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The key role of observers in data analysis



Data can be often regarded as functions

Some examples of data that can be seen as functions:
® An electrocardiogram (a function from R to R);

o A gray-level image (a function from R? to R);

e A computerized tomography scan (a function from a helix to R).




Data are processed by observers

Data have no meaning if no observer elaborates them.

An observer is an agent that transforms data while respecting its
symmetries.
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Observers are variables in data analysis

Data interpretation strongly depends on the chosen observer:




Our interest in data is greatly overrated

We are rarely directly interested in the data, but rather in how
observers react to their presence.




No data structure

Generally speaking, there is no structure in data. The structure of
data is a projection of the structure of the observer.




Representing observers as equivariant operators

Observers are structures able to change data into other data, and
usually do that by respecting some data symmetries, i.e., by
commuting with some transformations (equivariance).




Representing observers as equivariant operators

As a first approximation, observers can be represented as Group

Equivariant Operators (GEOs).
In this talk we will illustrate some results on the theory of Group
Equivariant Non-Expansive Operators (GENEOs).

Why “non-expansive”?

Because

1. observers are often assumed to simplify the metric structure of
data in order to produce meaningful interpretations;

2. non-expansiveness guarantees good topological properties.



Topological and metric basics for the theory of GENEOs



How could we represent observers?

nature, = .
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Towards a topological-geometrical theory of
group equivariant non-expansive operators for
data analysis and machine learning

Mattia G. Bergomi®', Patrizio Frosini®?**, Daniela Giorgi®* and Nicola Quercioli®??

We provide a general mathematical framework for group and set equivariance in machine learning. We define group equivariant
non-expansive operators (GENEOs) as maps b ion spaces iated with groups of transformations. We study the
topologl:al and metrlc properties of the space of GENEOs to evaluate their approximating power and set the basis for general

to il ize and p s. We define suitable pseudo-metrics for the function spaces, the equivariance
groups and the set of non-expansive operators We prove that, under suitable assumptlons, the space of GENEOs is compact and

convex. These results provide fund. I isometry-equivariant

ina ine learning persp e.By
non-expansive operators, we describe a simple strategy to select and sample operators. Thereafter, we show how selected and
sampled operators can be used both to perform classical metric learning and to inject knowledge in artificial neural networks.
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All begins with the space of admissible functions

Let X be a nonempty set. Let ® be a topological subspace of the set
Rff of all bounded functions ¢ from X to R, endowed with the
topology induced by the metric

Do(¢1,92) :== ||o1 — ¢2]|... -

We can see X as the space where we can make our measurements,
and ¢ as the space of all possible measurements. We will say that ¢
is the set of admissible functions. In other words, ® is the set of all
functions from X to R that can be produced by our measuring
instruments (or by other observers). For example, a gray-level
image can be represented as a function from the real plane to the
interval [0,1] (in this case X = R?).
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Perception pairs

Let us consider a group G of bijections g : X — X such that
Qed = pogec P forevery ¢ € d. We say that ($,G) is a
perception pair.

The choice of a perception pair states which data can be considered
as legitimate measurements (the functions in ®) and which group
represents the symmetries between data (the group G).

To proceed, we need to introduce suitable topologies on X and G.
Before doing that, we recall that the initial topology 7, on X with
respect to @ is the coarsest topology on X such that every function ¢
in ® is continuous.



A pseudo-metric on X

Let us define on X the pseudo-metric

Dx(x1,x2) = sup|@(x1) — ¢(x2)|.
pcd

Recall that a pseudo-metric is just a distance d without the property
d(Xl,XQ) =0 = x1=x.

Dx induces a topology 7p, on X.
The use of Dx implies that we can distinguish two points only if a
measurement exists, taking those points to different values.

Proposition

The topology Tp, Is finer than the initial topology T, on X with
respect to ®. If ® is totally bounded, then tp, coincides with T,.
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A pseudo-metric on X

The following properties are of use in our model.
Proposition

Every function in ® is non-expansive, and hence continuous.
Proposition
If ® is compact and X is complete, then X is compact.

In the following, we will usually assume that ¢ is compact and X is
complete (and hence compact).



Some magic happens: each bijection is an isometry

* Bijy(X) = {bijections g: X—Xs.t. dog,Pog™! C d};
¢ Homeog(X) ={homeomorphisms g:X—Xs.t. dog,dog™! C d};
¢ Isog(X) = {isometries g: X—Xs.t. dog, dog™t C d}.

Proposition
Bije(X) = Homeog (X) = Isos(X).



A pseudo-metric on G

Let us now focus our attention on a subgroup G of Homeog(X).
We can define a pseudo-metric Dg on G by setting

D¢ (g1,82) := sup Do(@og1, ¢ 0g2).
ocd

Theorem

G is a topological group with respect to D¢ and the action of G on ®
by right composition is continuous.

Theorem

If ® is compact and G is complete, then G is compact.



GEOs and GENEOs

Each pair (®,G) with G C Homeog(X) is called a perception pair.

Let us assume that two perception pairs (¢, G), (¥, H) are given, and
fix a group homomorphism T : G — H.

Each function F : ® — ¥ such that ’ F(pog)=F(9)oT(g) ‘ for
every ¢ € ®,g € G is called a Group Equivariant Operator (GEO)
associated with the homomorphism T.

If F is also non-expansive (i.e., ’ Dy (F(¢1),F(92)) < Do (1, ¢2) ‘ for
every @1, @2 € ®), then F is called a Group Equivariant Non-Expansive
Operator (GENEO) associated with the homomorphism T.




An example of GENEO

Let us assume to be interested in the comparison of the distributions
of temperatures on a sphere, taken at two different times:

Let us also assume that only two opposite points N,S can be
localized on the sphere.




An example of GENEO

Let us introduce two perception pairs (¢, G), (¥, H) by setting
[ ] X = 52
e ® = set of 1-Lipschitz functions from S2 to a fixed interval [a, b]

e G = group of rotations of S? around the axis N — S
and

e Y = the equator S! of §2

o W = set of 1-Lipschitz functions from S* to [a, b]
e H = group of rotations of S!



An example of GENEO

This is a simple example of GENEO from (®, G) to (¥, H):

e T(g) is the rotation h € H of the equator S! that is induced by
the rotation g of S2, for every g € G.

e F(@) is the function y that takes each point y belonging to the
equator S! to the average of the temperatures along the meridian
containing y, for every ¢ € ®;

We can easily check that F verifies the properties defining the
concept of group equivariant non-expansive operator with respect to
the isomorphism T : G — H.

In plain words, our GENEO simplifies the data by transforming
“temperature distributions on the earth” into “temperature
distributions on the equator”.
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Two key results (and two good news for applications)

Let us assume that a homomorphism T : G — H has been fixed.
Let us define a metric Dgeneo on GENEO ((®, G), (¥, H)) by setting

Dgeneo (F1, F2) = SUED‘P(FI((P)v Fa(9)).
pc

Theorem

If ® and W are compact, then GENEO ((®,G), (¥, H)) is compact
with respect to DGeNgo-

Theorem
If V is convex, then GENEO ((®, G),(¥,H)) is convex.



Two key observations (1)

e While the space of data is often non-convex (and hence averaging
data does not make sense), the assumption of convexity of W
implies the convexity of the space of observers and allows us to
consider the “average of observers”.




Two key observations (2)

e Our main goal is to develop a good geometric and compositional
theory to approximate an ideal observer. In our model, “to
approximate an observer” means to look for a GENEO F that
minimizes a suitable “cost function” ¢(F). The cost function
quantifies the error that is committed by taking the GENEO F
instead of the ideal observer. Since the space of GENEOs is
compact and convex (under the assumption that the data spaces
are compact and convex), if the cost function c(F) is strictly
convex we have that there is one and only one GENEO that best
approximates the ideal observer.



Building linear and nonlinear GENEOs



Elementary methods to build GENEOs

In order to use our model profitably we need constructive methods to
produce GENEOs in the presence of pre-established data and
equivariance groups.

Without going into technical details, here we simply observe that
under reasonable assumptions

e the composition of GENEOs is still a GENEO;

e the maximum and the minimum of GENEOs are still GENEOs;
e the translation of a GENEO is still a GENEO;

e the convex combination of GENEOs is still a GENEO.

(But there’s much more than that...)



Permutant measures

Let us consider the set ® = RX = R" of all functions from a finite set
X ={x1,...,xa} to R, and a subgroup G of the group Bij(X) of all
permutations of X.

Definition

A finite (signed) measure u on Bij(X) is called a permutant measure
with respect to G if every subset H of Bij(X) is measurable and u is
invariant under the conjugation action of G (i.e., u(H) = u(gHg )

for every g € G).




An example of permutant measure

Let us consider the set X of the vertices of a cube in R3, and the
group G of the orientation-preserving isometries of R3 that take X to
X. Let my,m, w3 be the three planes that contain the center of mass
of X and are parallel to a face of the cube. Let h; : X — X be the
orthogonal symmetry with respect to 7;, for i € {1,2,3}.

We can now define a permutant measure p on the group Bij(X) by
setting t(h1) = w(h2) = u(hs) = ¢, where c is a positive real number,
and p(h) =0 for any h € Bij(X) with h ¢ {h1, ho, h3}.




Representation Theorem for linear GENEOs

Theorem (Representation Theorem for linear GENEOs)

Let us assume that G C Bij(X) transitively acts on the finite set X
and that F is a map from RX to RX. The map F is a linear GENEO
from RX to RX with respect to the identical homomorphism

idg: g — g if and only if a permutant measure | with respect to G
exists, such that F(¢) = Ypegij(x) @h~t w(h) for every ¢ € RX, and

Yhesijx) ln(h)] < 1.



Intelligence and contradiction



Intelligence and contradiction

The representation of observers as functional
operators has another important consequence:
a sort of "principle of contradiction".

Available online at www.sciencedirect.com

ScienceDirect Cogpitive Systems

ELSEVIER Cognitive Systems Research 10 (2009) 297-315

www.elsevier.com/locate/cogsys

Does intelligence imply contradiction?
Action editor: Vasant Honavar

P. Frosini*

Department of Mathematics and ARCES, University of Bologna, 1-40126 Bologna, Italy
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Intelligence and contradiction

What do we mean by contradiction?

My name is My name is
@ Drumi Jean
and I am and I am
from Bulgaria .;) from France




Intelligence and contradiction

Every sufficiently intelligent entity is contradictory

Tractatus
Logico-Philosophicus

»
LUDWIG WITTGRNSTEIN

i i by
BERTRAND RUSSELL, FRS.

v vorx
HARCOURT, BRACE & COMPANY, INC.
LONDO: KEGA PAVL TRENCH, TRURNER 4 GO, 170
-

Ludwig Josef Johann Wittgenstein

| proposizione.
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Intelligence and contradiction

Equivalently, we can say that

The behavior of any sufficiently
intelligent entity is unpredictable.




Intelligence and contradiction

How can we prove that?
We can use an approach based on cellular automata.
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Intelligence and contradiction

Sketch of proof:

* An observer is identified (understood as an operator who
transforms the functions that represent the states of the cellular
automaton into functions that describe the perceived entity and
the environment that surrounds it).

e The intelligence of an entity is defined as its ability to survive in
the environment according to the judgment of the observer.

e It is proved that there is a threshold for intelligence (dependent on
the number of states that the observer can associate with the
entity and the environment), beyond which the observed entity
appears necessarily contradictory to the chosen observer.

In this model, contradictoriness and non-predictability do not appear
as limitations of intelligent structures but as necessary conditions for
the development of complex intellectual behaviors.

b



Intelligence and contradiction

Theorem. Let E be an entity with a finite lifespan and assume that its
environment is deterministic. If the intelligence of E is greater than the
product of the cardinalities of the sets P,; and P, the entity must
necessarily be contradictory.

ATTENTION! The theorem does not assert that
intelligent entities must change their behavior
(this fact is obvious) but that they must do so
without the observer understanding why.

Pent = set of states of E recognized *Z ;
by the observer.
Peyy = set of environmental states
recognized by the observer. )
"l expect you all to be independent,

innovative, critical thinkers who will
do exactly as | say!"




Intelligence and contradiction

A precise formulation of this approach can be found here:

P. Frosini, Does intelligence imply contradiction?, Cognitive Systems
Research, vol. 10 (2009), n. 4, 297-315.

(A synthetic and beautiful slideshow of this paper has been made by
Mattia G. Bergomi. It is available at the link
https://mgbergomi.github.io/Contradiction/.)


https://mgbergomi.github.io/Contradiction/

Intelligence and contradiction

We have seen that every agent A appears unpredictable in the eyes of
a fixed observer if the “intelligence” of A exceeds a threshold
expressed by the product of the number of states that the observer
can perceive in the agent and in the environmental context. This
implies that to have predictability of behavior it is necessary to choose
models in which the aforementioned threshold is greater than the
desired intelligence value.




How can we use GENEOs in applications?



What happens when we apply GENEOs to our data?

An example of use: comparison between real dice and fake dice.
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(Experiment and computations by Giovanni Bocchi)
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What happens to data when we apply GENEOs?

We produced 10000 dice (a training set of size 7000 and a test set of
size 3000), then we applied PCA to the test set and to the test set
transformed by a suitable GENEO, optimized on the training set:

-3 2 -1 0 1 2 3 -i0 -05 00 05 10

WITHOUT GENEOS WITH GENEOS

For each die the first two principal components are plotted. Blue
points are associated with real dice, while orange ones with fake
dice. The GENEO we use was built by a convex combination of 3

GENEOs defined by permutant measures.
b



A real application: finding pockets in proteins

GENEOnet: A new machine learning paradigm based on Group
Equivariant Non-Expansive Operators. An application to
protein pocket detection.

Giovanni Bocchi 1, Patrizio Frosini 2, Alessandra Micheletti !, Alessandro Pedretti 3
Carmen Gratteri 4, Filippo Lunghini 5, Andrea Rosario Beccari °* and Carmine Talarico °

' Department of Environmental Science and Policy, Universita degli Studi di Milano

2 Department of Mathematics, Universita degli Studi di Bologna

3 Department of Pharmaceutical Sciences, Universita degli Studi di Milano

4 Dipartimento di Scienze della Salute, Universita degli Studi “Magna Greecia di Catanzaro”

5Dompé Farmaceutici SpA

https://arxiv.org/ftp/arxiv/papers/2202/2202.00451.pdf


https://arxiv.org/ftp/arxiv/papers/2202/2202.00451.pdf

A real application: finding pockets in proteins

Model predictions for protein 2QWE. In Figure a) the global view of the prediction

is shown, where different pockets are depicted in different colors and are labelled with their

scores. In Figure b) the zoomed of the pocket containing the ligand is shown.
The search for the pockets was carried out by identifying an optimal
GENEO in the convex hull of 8 GENEOs (each focused on a
particular property of the pockets).




A real application: finding pockets in proteins

Here are the results of our experiments:
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Please note that GENEOnet uses 17 parameters, while a CNN such as
DeepPocket requires 665122 parameters.




The main point in our approach

In perspective, we are looking for a good compositional theory for
building efficient and transparent networks of GENEOs.

Some preliminary experiments suggest that replacing neurons with
GENEOs could make deep learning more transparent and
interpretable and speed up the learning process.
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GENEOs and Machine Learning

For more details about the use of GENEQOs in Machine Learning:

EUROPEAN —
MATHEMATICAL | Login ‘
SOCIETY D

— Membership v Services v Activities v  Society Overview v

E_IVIS Magazine MAG » ONLINE FIRST » 24 APRIL 2023

A new paradigm for artificial intelligence based
on group equivariant non-expansive operators

Alessandra Micheletti
Universita degli Studi di Milano, Italy

e A. Micheletti, A new paradigm for artificial intelligence based on
group equivariant non-expansive operators, In: EMS Magazine,
Online First, 24 April 2023.

e https://ems.press/content/serial-article-files/27673
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Current research projects

CNIT / WiLab - Huawei Joint Innovation Center (JIC)

Project on GENEOs for 6G ’7

WILAE &% HuAwE!




Current research projects

Horizon Europe (HORIZON)

Call: HORIZON-CL4-2023-HUMAN-01-CNECT
io: Project: 101135775 — PANDORA

Funding: approximately 9 million euros.

Task 3.3 - Leveraging domain knowledge for explainable learning:
This task aims to investigate the use of domain knowledge in the
development of explainable Al models. Tools like GENEOs for
applications in TDA and ML and new theoretical methods of GENEOs
for explainable Al will be used.
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