec{v})}:\check{H}_q(X\langle \vec{\Phi} \preceq (\varepsilon,\vec{u}\rangle) \to \check{H}_q(X\langle \vec{\Phi} \preceq {}^{_{436}}$ 405 (η, \vec{v}) over the directed set $\{\varepsilon \in \mathbb{R} : 0 \leq 437\}$ 406 $\varepsilon < \eta$ decreasingly ordered. The following 438 407 isomorphisms follow again from the conti- 439 408 nuity of Cech homology and the exacteness 440 409 of the inverse limit functor for vector spaces: 441 410

$$\lim \pi_q^{(0,\vec{u}),(\eta,\vec{v})} \cong \lim \varprojlim \pi_q^{(\varepsilon,\vec{u}),(\eta,\vec{v})} \\ \cong \varprojlim \inf \pi_q^{(\varepsilon,\vec{u}),(\eta,\vec{v})}.$$

To prove that there exists a strictly positive real number $\hat{\varepsilon}$ such that, for every $0 \leq \varepsilon \leq \hat{\varepsilon}$, $\operatorname{im} \pi_q^{(\varepsilon, \vec{u}), (\eta, \vec{v})}$ is isomorphic to $\liminf_{q} \pi_q^{(\varepsilon, \vec{u}), (\eta, \vec{v})}$, let us consider the following commutative diagram, with $0 \leq \varepsilon' \leq \varepsilon''$:

$$\begin{array}{c} \check{H}_{q}(X\langle \vec{\Phi} \preceq (\varepsilon', \vec{u}), (\varepsilon'', \vec{u}) \\ \check{H}_{q}(X\langle \vec{\Phi} \preceq (\varepsilon', \vec{u}) \rangle) & \longrightarrow \check{H}_{q}(X\langle \vec{\Phi} \preceq (\varepsilon'', \vec{u}) \rangle) \\ \pi_{q}^{(\varepsilon', \vec{u}), (\eta, \vec{v})} & \bigvee \\ \check{H}_{q}(X\langle \vec{\Phi} \preceq (\eta, \vec{v}) \rangle) & \stackrel{id}{\longrightarrow} \check{H}_{q}(X\langle \vec{\Phi} \preceq (\eta, \vec{v}) \rangle). \end{array}$$

$$(3)$$

From the above diagram (3), we see that each $\pi_q^{(\varepsilon',\vec{u}),(\varepsilon'',\vec{u})}$ induces a map $\sigma_q^{(\varepsilon',\varepsilon'')}$: im $\pi_q^{(\varepsilon',\vec{u}),(\eta,\vec{v})} \to \operatorname{im} \pi_q^{(\varepsilon'',\vec{u}),(\eta,\vec{v})}$. From diagram (3) we see that these maps are injective. On the other hand, by the finiteness of the dimension of $\operatorname{im} \pi_q^{(\varepsilon, \vec{u}), (\eta, \vec{v})}$, for any ε with $0 < \varepsilon < \eta$, and the monotonicity of PBNs, there exists $\hat{\varepsilon}$, with $0 < \hat{\varepsilon} < \eta$, such that the dimension of $\pi_q^{(\varepsilon',\vec{u}),(\eta,\vec{v})}$ is finite and equal to the dimension of $\pi_q^{(\varepsilon'',\vec{u}),(\eta,\vec{v})}$, whenever $0 \leq \varepsilon' \leq \varepsilon'' \leq \hat{\varepsilon}$. Hence the maps $\sigma_q^{(\varepsilon',\varepsilon'')}$ are injections between vector spaces of the same finite dimension, i.e. isomorphisms for every $0 \leq \varepsilon' \leq \varepsilon'' \leq \hat{\varepsilon}$. Thus, $\lim_{z \to z} \inf \pi_q^{(\varepsilon, \vec{u}), (\eta, \vec{v})}$ is the inverse limit of a system of finite dimensional vector spaces isomorphic to $\operatorname{im} \pi_q^{(\hat{\varepsilon}, \vec{u}), (\hat{\eta}, \vec{v})}$, proving the claim.

In other words, Theorem 4.2 ensures that we can recover the PBNs of $\vec{\varphi}_{|K}$, i.e. a description of the shape of K as seen by $\vec{\varphi}$, from the PBNs of $\vec{\Phi}$, simply by passing to the limit.

To illustrate this result we have considered again the octopus in Figure 1(a), together with the measuring function φ : $X \to \mathbb{R}$ equal to minus the distance from the center of mass of the set of black pixels K_1 . Here X is the bounding box

442

443

430

431

432

Table 1: The values taken by the 0th PBNs ⁴⁶⁴ $\beta_{(d_{K_1},\varphi)}$ of the octopus image of Figure 1(a) at ⁴⁶⁵ $((\varepsilon, -100), (\eta, -80))$, as ε and η tend to 0, tend to ⁴⁶⁶ the value $\beta_{\varphi_{1K_1}}$ (-100, -80) = 8. ⁴⁶⁷

		1	40
ε	η	$\beta_{(d_{K_1},\varphi)}\left((\varepsilon,-100),(\eta,-80)\right)$	
0.5	24	1	46
0.5	8	3	46
0.5	1	8	47
0.5	0.65	8	47
0.3	0.45	8	47
0.1	0.25	8	47

of the image, thus containing black and 445 We compared the value white pixels. 446 taken by the 0th PBNs $\beta_{\varphi_{|K_1|}}$ at the point 447 (u, v) = (-100, -80), that is 8, with the 448 value obtainable from $\beta_{(d_{K_1},\varphi)}$ by passing 449 to the limit as in Theorem 4.2. Com-450 putations show that $\beta_{\varphi_{|K_1}}(-100, -80) =$ 451 $\beta_{(d_{K_1},\varphi)}\left((\varepsilon, -100), (\eta, -80)\right) = 8$ for small 452 but positive values of ε and η . The PBNs 453 $\beta_{(d_{K_1},\varphi)}((\varepsilon, -100), (\eta, -80))$ for the choices 454 of ε and η considered in Table 1 are dis-455 played in Figure 3 via a restriction to an 456 appropriate slice of Δ^+ . 457

458 4.2. Stability with respect to the symmetric 476 459 difference pseudo-distance

In order to achieve stability under set perturbations that are measured by the symmetric difference pseudo-distance, we can take the function f_K to be the convolution of the characteristic function of K with that of a ball. More precisely, let $\lambda_K^{\epsilon} : \mathbb{R}^n \to \mathbb{R}$, ⁴⁷⁷ with $\epsilon \in \mathbb{R}$, $\epsilon > 0$, be defined as

$$\lambda_K^{\epsilon}(x) = \mu(B_{\epsilon})^{-1} \cdot \int_{y \in B_{\epsilon}(x)} \chi_K(y) \, \mathrm{d}y$$

where $B_{\epsilon}(x)$ denotes the *n*-ball centered at ⁴⁸² ⁴⁶¹ x with radius ϵ , $B_{\epsilon} = B_{\epsilon}(0)$, and χ_{K} de- ⁴⁸³ ⁴⁶² notes the characteristic function of K. In ⁴⁸⁴ ⁴⁶³ other words, in this case, we smooth sets by ⁴⁸⁵ convolving with the characteristic function of a ball.

In this case we have the following stability result.

Theorem 4.3. Let K_1, K_2 be non-empty closed subsets of a triangulable subspace Xof \mathbb{R}^n . Moreover, let $\vec{\varphi}_1, \vec{\varphi}_2 : X \to \mathbb{R}^k$ be vector-valued continuous functions. Then, defining $\vec{\Psi}_1^{\epsilon}, \vec{\Psi}_2^{\epsilon} : X \to \mathbb{R}^{k+1}$ by $\vec{\Psi}_1^{\epsilon} =$ $(-\lambda_{K_1}^{\epsilon}, \vec{\varphi}_1)$ and $\vec{\Psi}_2^{\epsilon} = (-\lambda_{K_2}^{\epsilon}, \vec{\varphi}_2)$, the following inequality holds:

$$D\left(\beta_{\vec{\Psi}_{1}^{\epsilon}},\beta_{\vec{\Psi}_{2}^{\epsilon}}\right) \leq \max\left\{\frac{d_{\triangle}(K_{1},K_{2})}{\mu(B_{\epsilon})}, \|\vec{\varphi}_{1}-\vec{\varphi}_{2}\|_{\infty}\right\}.$$
(4)

Proof. For every $x \in X$,

$$\begin{aligned} \lambda_{K_1}^{\varepsilon}(x) - \lambda_{K_2}^{\varepsilon}(x) | \\ &= \mu(B_{\varepsilon})^{-1} \cdot \left| \int_{y \in B_{\varepsilon}(x)} \chi_{K_1}(y) - \chi_{K_2}(y) \, \mathrm{d}y \right| \\ &\leq \mu(B_{\varepsilon})^{-1} \cdot \int_X |\chi_{K_1}(y) - \chi_{K_2}(y)| \, \mathrm{d}y \\ &= \mu(B_{\varepsilon})^{-1} \cdot \mu(K_1 \triangle K_2). \end{aligned}$$

Thus $\|\lambda_{K_1}^{\varepsilon} - \lambda_{K_2}^{\varepsilon}\|_{\infty} \leq \mu(B_{\varepsilon})^{-1} \cdot \mu(K_1 \triangle K_2)$. The Stability Property (S) for measuring function perturbations guarantees that

$$D\left(\beta_{\vec{\Psi}_1^{\varepsilon}},\beta_{\vec{\Psi}_2^{\varepsilon}}\right) \le \|\vec{\Psi}_1^{\varepsilon} - \vec{\Psi}_2^{\varepsilon}\|_{\infty}.$$

It follows that

$$D\left(\beta_{\vec{\Psi}_{1}^{\varepsilon}},\beta_{\vec{\Psi}_{2}^{\varepsilon}}\right)$$

$$\leq \max\left\{\|\lambda_{K_{1}}^{\varepsilon}-\lambda_{K_{2}}^{\varepsilon}\|_{\infty},\|\vec{\varphi}_{1}-\vec{\varphi}_{2}\|_{\infty}\right\}$$

$$\leq \max\left\{\mu(B_{\varepsilon})^{-1}\cdot\mu(K_{1}\Delta K_{2}),\|\vec{\varphi}_{1}-\vec{\varphi}_{2}\|_{\infty}\right\}$$

$$= \max\left\{\mu(B_{\varepsilon})^{-1}\cdot d_{\Delta}(K_{1},K_{2}),\|\vec{\varphi}_{1}-\vec{\varphi}_{2}\|_{\infty}\right\}.$$

The previous theorem shows that, under our hypotheses, if two compact subsets K_1, K_2 of the real plane are close to each other in the sense that their symmetric difference has a small measure, and $\vec{\varphi}_1$ is close to $\vec{\varphi}_2$, then also the PBNs constructed using the functions $\vec{\Psi}_1^{\varepsilon}$, $\vec{\Psi}_2^{\varepsilon}$ are close to each other.

479

480

Figure 3: The 0th PBNs $\beta_{(d_{K_1},\varphi)}$ of the octopus image of Figure 1(a) as ε and η tend to 0, restricted to an appropriate 2-dimensional slice of Δ^+ . Red circles and red lines denote the points (proper or at infinity) of the corresponding persistence diagram. The blue diamond denotes the point corresponding to $((\varepsilon, -100), (\eta, -80))$.

486 We observe that, for any $x \in X$,

$$\left| \int_{y \in B_{\varepsilon}(x)} \chi_{K_1}(y) - \chi_{K_2}(y) \, \mathrm{d}y \right|$$

$$\leq \int_{y \in B_{\varepsilon}(x)} |\chi_{K_1}(y) - \chi_{K_2}(y)| \, \mathrm{d}y$$

$$= \mu \left((K_1 \triangle K_2) \cap B_{\epsilon}(x) \right) \leq \mu (K_1 \triangle K_2)$$

$$= d_{\triangle}(K_1, K_2).$$

Moreover, since $\mu((K_1 \triangle K_2) \cap B_{\epsilon}(x))$ \leq 518 487 $\mu(B_{\epsilon}(x)), \text{ if } \mu(B_{\epsilon}) < \mu(K_1 \triangle K_2), \text{ then 519}$ 488 $\max_{x \in \mathbb{R}^n} \left| \int_{y \in B_{\varepsilon}(x)} \chi_{K_1}(y) - \chi_{K_2}(y) \, \mathrm{d}y \right|$ 489 Therefore the estimate $d_{\wedge}(K_1, K_2).$ 490 ininequality (4)can be improved ⁵²¹ 491 with 522substituting $d_{\triangle}(K_1, K_2)$ by 492 $\max_{x \in \mathbb{R}^n} \left| \int_{y \in B_{\varepsilon}(x)} \chi_{K_1}(y) - \chi_{K_2}(y) \, \mathrm{d}y \right|.$ 523 493 524

494 4.3. Stability with respect to perturbations 525495 of fuzzy sets 526

527 Now we consider the case when sets are 496 defined according to fuzzy theory, that is 497 529 through functions representing the grade of 498 530 membership of points to the considered set. 499 531 One obtains a fuzzy set, for example, when 500 532 a probability density p(x) is given, p(x) ex-501 533 pressing the probability that a point of the 502 534 considered set belongs to an infinitesimal 503 535 neighborhood of x. We confine ourselves to 504 536 considering only probability densities with 505 537 compact support contained in a triangula-506 ble subspace X of \mathbb{R}^n . From the Stability 507 Property (S) for measuring function pertur-508 540 bations we immediately deduce the follow-509 541 ing result, whose simple proof is omitted, 510 542 concerning the stability with respect to per-511 543 turbations of fuzzy sets defined by probabil-512 544 ity densities. 513 545

Proposition 4.4. Let p_1, p_2 be two probability density functions having support contained in a compact and triangulable subspace X of \mathbb{R}^n . Defining $\vec{\Psi}_1, \vec{\Psi}_2 : X \to \mathbb{R}^{k+1}$ 549 by $\vec{\Psi}_1 = (-p_1, \vec{\varphi}_1)$ and $\vec{\Psi}_2 = (-p_2, \vec{\varphi}_2)$, the following statement holds:

$$D\left(\beta_{\vec{\Psi}_1},\beta_{\vec{\Psi}_2}\right) \leq \max\{\|p_1-p_2\|_{\infty},\|\vec{\varphi}_1-\vec{\varphi}_2\|_{\infty}\}.$$

5. Experimental results

514

515

516

517

In this section first we describe the more practical aspects of our method to compare PBNs in a way that is stable against domain perturbations, and next we present some numerical results.

5.1. Practical aspects

In view of the experiments that will be presented in the next subsection, here we illustrate how the method can work in practice on black and white images.

First of all the method requires some choices: the spaces K and X, the function $\vec{\varphi}$, and the distance D.

As for the set K, this is the set that contains the relevant information on the studied object. Generally, in a black and white image, this is the set of black pixels.

The space X must be a sort of ambient space for K, thus in the chosen setting it could be the set of all the pixels in the image. It is easy to make X a triangulable space by using the 8-adjacency relation between pixels. In this way pixels correspond to vertices of a triangulation.

The function $\vec{\varphi} : X \to \mathbb{R}^k$ is only required to be continuous. Therefore, we can assume it is defined on vertices of X, and extend it to other simplices by interpolation to achieve continuity. In practice, we can confine ourselves to compute $\vec{\varphi}$ at each pixel. This topic is widely treated in [24].

The distance D between PBNs can be taken to be the multidimensional matching distance D_{match} . Details on D_{match} can be found in Appendix B. The definition of ⁵⁵⁰ D_{match} is based on a foliation method re-⁵⁵¹ ported in Appendix A. Intuitively, by the ⁵⁸⁹ ⁵⁵² foliation method the set Δ^+ is sliced into ⁵⁹⁰ ⁵⁵³ infinitely many half-planes such that the re-⁵⁵⁴ striction of multidimensional PBNs to each

of these half-planes gives one-dimensional 592 PBNs. Actually, D_{match} can be computed 593 only up to some tolerance error [25] and the 594 computation is very time consuming. 595

Another possibility is to compute a sta- ⁵⁹⁶ 559 ble lower bound D of D_{match} . This can 597 560 be obtained by considering only some half-⁵⁹⁸ 561 planes of the foliation, and taking the one-599 562 dimensional matching distance d_{match} to ⁶⁰⁰ 563 compare the one-dimensional PBNs we find $^{\rm 601}$ 564 on these half-planes, as described in Remark $^{\rm 602}$ 565 603 5 of [12]. 566

604 After these choices are made, the pipeline 567 605 of our method to compare PBNs of black 568 and white images in a way that is stable 569 607 against domain perturbations that are small 570 608 with respect to the Hausdorff distance con-571 609 sists of the following steps. 572

Given two black and white images I and I' with set of black pixels K and K', respectively, with bounding box X, and given 610 a function $\vec{\varphi}: X \to \mathbb{R}^k$, 610

577 **Step 1.** Set
$$\vec{\Phi} = (d_K, \vec{\varphi}), \ \vec{\Phi}' = (d_{K'}, \vec{\varphi}).$$

578 Step 2. Fix a finite set of half-planes π_h ⁶¹⁶ 579 associated with the pairs (\vec{l}^h, \vec{b}^h) from ⁶¹⁷ 580 the foliation described in Appendix A. ⁶¹⁸ ⁶¹⁹

Step 3. For each h, compute the values of 620 $F^{h} = \min_{1 \le i \le k+1} l_{i}^{h} \cdot \max_{1 \le i \le k+1} \frac{\Phi_{i} - b_{i}^{h}}{l_{i}^{h}} {}^{621}$ at each pixel of I, and the values of 623 $F'^{h} = \min_{1 \le i \le k+1} l_{i}^{h} \cdot \max_{1 \le i \le k+1} \frac{\Phi'_{i} - b_{i}^{h}}{l_{i}^{h}} {}^{624}$ at each pixel of I'.

586 Step 4. For each h, compute the PBNs of 627 587 F^h and F'^h . 628

Step 5. Set D equal to the maximum, varying h, of the one-dimensional matching distance d_{match} between the PBNs of F^h and F'^h .

In order to obtain stability against domain perturbations that are small with respect to the symmetric difference distance, it is sufficient to substitute d_K and $d_{K'}$ with $-\lambda_K^{\varepsilon}$ and $-\lambda_{K'}^{\varepsilon}$, respectively, in Step 1.

The complexity of computing the PBNs for the image I in Step 4 is $O(h \cdot (n \log n + m \cdot \alpha(2m + n, n)))$ operations, where n is the number of pixels of I, m behaves as 4n or 8n according to the chosen 4- or 8-neighborhood relation among pixels, and α is the inverse of the Ackermann function. The complexity of computing the onedimensional matching distance d_{match} between the PBNs of F^h and F'^h , for all h, in Step 5 is $O(h \cdot (p^{2.5} + k))$, with p the number of points in the persistence diagrams (see Section B).

5.2. Experiments

In order to demonstrate the effectiveness of the approach presented here, we performed some tests on the Kimia data set of 99 shapes [14], a selection of which is shown in Table 2. The dataset is classified in nine categories with 11 shapes in each category.

Each of the shapes has been corrupted by adding *salt* \mathcal{C} *pepper* noise to a neighborhood of the set of its black pixels, as shown for some instances in Figure 3(Top). Salt & pepper noise is a form of noise typically seen on images, usually caused by errors in the data transmission. It appears as randomly occurring white and black pixels, the percentage of pixels which are corrupted quantifying the noise. For each image, the set of black pixels of the image obtained by adding salt & pepper noise as in Figure 3(Top) is

626

613

614

Table 2: Some instances from the database of 99 shapes with 9 categories and 11 shapes in each category used in our experiments. The complete database can be found in [14].

ゞゞゟるががた大洋ボタまずぇ~~ ! ~

close to the set of black pixels of the original image with respect to the symmetric 665
difference distance.

Salt & pepper noise can be partially removed by applying a morphological openmoved by applying a morphological open-moved

In both cases the topology of the set of ⁶⁷⁴
black pixels in the noisy images is very dif-⁶⁷⁵
ferent from that of the original images.

Three retrieval tests from the Kimia ⁶⁷⁷
 dataset were performed.

In order to provide a point of reference, ⁶⁷⁹ the first retrieval test was performed without noise by matching each shape in the ⁶⁸¹ Kimia-99 dataset against every other shape ⁶⁸² in the database. ⁶⁸³

In the second retrieval test we used as ⁶⁸⁴ models to be compared with all the shapes ⁶⁸⁵ of the Kimia-99 database, the 99 images ob- ⁶⁸⁶ tained by adding the salt & pepper noise ⁶⁸⁷ and performing the morphological opening ⁶⁸⁸ (examples of query shapes are given in Ta- ⁶⁸⁹ ble 3(bottom)). ⁶⁹⁰

Finally, in the third experiment, we compared the images corrupted by the salt & 692 pepper noise with all the original images 693 (examples of query shapes are given in Table 3(top)).

In all cases, ideal result would be that the 696
11 closest matches (including the queried 697
model itself) all be of the same category 698

The actual results as the query shape. we obtained are reported in Table 4. For each experiment, a string of 11 numbers describes the performance rate, the nth number corresponding to the rate at which the nth nearest match was in the same category as the model. This performance test has been applied to retrieval experiments from the Kimia-99 database by several authors testing their methods (see, e.g., [26, 27, 14, 28, 29]).However, our results are not directly comparable with theirs since we aim at a method tolerant under noise that modifies the shape topology.

The results of Table 4 were obtained following the steps described in Subsection 5.1. As for the necessary choices, we proceeded as follows.

In each case we have used only the PBNs of zeroth homology (a.k.a. size functions). As for the choice of $\vec{\varphi} : X \to \mathbb{R}^k$, we have considered three different functions, with $k = 1: \varphi_0, \varphi_1, \varphi_2 : X \to \mathbb{R}$, where φ_0 is equal to minus the distance from the centroid of K, and φ_1, φ_2 are equal to minus the distance from the first and second axis of inertia of K, respectively.

In the first experiment, without noise, for each shape we computed three onedimensional PBNs, corresponding to the functions $\varphi_0, \varphi_1, \varphi_2$ restricted to the set of black pixels K.

In the second experiment, the query shapes were corrupted by noise and partially cleaned by the morphological opening,

Table 3: Top: Shapes with salt & pepper noise. Bottom: The same shapes after morphological opening.

Table 4: The retrieval rates of our method for the Kimia-99 database.

Experiment	1st	2nd	3rd	$4 \mathrm{th}$	5th	$6 \mathrm{th}$	$7 \mathrm{th}$	$8 \mathrm{th}$	$9 \mathrm{th}$	10th	11th
without noise	99	95	91	88	85	82	80	76	63	53	40
with noise after opening	99	95	88	82	81	75	71	69	60	42	39
with noise without opening	99	91	87	78	76	71	69	62	57	45	38

and the remaining noise was taken care of 722 699 using the function d_K in Step 1. As for the 723 700 choice of the half-planes in Step 2, we took 724 701 the half-planes corresponding to the param- 725 702 eters $\vec{b} = (b, -b)$ with b = 10, 13, 16 and 726 703 $\vec{l} = (\cos\theta, \sin\theta)$ with $\theta = 10^{\circ}, 20^{\circ}, \dots, 80^{\circ}, 727$ 704 with reference to Appendix A. Indeed, for 728 705 these choices of b and θ the function d_K re- 729 706 ally interacts with the functions φ_0, φ_1 , and 730 707 φ_2 708

732 In the third experiment, the query shapes 709 were corrupted by noise and no prepro-733 710 cessing was performed. All the noise is ⁷³⁴ 711 smoothed out using in Step 1 the function 735 712 $-\lambda_K^{\varepsilon}$, with $\epsilon = 10$, instead of d_K . As for the ⁷³⁶ 713 choice of the half-planes in Step 2, in this 714 738 case we took those corresponding to the pa-715 rameters $\vec{b} = (b, -b)$ with b = 3, 5, 7, 9 and 716 $\vec{l} = (\cos\theta, \sin\theta)$ with $\theta = 10^{\circ}, 20^{\circ}, \dots, 80^{\circ}$.⁷⁴⁰ 717 The motivation for these choices for b and 741 718 θ is the same as before. 742 719

⁷²⁰ In all three experiments, the obtained ⁷⁴⁴₇₄₄ ⁷²¹ one-dimensional PBNs were compared us- ⁷⁴⁵₇₄₅ ing the Hausdorff distance, as a lower bound of the matching distance to speed up computations. Next, these distances were normalized with mean equal to 0 and standard deviation equal to 1 so to obtain comparable values for different functions. Finally, as a dissimilarity measure between two shapes, we took the sum of the normalized Hausdorff distances.

The results proposed in Table 5 describe, for the octopus shape Figure 1(c) (269x256 pixels), the average time taken to extract the 1-dimensional PBNs for 0th homology on a half-plane of the foliation out of 40 halfplanes, the total time required to compute the size function on the 40 half-planes considered, and the average and the total number of points of the persistence diagrams on the 40 half-planes.

- H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification, Discrete & Computational Geometry 28 (4) (2002) 511–533.
- [2] G. Carlsson, A. Zomorodian, The theory

Table 5: Time requirements for the computation of the PBNs of the octopus image of Figure 1(c). Avg. time is the average time required to compute the PBNs on a single half-plane of the foliation, while Total time refers to the computation of the PBNs on 40 half-planes. Analogously, Avg. |C| is the average number of points of a persistence diagram on a single half-plane of the foliation, and Total |C| is the sum of the number of points of the persistence diagrams on 40 half-planes. These results are obtained using a processor T2400 at 1.83 GHz with 1 GB RAM.

Avg. time	Total time	Avg. $ C $	Total $ C $
0.421 sec	16.86 sec	10.325	413

- 746of multidimensional persistence, Discrete & 783747Computational Geometry 42 (1) (2009) 71–93. 784
- [3] A. Verri, C. Uras, P. Frosini, M. Ferri, On the 785
 use of size functions for shape analysis, Biol. 786
 Cybern. 70 (1993) 99–107. 787
- [4] S. Belongie, J. Malik, J. Puzicha, Shape 788
 matching and object recognition using shape 789
 contexts, IEEE Trans. Pattern Anal. Mach. In- 790
 tell. 24(4) (2002) 509–522. 791
 - K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, 792
 S. W. Zucker, Shock graphs and shape match-793
 ing, Int. J. Comput. Vis. 35(1) (1999) 13–32. 794

755

756

- [6] S. Biswas, G. Aggarwal, R. Chellappa, An efficient and robust algorithm for shape indexing response and retrieval, IEEE Transactions on Multimedia 12(5) (2010) 372–385.
- [7] S. Biasotti, L. De Floriani, B. Falcidieno, 799
 P. Frosini, D. Giorgi, C. Landi, L. Pa- 800
 paleo, M. Spagnuolo, Describing shapes by 801
 geometrical-topological properties of real func- 802
 tions, ACM Comput. Surv. 40 (4) (2008) 1–87. 803
- [8] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, 804
 Stability of persistence diagrams, Discrete 805
 Comput. Geom. 37 (1) (2007) 103–120. 806
- F. Cagliari, B. Di Fabio, M. Ferri, One- 807
 dimensional reduction of multidimensional 808
 persistent homology, Proc. Amer. Math. Soc. 809
 138(8) (2010) 3003–3017.
- [10] A. Cerri, B. Di Fabio, M. Ferri, P. Frosini, 811
 C. Landi, Betti numbers in multidimensional 812
 persistent homology are stable functions, 813
 Technical Report, Università di Bologna, 814
 http://amsacta.cib.unibo.it/2923/ (2010).
- M. d'Amico, P. Frosini, C. Landi, Natu- 816
 ral pseudo-distance and optimal matching be- 817
 tween reduced size functions, Acta Applican- 818
 dae Mathematicae 109 (2010) 527-554. 819

- [12] S. Biasotti, A. Cerri, P. Frosini, D. Giorgi, C. Landi, Multidimensional size functions for shape comparison, J. Math. Imaging Vision 32 (2) (2008) 161–179.
- [13] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, D. Morozov, Persistent homology for kernels, images, and cokernels, in: Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '09, SIAM, 2009, pp. 1011–1020.
- [14] T. Sebastian, P. Klein, B. Kimia, Recognition of shapes by editing shock graphs, in: ICCV'01, Vol. 1, 2001, pp. 755–762.
- [15] S. Eilenberg, N. Steenrod, Foundations of algebraic topology, Princeton University Press, 1952.
- [16] F. Cagliari, C. Landi, Finiteness of rank invariants of multidimensional persistent homology groups, Applied Mathematics Letters 24 (2011) 516–518.
- [17] L. Zadeh, Fuzzy sets, Information Control 8 (1965) 338–353.
- [18] D. Dubois, H. Prade, Fuzzy sets and systems
 Theory and applications, Academic Press, New York, 1980.
- [19] R. C. Veltkamp, M. Hagedoorn, State of the art in shape matching, Principles of visual information retrieval (2001) 87–119.
- [20] M.-M. Deza, E. Deza, Dictionary of Distances, Elsevier, Burlington, 2006.
- [21] M. C. Delfour, J.-P. Zolésio, Shapes and geometries: analysis, differential calculus, and optimization, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001.
- [22] S. Willard, General Topology, Addison-Wesley Publishing Company, 1970.

- M. Lesnick, The optimality of the interleaving distance on multidimensional persistence
 modules, arXiv, arXiv:1106.5305v2 (2011).
- 866 823 |24|N. Cavazza, M. Ethier, P. Frosini, T. Kaczyn-867 ski. C. Landi, Comparison of persis-824 tent homologies for vector functions: 868 825 from continuous to discrete and back, 869 826 Tech. Rep. 3205, Università di Bologna, 870 827 http://amsacta.cib.unibo.it/3205/ (Gennaio 828 871 2012). 829
- 830 [25] S. Biasotti, A. Cerri, P. Frosini, D. Giorgi, ⁸⁷²
 831 A new algorithm for computing the 2832 dimensional matching distance between size
 833 functions, Pattern Recognition Letters 32 (14)
 834 (2011) 1735 1746.
- [26] T. Bernier, J. Landry, New method for representing and matching shapes of natural objects, Pattern Recognition 36(8) (2003) 1711–1723.
- Y. Ebrahim, M. Ahmed, S.-C. Chau, W. Abdelsalam, A template-based shape representation technique, in: Image Analysis and Recognition, Vol. 5112, LNCS, 2008, pp. 497–506.
- ⁸⁴³ [28] Z. Tu, A. Yuille, Shape matching and recogni⁸⁴⁴ tion using generative models and informative
 ⁸⁴⁵ features, in: ECCV 2004, Vol. 3023, 2004, pp.
 ⁸⁴⁶ 195–209.
- R. Zhou, L. Zhang, Shape retrieval using pyramid matching with orientation features, in:
 IEEE International Conference on Intelligent Computing and Intelligent Systems, Vol. 4, 2009, pp. 431–434.

Appendices

A. Foliation method

An effective way of studying multidimen-854 879 sional PBNs, whose domain Δ^+ is a subset 855 of $\mathbb{R}^k \times \mathbb{R}^k$, is via a reduction to the one-856 881 dimensional case. This amounts to choose, 857 882 for each $(\vec{u}, \vec{v}) \in \Delta^+$, a strictly increasing 858 path through \vec{u} and \vec{v} , and to consider the ⁸⁸³ 859 one-dimensional filtration defined by this 884 860 path. 861 885

An appropriate choice of these paths allows us to obtain a foliation in half-planes of 887 Δ^+ such that the restriction of the multidimensional PBNs to these half-planes turns out to give one-dimensional PBNs with respect to a filtration corresponding to the lower level sets of a certain (computable) scalar-valued function.

We start by recalling that the following parameterized family of half-planes in $\mathbb{R}^k \times \mathbb{R}^k$ is a foliation of Δ^+ .

Definition A.1 ([12]). For every unit vector $\vec{l} = (l_1, \ldots, l_k)$ of \mathbb{R}^k such that $l_i > 0$ for $i = 1, \ldots, k$, and for every vector $\vec{b} = (b_1, \ldots, b_k)$ of \mathbb{R}^k such that $\sum_{i=1}^k b_i = 0$, we shall say that the pair (\vec{l}, \vec{b}) is admissible. We shall denote the set of all admissible pairs in $\mathbb{R}^k \times \mathbb{R}^k$ by Adm_k . Given an admissible pair (\vec{l}, \vec{b}) , we define the half-plane $\pi_{(\vec{l}, \vec{b})}$ of $\mathbb{R}^k \times \mathbb{R}^k$ by the following parametric equations:

$$\left\{ \begin{array}{l} \vec{u} = s\vec{l} + \vec{b} \\ \vec{v} = t\vec{l} + \vec{b} \end{array} \right.$$

for $s, t \in \mathbb{R}$, with s < t.

Since these half-planes $\pi_{(\vec{l},\vec{b})}$ constitute a foliation of Δ^+ , for each $(\vec{u}, \vec{v}) \in \Delta^+$ there exists one and only one $(\vec{l}, \vec{b}) \in Adm_n$ such that $(\vec{u}, \vec{v}) \in \pi_{(\vec{l},\vec{b})}$. Observe that \vec{l} and \vec{b} only depend on (\vec{u}, \vec{v}) . Intuitively, on each half plane $\pi_{(\vec{l},\vec{b})}$ one can find the PBNs corresponding to the filtration obtained by sweeping the line through \vec{u} and \vec{v} parameterized by $\gamma_{(\vec{l},\vec{b})} : \mathbb{R} \to \mathbb{R}^k$, with $\gamma_{(\vec{l},\vec{b})}(\tau) = \tau \vec{l} + \vec{b}$.

We now recall that this filtration corresponds to the one given by the lower level sets of a certain scalar-valued continuous function.

874

875

876

877

Theorem A.1 ([9, 10]). For every $(\vec{u}, \vec{v}) \in {}_{914}$ Δ^+ , let (\vec{l}, \vec{b}) be the only admissible pair such that $(\vec{u}, \vec{v}) \in \pi_{(\vec{l}, \vec{b})}$. Let moreover $\varphi_{(\vec{u}, \vec{v})} : X \to \mathbb{R}$ be the continuous filtering function defined by setting ${}_{915}$

$$\varphi_{(\vec{u},\vec{v})}(x) = \min_{i} l_i \cdot \max_{i} \frac{\varphi_i(x) - b_i}{l_i}.$$

Then $X\langle \vec{\varphi} \preceq \vec{u} \rangle = X\langle (\min_i l_i)^{-1} \varphi_{(\vec{u},\vec{v})} \leq s \rangle$. Therefore

$$\beta_{\vec{\varphi}}(\vec{u},\vec{v}) = \beta_{(\min_i l_i)^{-1}\varphi_{(\vec{u},\vec{v})}}(s,t) \,.$$

924 Finally, the most important property of 888 925 this foliation method is that it allows us 889 926 to obtain a distance for multidimensional 890 PBNs, denoted by D_{match} and described in 891 Appendix B, having a particularly simple 928 892 form, yet yielding the Stability Property 929 893 (S). 894 930

B. Multidimensional matching distance

We now recall the construction of the distance D_{match} to compare multidimensional PBNs. The key property of D_{match} is that it has the Stability Property (S). The construction is based on the foliation method described in Appendix A.

 D_{match} was presented, and proved to yield stability of (multidimensional) PBNs, in [12] for 0th homology, and in [9] under a restrictive max-tameness assumption on the filtering functions. In [10], it was proved to yield stability of PBNs also in the wider setting of just continuous functions.

910 **Definition B.1.** Let X be a triangulable 911 space endowed with continuous functions 912 $\vec{\varphi}: X \to \mathbb{R}^k, \ \vec{\psi}: X \to \mathbb{R}^k$. The multidimen-913 sional matching distance D_{match} between $\beta_{\vec{\varphi}}$

$$D_{match}\left(\beta_{\vec{\varphi}},\beta_{\vec{\psi}}\right)$$

= sup_{(\vec{u},\vec{v})\in\Delta^+} d_{match}($\beta_{\varphi(\vec{u},\vec{v})},\beta_{\psi(\vec{u},\vec{v})}$). (B.1)

We recall that d_{match} is a distance between one-dimensional PBNs that measures multi-bijections between persistence diagrams ([11, 8]). When k = 1, D_{match} coincides with the usual distance d_{match} between one-dimensional PBNs.

and $\beta_{\vec{\psi}}$ is defined as

916

917

918

922

923

The following theorem states the Stability Property of multidimensional PBNs with respect to this distance: Small changes in a vector-valued filtering function induce small changes in the associated multidimensional PBNs, with respect to the distance D_{match} .

Theorem B.1 ([10]). If X is a triangulable space, then D_{match} is a distance on the set $\{\beta_{\vec{\varphi}} \mid \vec{\varphi} : X \to \mathbb{R}^k \text{ continuous}\}$. Moreover,

$$D_{match}\left(\beta_{\vec{\varphi}},\beta_{\vec{\psi}}\right) \leq \left\|\vec{\varphi}-\vec{\psi}\right\|_{\infty}$$