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The "trivial" problem of comparing shapes

What is shape?

A "trivial" question: What is shape?

SIMPLE ANSWER: Shape is what is left after removing scale
and rotation.
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The "trivial" problem of comparing shapes

What is shape?

"There is always an easy solution to every human problem–
neat, plausible, and wrong."

Henry Louis Mencken (1880-1956)
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The "trivial" problem of comparing shapes

What is shape?
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The "trivial" problem of comparing shapes

What is shape?

What is a pipe?
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What is shape?
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The "trivial" problem of comparing shapes

What is shape?
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The "trivial" problem of comparing shapes

What is shape?

Pipe and passport of René and Georgette Magritte-Berger
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The "trivial" problem of comparing shapes

What is shape?
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The "trivial" problem of comparing shapes

What is shape?

Buttons
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The "trivial" problem of comparing shapes

What is shape?
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The "trivial" problem of comparing shapes

What is shape?

Cups
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The "trivial" problem of comparing shapes

The key role of the observer

Every comparison of properties involves the presence of
an observer perceiving the properties
a methodology to compare the properties

It follows that shape comparison is affected by subjectivity.

Let us give some examples illustrating this fact.
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The "trivial" problem of comparing shapes

The key role of the observer

Truth often depends on the observer:
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The "trivial" problem of comparing shapes

The key role of the observer

Truth often depends on the observer:

Julian Beever
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Julian Beever
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The "trivial" problem of comparing shapes

The key role of the observer

Truth often depends on the observer:

Magnifying glass or cup of coffee?
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The "trivial" problem of comparing shapes

The key role of the observer

Truth often depends on the observer:

A surfacing submarine?
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The "trivial" problem of comparing shapes

The key role of the observer

Truth often depends on the observer:

Bump
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The "trivial" problem of comparing shapes

The key role of the observer

Truth often depends on the observer:

A yellow frisbee is floating in the air
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The "trivial" problem of comparing shapes

The key role of the observer

Truth often depends on the observer:

What is going on here?
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The "trivial" problem of comparing shapes

The key role of the observer

Truth often depends on the observer:

Coffee or owl?
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The "trivial" problem of comparing shapes

The key role of the observer

Truth often depends on the observer:

Duck or rabbit?
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The "trivial" problem of comparing shapes

The key role of the observer

Truth often depends on the observer:

The black shapes are NOT the camels, the narrow stripes below the
shapes are. The black shapes are the shadows of the camels, as this
photo was taken from overhead.
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The "trivial" problem of comparing shapes

The key role of the observer

Truth often depends on the observer:

How many rabbits?
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The "trivial" problem of comparing shapes

The key role of the observer

Truth often depends on the observer:

Michael Jantzen, "Deconstructing the Houses".
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The "trivial" problem of comparing shapes

The key role of the observer

Truth often depends on the observer:

Crooked House (Krzywy Domek) by Szotyńscy and Zaleski, Sopot, Poland.
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Truth often depends on the observer:

Crooked House (Krzywy Domek) by Szotyńscy and Zaleski, Sopot, Poland.
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The key role of the observer

Truth often depends on the observer:

Crooked House (Krzywy Domek) by Szotyńscy and Zaleski, Sopot, Poland.
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The "trivial" problem of comparing shapes

The key role of the observer

Truth often depends on the observer:

Crooked House (Krzywy Domek) by Szotyńscy and Zaleski, Sopot, Poland.
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The "trivial" problem of comparing shapes

The key role of the observer

Truth often depends on the observer:

"Glued in Florence" by Christiaan Triebert
.
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The "trivial" problem of comparing shapes

The key role of the observer

Truth often depends on the observer:
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The "trivial" problem of comparing shapes

The key role of the observer

The concept of shape is subjective and relative. It is based on the act
of perceiving, depending on the chosen observer. Persistent
perceptions are fundamental in order to approach this concept.

“Science is nothing but perception.” Plato
“Reality is merely an illusion, albeit a very persistent one.” Albert
Einstein
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Trying to put some geometrical order in the chaos
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Trying to put some geometrical order in the chaos

Our formal setting

In shape comparison objects are not accessible directly, but only
via measurements made by an observer.
The comparison of two shapes is usually based on a family F of
"measuring functions", which are defined on a set M (set of
measurements) and take values in a set V (set of measurement
values). Each function in F represents a measurement obtained
via a measuring instrument.
In most cases, the family F of measuring functions is invariant
with respect to a given group G of transformations, that depends
on the type of measurement we are considering.
A G-invariant pseudo-metric dF is available for the set F , so that
we can quantify the difference between the measuring functions in
F . (pseudo-metric = metric without the property
d(x , y) = 0 =⇒ x = y)
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Trying to put some geometrical order in the chaos

Example 1

M = S2 (the globe’s surface), V = R (the set of temperatures)
Every f ∈ F is a function associating each point of S2 with its
temperature.
G is the set of rigid motions of S2 (we observe that F ◦G = F )
We can set dF (f1, f2) = infg∈G supx∈M |f1(x)− f2(g(x))|
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Trying to put some geometrical order in the chaos

Example 2

M is the vase surface, V = R3 (the set of colors)
Every f ∈ F is a function associating each point of M with its color.
G is the set of rotations of M around the z-axis (we observe that
F ◦G = F )
We can set dF (f1, f2) = infg∈G supx∈M ‖f1(x)− f2(g(x))‖
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Trying to put some geometrical order in the chaos

Example 3

A different way of “measuring” the vases...

M = S1, V = {the set of pictures}
Every f ∈ F is a function associating each point of S1 with a
picture.
G is the set of rotations around the z-axis, and F ◦G = F
We can set dF (f1, f2) = infg∈G supx∈M ‖f1(x)− f2(g(x))‖
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Trying to put some geometrical order in the chaos

Our shape pseudo-distance dF (formal definition)

Assume that the following objects are given:

A set M. Each point x ∈ M represents a measurement.
A set V . Each point v ∈ V represents the value taken by a
measurement.
A set F of functions from M to V . Each function f ∈ F describes a
possible set of results for all measurements in M.
A group G acting on M, such that F is invariant with respect to G
(i.e., for every f ∈ F and every g ∈ G we have that f ◦ g ∈ F ).
A pseudo-metric dF defined on the set F , that is invariant under
the action of the group G (in other words, if f1, f2 ∈ F and g ∈ G
then f2 ◦ g ∈ F and dF (f1, f2) = dF (f1, f2 ◦ g)).

We call each pair (F , dF ) a (pseudo-)metric shape space.
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Trying to put some geometrical order in the chaos

An interesting case

It often happens that M is a topological space and V is a metric space,
endowed with a metric dV . In this case the functions in F are assumed
to be continuous, and the group G is assumed to be a subgroup of the
group of all self-homeomorphisms of M. As an example, let us think of
a CT scanning.
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Trying to put some geometrical order in the chaos

An interesting case

In this example

M = S1 represents the topological space of all directions that are
orthogonal to a given axis;
V = R represents the metric space of all possible quantities of
matter encountered by the X-ray beam in the considered direction.
Every f ∈ F is a function taking each direction in S1 to the quantity
of matter encountered by the X-ray beam along that direction.
G is the group of the rotations of S1 (F ◦G = F ).

We can set
dF (f1, f2) = inf

g∈G
sup
x∈M
|f1(x)− f2(g(x))|

for f1, f2 ∈ F .
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Trying to put some geometrical order in the chaos

Other interesting cases

If V = Rk we can use the shape pseudo-distance

dF (f1, f2) = inf
g∈G

sup
x∈M
‖f1(x)− f2(g(x))‖∞

for f1, f2 ∈ F . The functional supx∈M ‖f1(x)− f2(g(x))‖∞ quantifies the
change in the measurement induced by the transformation g.

The pseudo-metric dF is produced by the attempt of minimizing this
functional, varying the transformation g in the group G, and is called
natural pseudo-distance.

More generally, if V is a metric space endowed with the metric dV , we
can set

dF (f1, f2) = inf
g∈G

sup
x∈M

dV (f1(x), f2(g(x)))

for f1, f2 ∈ F .
Patrizio Frosini (University of Bologna) Geometrical shape comparison 11 April 2013 52 / 83



Trying to put some geometrical order in the chaos

Other interesting cases

If V = R and M is a compact subset of Rm, we can set

dF (f1, f2) = inf
g∈G

(∫
x∈M
|f1(x)− f2(g(x))|p dx

) 1
p

after fixing p ≥ 1.

The functional
(∫

x∈M |f1(x)− f2(g(x))|p dx
) 1

p quantifies the change in
the measurement induced by the transformation g.

If G is the group of all isometries of M, dF is a pseudo-metric that is
invariant under the action of G.
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Some theoretical results and applications

Usual assumptions

In the rest of this talk we will assume that M is a topological space and
V is a metric space.

These assumptions allow us to require that if two measurements are
close to each other (in some reasonable sense), then the values
obtained by these measurements are close to each other, too.

The functions in F will be assumed to be continuous. The group G will
be assumed to be a subgroup of the group Homeo(M) of all
self-homeomorphisms of M.

Patrizio Frosini (University of Bologna) Geometrical shape comparison 11 April 2013 55 / 83



Some theoretical results and applications

Usual assumptions

Why do we just consider self-homeomorphisms of M?

Why couldn’t we use, e.g., relations on M?
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Some theoretical results and applications

A result that suggests not to use relations in our setting

The following result highlights a problem about doing that:

Non-existence Theorem
Let M be a Riemannian manifold. Let us endow Homeo(M) with the
uniform convergence metric dUC : dUC(h, h′) = maxx∈M dM(h(x), h′(x))
for every h, h′ ∈ Homeo(M), where dM is the geodesic distance on M.
Then (Homeo(M), dUC) cannot be embedded in any compact metric
space (K , dK ) endowed with an internal binary operation • that extends
the usual composition ◦ between homeomorphisms in Homeo(M) and
commutes with the passage to the limit in K . In particular, Homeo(M)
cannot be embedded in such a way into the set of binary relations on
M.

P. Frosini, C. Landi, No embedding of the automorphisms of a topological
space into a compact metric space endows them with a composition that
passes to the limit, Applied Mathematics Letters, 24 (2011), n. 10,
1654–1657.
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Some theoretical results and applications

A result that suggests not to use relations in our setting

In plain words, the previous theorem shows that, if our space of
measurements M is a Riemannian manifold, no reasonable
embedding of the set of all self-homeomorphisms of M into another
compact metric space (K , dK ) exists. In particular, there does not exist
any reasonable embedding into the space of binary relations on M.

This is due to the fact that any such embedding couldn’t preserve the
usual composition between homeomorphisms in Homeo(M) and
commute with the passage to the limit in K .

Remark
The previous theorem can be extended to topological spaces that are
far more general than manifolds. It is sufficient that they contain a
subset U that is homeomorphic to an n-dimensional open ball for some
n ≥ 1.
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Some theoretical results and applications

Some theoretical results about the natural pseudo-distance

Until now, most of the results about the natural pseudo-distance have
been proven for the case when M is a closed manifold,
G = Homeo(M), and the measuring functions take their values in
V = R. Here we recall three of these results:

Theorem (for curves)

Assume that M is a closed curve of class C1 and that f1, f2 : M → R
are two functions of class C1. Then, if
d = infg∈Homeo(M) maxx∈M |f1(x)− f2(g(x))|, at least one of the
following properties holds:

d equals the distance between a critical value of f1 and a critical
value of f2;
d equals half the distance between two critical values of f1;
d equals half the distance between two critical values of f2.
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Some theoretical results and applications

Some theoretical results about the natural pseudo-distance

For example, in this case the natural pseudo-distance d equals half the
distance between two critical values of f1:
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Some theoretical results and applications

Some theoretical results about the natural pseudo-distance

Theorem (for surfaces)

Assume that M is a closed surface of class C1 and that f1, f2 : M → R
are two functions of class C1. Then, if
d = infg∈Homeo(M) maxx∈M |f1(x)− f2(g(x))|, at least one of the
following properties holds:

d equals the distance between a critical value of f1 and a critical
value of f2;
d equals half the distance between two critical values of f1;
d equals half the distance between two critical values of f2;
d equals one third of the distance between a critical value of f1
and a critical value of f2.

(OPEN PROBLEM: Is the last case possible?)
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Some theoretical results and applications

Some theoretical results about the natural pseudo-distance

Theorem (for manifolds)

Assume that M is a closed manifold of class C1 and that f1, f2 : M → R
are two functions of class C1. Then, if
d = infg∈Homeo(M) maxx∈M |f1(x)− f2(g(x))|, at least one of the
following properties holds:

a positive odd integer m exists, such that m · d equals the distance
between a critical value of f1 and a critical value of f2;
a positive even integer m exists, such that m · d equals the
distance between two critical values either of f1 or of f2.

(OPEN PROBLEM: Is the case m ≥ 3 possible?)
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Some theoretical results and applications

Some references about the natural pseudo-distance for
topological spaces

P. Frosini, M. Mulazzani, Size homotopy groups for computation of
natural size distances, Bulletin of the Belgian Mathematical
Society - Simon Stevin, 6 (1999), 455-464.
P. Donatini, P. Frosini, Natural pseudodistances between closed
topological spaces, Forum Mathematicum, 16 (2004), n. 5,
695-715.
P. Donatini, P. Frosini, Natural pseudodistances between closed
surfaces, Journal of the European Mathematical Society, 9 (2007),
331-353.
P. Donatini, P. Frosini, Natural pseudodistances between closed
curves, Forum Mathematicum, 21 (2009), n. 6, 981-999.
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Some theoretical results and applications

Natural pseudo-distance and size functions

The natural pseudo-distance is usually difficult to compute.
Lower bounds for the natural pseudo-distance can be obtained by
computing the size functions.
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Some theoretical results and applications

Definition of size function

Given a topological space M and a continuous function
f = (f1, . . . , fk ) : M → Rk ,

Lower level sets

For every u ∈ Rk , M〈f � u〉 = {x ∈ M : f (x) � u}.
(u = (u1, . . . , uk ) � v = (v1, . . . , vk ) means uj ≤ vj for every index j .)

Definition (Frosini 1991)
The Size Function of (M, f ) is the function ` that takes each pair (u, v)
with u ≺ v to the number `(u, v) of connected components of the set
M〈f � v〉 that contain at least one point of the set M〈f � u〉.
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Some theoretical results and applications

Example of a size function, in the case that the measuring function
has only one component

Here the measuring function equals the distance from C.

Patrizio Frosini (University of Bologna) Geometrical shape comparison 11 April 2013 66 / 83



Some theoretical results and applications

Example of a size function, in the case that the measuring function
has only one component

Here the measuring function equals the distance from C.
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Some theoretical results and applications

Example of a size function, in the case that the measuring function
has only one component

Here the measuring function equals the distance from C.
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Some theoretical results and applications

Example of a size function, in the case that the measuring function
has only one component

Here the measuring function equals the distance from C.
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Some theoretical results and applications

Example of a size function, in the case that the measuring function
has only one component

Here the measuring function equals the distance from C.

→sizeshow.jar+cerchio.avi
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Some theoretical results and applications

We observe that each size function can be described by giving a
set of points (vertices of triangles in figure)
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Some theoretical results and applications

A matching distance can be used to compare size functions
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Some theoretical results and applications

A matching distance can be used to compare size functions
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Some theoretical results and applications

Example of a size function, in the case that the measuring function
has two components

Here the measuring function f = (f1, f2) is given by the coordinates of
each point of the curve M.
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Some theoretical results and applications

Some references about size functions

A. Verri, C. Uras, P. Frosini, M. Ferri, On the use of size functions
for shape analysis, Biological Cybernetics, 70 (1993), 99–107.
A. Verri, C. Uras, Metric-topological approach to shape
representation and recognition, Image and Vision Computing, 14,
n. 3 (1996), 189–207
C. Uras, A. Verri, Computing size functions from edge maps,
International Journal of Computer Vision, 23, n. 2 (1997),
169–183.
S. Biasotti, L. De Floriani, B. Falcidieno, P. Frosini, D. Giorgi, C.
Landi, L. Papaleo, M. Spagnuolo, Describing shapes by
geometrical-topological properties of real functions, ACM
Computing Surveys, vol. 40 (2008), n. 4, 12:1–12:87.
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Some theoretical results and applications

Persistent homology groups and size homotopy groups

Size functions have been generalized by Edelsbrunner and al. to
homology in higher degree (i.e., counting the number of holes instead
of the number of connected components). This theory is called
Persistent Homology:

H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence
and simplification, Discrete & Computational Geometry, vol. 28, no. 4,
511–533 (2002).

Size functions have been also generalized to size homotopy groups:

P. Frosini, M. Mulazzani, Size homotopy groups for computation of
natural size distances, Bulletin of the Belgian Mathematical Society,
vol. 6, no. 3, 455–464 (1999).
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Some theoretical results and applications

Stability of the matching distance between size functions

An important property of the matching distance is that size functions

(and the ranks of persistent homology groups) are stable with respect

to it. This stability can be expressed by means of the inequality

Dmatch ≤ dF

where dF denotes the natural pseudo-distance.

Therefore, the matching distance between size functions gives a lower
bound for the natural pseudo-distance.

In plain words, the stability of Dmatch means that a small change of the
measuring function induces a small change of the size function.
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Some theoretical results and applications

Comparing shapes

Stability allows us to use the matching distance to compare shapes:

Upper lines refer to the 2-dimensional matching distance associated
with a suitable function f = (f1, f2) taking values in R2.
Lower lines refer to the maximum between the 1-dimensional matching
distances associated with f1 and f2, respectively.
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Some theoretical results and applications

The idea of G-invariant size function

Classical size functions and persistent homology are not tailored on
the group G. In some sense, they are tailored on the group Homeo(M)
of all self-homeomorphisms of M.

In order to obtain better lower bounds for the natural pseudo-distance
we need to adapt persistent homology, and to consider G-invariant
persistent homology.

Roughly speaking, the main idea consists in defining size functions
and persistent homology by means of a set of chains that is invariant
under the action of G.

We skip the details of this procedure, that produces better lower
bounds for the natural pseudo-distance.
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Uniqueness of models with respect to size functions: the case of
curves

We have seen that size functions allow to obtain lower bounds for the
natural pseudo-distance. What about upper bounds? This problem is
far more difficult.
However, the following statement holds:

Theorem

Let f = (f1, f2), f ′ = (f ′1, f ′2) : S1 → R2 be “generic” functions from S1 to
R2. If the size functions of the four pairs of measuring functions
(±f1,±f2), (±f ′1,±f ′2) (with corresponding signs) coincide, then there
exists a C1-diffeomorphism h : S1 → S1 such that f ′ ◦ h = f . Moreover,
it is unique.

P. Frosini, C. Landi,
Uniqueness of models in persistent homology: the case of curves,
Inverse Problems, 27 (2011), 124005.
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Conclusions

In this talk we have illustrated a general metric scheme for geometrical
shape comparison. The main idea of this model is that in shape
comparison objects are not accessible directly, but only via
measurements made by an observer. It follows that the comparison of
two shapes is usually based on a family F of functions, which are
defined on a topological space M and take values in a metric space
(V , d). Each function in F represents a measurement obtained via a
measuring instrument and, for this reason, it is called a "measuring
function". In most cases, the set F of measuring functions is invariant
with respect to a given group G of transformations, that depends on
the type of measurement we are considering.

After endowing F with a natural pseudo-metric, we have presented
some examples and results, motivating the use of this theoretical
framework.
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Closing salutation

“Il catalogo delle forme è sterminato: finché ogni forma non avrà
trovato la sua città, nuove città continueranno a nascere. Dove le forme
esauriscono le loro variazioni e si disfano, comincia la fine delle città.”

“The catalogue of forms is endless: until every shape has found its city,
new cities will continue to be born. When the forms exhaust their
variety and come apart, the end of cities begins.”

Italo Calvino, Le città invisibili
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