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ABSTRACT. Let us consider two C* closed homeomorphic manifolds M, A and two C* functions
¢: M= R, ¥: N = R, called measuring functions. The natural pseudodistance d between the
pairs (M, ¢), (N, ) is defined as the infimum of O(f) def maxpem [(P) — (f(P))|, as f varies
in the set of all homeomorphisms from M onto A. In this paper we show that size functions allow
us to get a lower bound for d. Furthermore, we prove that this lower bound can be assumed equal
either to |¢' — ¢"| or to %|c¢' — c”|, where ¢, ¢ are two suitable critical values of the measuring
functions.
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1. INTRODUCTION

Comparing two homeomorphic closed manifolds ¢,V usually means quantifying
the difference between the structures we are considering on them. These structures
can often be described by two functions ¢, from two suitable manifolds M, N to
real numbers. As an example, a Riemannian structure on a smooth manifold &/ can
be seen as a real-valued function defined on the Whitney sum M = T'(U) & T(U).

One way of making our quantitative comparison is to compute the infimum of
an operator © defined on a suitable set H of homeomorphisms. By assuming that
two C! closed homeomorphic manifolds, M, A/, are given, we are naturally led to
study the value d “J inf feamn) maxpen |@(P) — (f(P))| for every arbitrary pair
of C! functions ¢ : M — R, ¢ : N = R, where H(M,N) denotes the set of all
homeomorphisms from M onto A/. We shall call ¢ and ¢ measuring functions.
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If d = 0 then for every € > 0 a homeomorphism exists for which the difference
between the values taken by the measuring functions at corresponding points is less
than e. On the other hand, if the infimum d is large, we know that every homeomor-
phism between the considered manifolds must substantially change the values taken

by our measuring function.

This procedure resembles the ones used in defining the Fréchet distance (cf. [1]),
the Lipschitz distance (cf. [9]) and, in some senses, the Teichmiiller distance (cf. [14]).
The same kind of approach is followed in [5].

We underline that the measuring functions can be arbitrarily chosen and there are
many examples of functions whose extrema have been used extensively for studying
and comparing manifolds (cf., e.g., [2, 9, 10, 11, 12]).

Because of these properties and their usefulness in modelling minimization prob-
lems in Geometry, the functional © and the value d seem to be worth studying from
a mathematical point of view.

Furthermore, in recent years an applicative interest in this subject has developed.
In particular, the purpose of comparing “shapes” of manifolds and topological spaces
to solve Computer Vision problems has made the computation of d a useful task, to-
gether with its “twin” and strictly related concept of size function. For more theoret-
ical details and examples of practical applications we refer to [3, 7, 13, 15, 16,-17, 18].

All these reasons, together with the challenging difficulty in computing d, have

motivated our research.

In this paper we shall prove that size functions allow us to get a lower bound for d.
This inequality is given in Theorem 1. Furthermore, we shall find the supremum s of
such a lower bound by showing (Theorem 2) that s equals either |¢' —¢"| or $|¢/ —¢"|,
where ¢, ¢ are two suitable critical values of the involved measuring functions ¢ and
1. These results allow us to get information about d indirectly and simply, avoiding
having to study the set H(M,N), which is usually very difficult to manage. They
should be compared with the results obtained in [4], where we prove that a suitable
multiple of d by a positive integer k coincides with the distance between two critical

values of the functions ¢, 9.

In the following Section 2 we formally set out the problem we are studying and
introduce some definitions, while our results are given in Section 3.

2. SETTING THE PROBLEM

2.1. The natural pseudodistance. Let us consider the set Size, of all pairs (M, ¢),
where M is a closed C' n-manifold and ¢ : M — R is a C! function. We shall call
(M, ) an (n-dimensional) size pair and ¢ a measuring function.
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Assume (M, @), (N, ) are two size pairs. We shall denote by H(M, N) the set
of all homeomorphisms from M to N.

Definition 1. If H(M,N) # 0, the function © : HM,N) = R
O(f) = max |p(P) — % (f(P))l

is called natural measure with respect to the measuring functions ¢ and 1.

In plain words, © measures how much f changes the values taken by the mea-

suring functions at corresponding points.

Definition 2. .We shall call natural pseudodistance the pseudodistance
d: Size, x Size, & RU {+00} s0 defined:

infrenmn O(F) of HM,N) # 0

+00 otherwise.

§((M,9), NV, 9)) = {

In the following, the symbol d will denote the value of the natural pseudodistance
computed between the pairs (M, ¢) and (N, 1)) we are considering. As we previously
explained, such a pseudodistance gives a method for comparing two manifolds with
respect to the measuring functions we have chosen.

We point out that ¢ is not a distance, since two size pairs can have a vanishing
pseudodistance without being equal. On the other hand, the symmetry property and
the triangle inequality can be trivially proved.

Now we give two simple examples in order to make our definitions clear.

Example 1. In R® consider the unit sphere S of equation z? + y% + 22 = 1 and the
ellipsoid £ of equation z2+4y?+922 = 1. On S and £ consider respectively the mea-
suring functions ¢ and v that take every point of S and £ to the Gaussian curvature
of the considered manifold at that point. We have 6 ((S, ), (€,v)) = 35. In fact,
©(8) = {1}, while %(£) = [4/9,36], and therefore for every f € H ((S, ), (£,%)) it
results that ©(f) = 35.

Example 2. Let us consider the size pairs (M, ) and (N,v), where M and N
are the smooth surfaces shown in Figure 1 and the measuring functions o, are the
ordinate function.

It is easy to build a sequence (f,) of homeomorphisms such that ©(f,) — 3|¢(A)—
@(B)|. This implies that the natural pseudodistance d between the size pairs (M, )
and (N, ) verifies the inequality

45 3l(4) - o(B)|.
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FIGURE 1. For the size pairs (M, ¢), (N, %) no homeomorphism exists
having natural measure equal to the natural pseudodistance. In this
case d = Lp(A) — p(B)|.

Moreover, no homeomorphism between M and N eists for which ©(f) < 3|¢(A)—
@(B)|. In order to prove that, we consider a closed set K, as in Figure 1 (K is the
closure of the connected component of A in the open set p~!((—o0,2))).

Suppose a homeomorphism f : M — N egists for which O(f) < tle(A) —(B)|.
Call C a point of f(K) at which Yfk) takes its minimum. C cannot be a critical
point for ¢ since otherwise we should have ©(f) > L|p(A) — ¢(B)|, because of the
values that ¢ takes at its two critical points. Hence C € 0f(K), f~1(C) € 0K and
P(FH(C)) = p(B). It follows that $(C) > H(p(A) + o(B)).

Since A is an interior point of K we get (f(A)) > ¢(C) and therefore ¢(f(A)) >
2(p(A) + ¢(B)). Hence it should follow

[0(4) = (FAN] = $(F(4)) - 0(4) > 2 (o(B) - 9(4) = 510(4) - (B,

against the hypothesis about O(f).
1t follows that ©(f) > 3|p(4) — ¢(B)| for every f € H(M,N).
Therefore
a2 3le(4) ~ p(B)|.
In Section 3.2 we shall get the same inequality in a simpler and more direct way,
using the lower bound.we are going to prove in this paper.
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In conclusion, §((M, @), (N, %)) = 3]o(A) — ¢(B)].

In general, the natural pseudodistance is far from being easily computable as in
the previous Examples 1 and 2. In Example 1, for every homeomorphism f € H(S,£)
we have that ©(f) equals the Hausdorfl distance 6y (¢(S),¥(E)) between the sets
©(S) and Y(€) in R. It is clear that § (M, ), (N,)) is always greater than or
equal to dg (p(M),¥(N)) and therefore © (f) must be the natural pseudodistance
we want to compute. We also point out that, in Example 1, the images of ¢ and
are different sets, so the natural pseudodistance is trivially positive.

In Example 2 the natural pseudodistance is strictly greater than the (vanishing)
Hausdorft distance between the images of the two measuring functions.

Remark 1. The term “natural” is used in order to distinguish the pseudodistance
studied here from other pseudodistances we can define between submanifolds of the
Euclidean space and between manifolds paired with measuring functions (cf. [5]).

Further information about the natural pseudodistance can be found in [4].

2.2. Basic definitions and results about size functions. Assume a size pair
(M, ) is given.

Definition 3. For every real number y, we shall say that two points P,Q) € M are
(p < y)-homotopic if and only if either P = @ or a continuous path « : [0,1] —» M
exists in M joining P and Q such that ¢(y(t)) < y for every ¢t € [0,1]. In case it
exists, v will be called a (¢ < y)-homotopy from P to Q. If P and Q are (¢ < y)-
homotopic we shall write P 2, Q.

It is easy to see that the relation of (¢ < y)-homotopy is an equivalence relation
on M and all its subsets for every y € R.

Definition 4. For every z € R let M(p < z) denote the set {P € M : p(P) < z}.
Consider the function £(a4,4) : R* = NU{+oo} defined by setting &, (z, y) equal to
the number of equivalence classes into which M({p < z) is divided by the equivalence

relation of (p < y)-homotopy. We shall call £(as,y) the size function associated with
the pair (M, ¢).

An example of two simple size functions is given in Figure 2. Here M and N are
the surfaces we spoke about in Example 2 and each measuring function is the ordinate
of the considered point. The number displayed in each region denotes the value taken

by the size function in that region. For the main properties of size functions we refer
to [6] and [7].
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p=9

)

FIGURE 2. Two simple examples of size functions.

Remark 2. For z <y, computing {a,e)(Z,y) is equivalent to counting the arcwise
connected components of the set M{p < y) that contain at least one point P, such
that o(P) < z.

We observe that every size function is locally constant at each point where it is
continuous. The next result is an immediate consequence of Corollary 2.3 in [6]:

Proposition 1. Assume that x and y are not critical values for the measuring func-
tion ¢ and that x < y. Then L) 1s locally constant at (z,y).

This statement constrains the position of discontinuities in size functions. The
example in Figure 2 shows that, for each discontinuity point (z,y) with z < ¥, at
least one of the values z,y is critical for the measuring function.

For more details about size functions we refer to [5, 6, 7, 8].
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3. A LOWER BOUND FOR ¢

3.1. The main result. Now we shall prove the following result, allowing us to find
a lower bound for the natural pseudodistance.

Theorem 1. Let (M, ) and (N,v) be two size pairs. If Liap)(2,y) > L) (€, M)
then 6((M, ), (N, 9)) > min{{ — z,y — n}.

Proof. First of all we observe that £aq)(z,7) > 0 and hence M{p < z) # 0. If it
were true that d < min{{ — z,y — n} then a homeomorphism f : M — N would
exist such that
O(f) <min{¢ — z,y — n}.

This would allow us to construct an injective function f* : M(p <)/, —
N <€)/, in the following way: for every C' € M(p < 1)/~ ., we set f*(C)
equal to the equivalence class of f(Pc) in N(¢ <€)/, , where Pc € M is an ar-
bitrarily fixed point in the class C (the function f* will depend on the point we have

chosen in each class).

This function is well defined, since Pc € M{p < z) implies

P(f(Pc)) < (Pe) +O(f) <z +(§ —x) =¢
and hence f(P¢) € N (¢ <§). -

In order to prove injectivity, let us suppose f*(C) = f*(C'). Then either the
relation f(Pc) Zy<y f(Pcr) holds with f(Pc) # f(Pcr), or f(Pc) = f(Pcr). In the
former case a path « : [0,1] — N exists, joining f(Pc) to f(Pcr), along which the
function 1) takes values smaller than or equal to 1. By observing that

e(f P o) S v(Y(®) +O(f ) =v(v(#) +O(f) <n+(y—n) =y,

we obtain that f~!o+ is a path joining P¢ to Por along which the measuring function
¢ takes values smaller than y. Therefore Pc =,<, Pc and hence C = C’'. In the
latter case Pc = Po and so, once more, C = C'.

The injectivity of f* contradicts the hypothesis £ aq,)(,y) > L) (€, 7). ]

3.2. The optimal lower bound for §. As an example, let us apply the previ-
ous Theorem 1 to the surfaces M, N in Example 2, displayed in Figure 2. We
observe that the inequalities £iaq,e)(2,¥) > v y)(€,n) and min{é — z,y —n} >0
hold if and only if £ > z,7 < y and (z,y) and (&,7) belong to the triangle T =
{(a,b) e R? | a < b,a >1,b < 2}, where the size functions £(a,y) and £(uy) take the
value 2 and 1, respectively. Hence we are interested in finding the supremum of
min {{ — z,y — n} for (z,y),(&,n) €T, £ > z and n < y, so that the lower bound
given in Theorem 1 is as good as possible.
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In our case the supremum s we are looking for is not a maximum. In fact the
set T' is not closed and it can easily be seen that the supremum s coincides with the
value min {€ — 1,2 — 7} where £ = ;j = 3/2. Hence we immediately have

1
dZSZ“,
2

that is half the distance between the two critical values 1 and 2 of ®.

Now we shall show that the fact the critical values of the measuring functions are

involved in the computation of s is not accidental.

Definition 5. Let

A={((z,9),(&n) eR*xR?* | £ > 2,1 <y, Lo (7, y) > bvy(E,m)}

and, in case A # 0, let

s= sup {min{{—z,y—n}}.
((z,y),(¢m)) €A
In other words, s is the best nonnegative lower bound we can get for ¢ by applying
Theorem 1. Moreover, that theorem implies that if M and N are homeomorphic then
the value s is finite, since it is upperly bounded by the natural pseudodistance.

Remark 3. If the measuring functions ¢ and v are Morse functions, the correspond-
ing size functions are locally right-constant in the half-plane {(z,y) € R?|z < y} in
both the variables (cf. [6], Corollary 2.1), and the number of the critical values of ¢
and v 1is finite. Therefore Proposition 1 implies that, if a point (z,y) ezists such that
T <y and ) (T,Y) # b ) (,Y), then an open ball B ezists such that {a,) and
Un ) take two different constant values in B. It follows that, possibly by ezchanging
the order of the two considered size pairs, A # 0 and s > 0. Hence Theorem 1 can
always produce a positive lower bound when the size functions do not coincide in the
open half-plane {(z,y) € R*z < y}, provided that the size pairs are conveniently
ordered and the measuring functions are Morse functions.

The next theorem relates s to the critical values of the measuring functions.

Theorem 2. Assume A # ) and s < +o0o. The value s is equal either to the distance
between a critical value of ¢ and a critical value of ¥ or to half the distance between
two critical values of .

Proof. If s = 0 our thesis holds trivially by taking two coinciding critical values of ¢.
Hence we can assume that s > 0. Incidentally, we observe that Remark 3 does not
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FIGURE 3. The case 7,5 € C, U {c} and £,77 € Cy U {c}. The dotted
lines represent the points with at least one coordinate equal to a critical

value of the measuring function.

imply that s > 0, since ¢ and 1 are not assumed to be Morse. For every ¢ € R that
is not a critical value either for ¢ or for 1, let us consider the square

Te={(z,y) €R*| |z| < ¢ lyl < c}

and the compact set
A.=AN (T, xT,).

For every large enough ¢ we have that A, # 0 and the value
{min {6 —I,Y— 7’}}

is defined. In plain words, we want to study s by approximating its value by s, which

Se = max
C ((=zy)(Em)€EAC

is easier to study, since it is a maximum on a compact set instead of a supremum on
A.

Choose a pair ((Z,7), (§,7)) € A. such that s. = min{& —Z,§ — 7} (it exists
since A, is compact). In the following the symbols C, and Cy will denote the sets of
critical values of ¢ and 1, respectively.

We shall prove that it is not restrictive to assume both the following properties:
1) z and 7 belong to C, U {c};

2) either £ and 7 belong to Cy U {c} or E =7 = Tty

2

Define L¢, as the set of all points of R? having at least one coordinate in the
set C, U {c}. Let Lj be the analogous set for 9. Consider the line A = {(z,y) €
R?|z = y}. Proposition 1 implies that, in every connected component of the set

['.—(LgUA), the function £(uqy) is constant. Similarly, in every connected component
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P / Y /
¢ A ¢
(M,p) _ W) ;

T o :

e
a1

FIGURE 4. The case z,j € C, U {c} and £ = 7 = z_-;—y The dotted
lines represent the points with at least one coordinate equal to a critical

value of the measuring function.

of the set I'; — (L U A) the function £ y) is constant. Moreover, we observe that
the connected components of those sets are either triangles or rectangles. Therefore,
it is not restrictive to assume that (Z,7) is a vertex of one of the rectangles that are
connected components of the set I'.— (L, UA) (see Figure 3). In fact, we can move the
original point to a vertex without decreasing the value min {f_ - Z,7— 17} or leaving
the closure of the considered connected component. It follows that Property 1) holds.

Furthermore, the point (£,7) can be chosen in the following way.

Call Z = ((Z + 9)/2, (Z + §)/2) the orthogonal projection of (Z,) onto the line
A. Also in this case it is not difficult to prove that the point (£,7), maximizing the
value min {{ — Z, 4 — n} can be assumed to be either the vertex of one of the triangles
and rectangles that are connected components of I'; — (Lg, U A) or the point Z (see
Figure 3 and Figure 4). Therefore Property 2) holds.

Properties 1) and 2) imply that s, € {|¢' —¢"|: ¢ € C, U {c},c" € C, U {c}}u
{3ld =" : ¢, " € Cp,U{c}}. Since s, < s < +oo and C, U Cy is bounded, it must
be that s, & {|c' —c|,|c" — c|, 2| —c| : ¢ € Cp,c" € Cy} when c is large enough. It
follows that s, € {|c — ¢"| : ¢ € Cy,c" € Cy} U {%Ic’ -d:d,d e C’q,} for every
large enough c. Therefore we can find a divergent sequence (c;) for which (s,,) is
defined, and two sequences (c;), (c) such that, for every index i, either s, = |c, — /|
with ¢, € Cy, ¢ € Cy or s, = |c, — ¢/| with ¢},c! € C,. Incidentally, we observe
that the hypothesis s < 400 must be assumed, since the manifolds M and A could
be non-homeomorphic,
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Since C, and Cy, are compact sets, if the former condition holds for an infinite

number of values of the index i, we can assume (c;) and (c}') converging to two values

/
Cips

¢y in C, and Cy, respectively (possibly by extracting two suitable subsequences).

Otherwise, the latter condition holds for an infinite number of values of the index 1,

and we can assume that (c}) and (c]) converge to two values c;,, c;, in C,,, respectively.

: . _ I T . / /" 1 /"
In conclusion, s = sup, s, = lim; s S, equals either |c/, — cy| or 5]c,, — ¢y, and

hence our thesis is proved. O
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