J Math Imaging Vis
DOI 10.1007/s10851-008-0096-z

Multidimensional Size Functions for Shape Comparison

S. Biasotti - A. Cerri - P. Frosini - D. Giorgi - C. Landi

© Springer Science+Business Media, LLC 2008

Abstract Size Theory has proven to be a useful framework
for shape analysis in the context of pattern recognition. Its
main tool is a shape descriptor called size function. Size
Theory has been mostly developed in the 1-dimensional set-
ting, meaning that shapes are studied with respect to func-
tions, defined on the studied objects, with values in R. The
potentialities of the k-dimensional setting, that is using func-
tions with values in R¥, were not explored until now for lack
of an efficient computational approach. In this paper we pro-
vide the theoretical results leading to a concise and complete
shape descriptor also in the multidimensional case. This is
possible because we prove that in Size Theory the compar-
ison of multidimensional size functions can be reduced to
the 1-dimensional case by a suitable change of variables. In-
deed, a foliation in half-planes can be given, such that the re-
striction of a multidimensional size function to each of these
half-planes turns out to be a classical size function in two
scalar variables. This leads to the definition of a new dis-
tance between multidimensional size functions, and to the
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proof of their stability with respect to that distance. Experi-
ments are carried out to show the feasibility of the method.
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1 Introduction

In the shape analysis literature many methods have been de-
veloped, which describe shapes making use of properties
of real-valued functions defined on the studied object. Usu-
ally, the role of these functions is to quantitatively measure
the geometric properties of the shape while taking into ac-
count its topology. Because of the topological information
conveyed by these descriptors, they often are better suited
to compare shapes non-rigidly related to each other. On the
other hand, the metrical information provided by the func-
tion reveals specific instances of features.

The use of different functions defined on the same object
can give insights of its shape from different perspectives.
Although many approaches rely on a fixed function for de-
scribing shapes (e.g., the height function for contour trees
[25], and the distance transform for the medial axis [4, 37,
38]), the possibility of adopting different functions charac-
terizes an increasing number of methods [3]. This strategy
is currently being investigated also in graphics for the quite
different purpose of detecting generators of the first homol-
ogy group (cf. [39]).

Since the early 90s, Size Theory was proposed as a geo-
metrical/topological approach to shape description and com-
parison based on the use of classes of functions (cf., e.g.,
the papers [26, 27, 43, 44], and also the survey [29] and
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Sect. 8.4 of the textbook [34]), finding its roots in the classi-
cal Morse Theory ([28]). Particular classes of functions have
been singled out as better suited than others to deal with spe-
cific problems, such as obtaining invariance under groups
of transformations (cf., e.g., [16, 36, 42]), or working with
particular classes of objects (cf., e.g., [7, 33, 40, 41]). Nev-
ertheless, the choice of the most appropriate functions for a
particular application is not fixed a priori but can be changed
up to the problem at hand.

Most of the research in this field was developed for func-
tions with values in R. Retrospectively, we call this setting
1-dimensional. The possibility of constructing an analogous
theory based on functions with values in R¥, therefore called
k-dimensional or multidimensional, was investigated for the
first time in [31]. The advantage of working with k-valued
functions is that shapes can be simultaneously investigated
by k different 1-valued functions. In other words, k different
functions cooperate to produce a single shape descriptor.

In this multidimensional framework, the comparison of
two objects in a dataset (e.g. 3D-models, images or sounds)
is translated into the comparison of two suitable topologi-
cal spaces M and N, endowed with two continuous func-
tions @ : M — RK, 4 : N — R These functions are called
k-dimensional measuring functions and are chosen accord-
ing to the application. In other words, they can be seen as de-
scriptors of the properties considered relevant for the com-
parison. In the same paper [31] the natural pseudo-distance
d between the pairs (M, @), (N, 1}) was introduced, set-
ting d((M, @), (V, ¥)) equal to the infimum of the change
of the measuring function, induced by composition with all
the homeomorphisms from M to A (if any). The natural
pseudo-distance d is a measure of the dissimilarity between
the studied shapes. Unfortunately, the direct computation of
d is quite difficult, even for k = 1, although strong properties
can be proved in this case (cf. [17, 19, 20]).

To overcome this difficulty, the strategy proposed in [31]
for any k consists in obtaining lower bounds for d using
size homotopy groups. This strategy has been broadly devel-
oped in the case k = 1, using size functions instead of size
homotopy groups ([14, 15, 18]). Size functions are shape
descriptors that analyze the variation of the number of con-
nected components in the lower-level sets of the studied
space with respect to the chosen measuring function. When
k = 1, size functions can be efficiently employed in applica-
tions since they admit a combinatorial representation as for-
mal series of points and lines in R2 ([21, 30, 35]). Based on
this concise representation, the matching distance between
size functions was introduced in [35] and further studied in
[14, 15]. The first useful property of the matching distance
is its stability under perturbations of measuring functions
(with respect to the max-norm). Furthermore, the matching
distance between two size functions furnishes a lower bound
for the natural pseudo-distance between the corresponding
size pairs.
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The use of the multidimensional size theory in real ap-
plications needs answers to the following questions: How to
combinatorially represent multidimensional size functions?
How to compare multidimensional size functions in a way
that is resistant to perturbations? How to obtain a lower
bound for the natural pseudo-distance based on multidimen-
sional size functions? Is the method computationally afford-
able? The main aim of this paper is to answer these ques-
tions.

Outline All the basic results of the 1-dimensional Size
Theory that we need also in the k-dimensional case are
recalled in Sect. 2. Before introducing the concept of k-
dimensional size function in Sect. 3, we discuss the moti-
vations for this extension.

Our first result is the proof that in Size Theory the com-
parison of multidimensional size functions can be reduced
to the 1-dimensional case by a suitable change of variables
(Theorem 3). The key idea is to show that a foliation in half-
planes can be given, such that the restriction of a multidi-
mensional size function to these half-planes turns out to be
a classical size function in two scalar variables. This reduc-
tion scheme is presented in Sect. 4.

This approach implies that each size function, with re-
spect to a k-dimensional measuring function, can be com-
pletely and compactly described by a parameterized fam-
ily of discrete descriptors (Remark 3). This follows by ap-
plying to each plane in our foliation the representation of
classical size functions by means of formal series of points
and lines. An important consequence is the proof of the
stability of this new descriptor (and hence of the corre-
sponding k-dimensional size function) with respect to per-
turbations of the measuring functions, also in higher dimen-
sions (Proposition 2), by using the stability result proved for
1-dimensional size functions. Moreover, we prove stability
of this descriptor also with respect to perturbations of the
foliation leaves.

As a further contribution, we show that a matching dis-
tance between size functions, with respect to measuring
functions taking values in R¥, can easily be introduced (De-
finition 8). This matching distance provides a lower bound
for the natural pseudo-distance, also in the multidimensional
case (Theorem 4). The higher discriminatory power of mul-
tidimensional size functions in comparison to 1-dimensional
ones is proved in Proposition 4 and illustrated by a simple
example. All these results, presented in Sect. 5, motivate the
introduction of Multidimensional Size Theory in real appli-
cations and open the way to their effective use.

The main issues related to the passage from the theoret-
ical to the computational model are discussed in Sect. 6,
where we also present experiments on small datasets. In this
way we demonstrate that all the properties proved in the the-
oretical setting actually hold in concrete applications.
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Before concluding the paper, we formally explore some
links existing between multidimensional size functions and
the concept of vineyard, recently introduced in [12].

2 Background on 1-dimensional Size Theory

In the 1-dimensional case, Size Theory aims to study the
shape of objects based on capturing quantitative topological
properties provided by some real continuous function ¢ de-
fined on the space M representing the object. Actually, the
term “1-dimensional” refers to the fact that ¢ takes values
in R.

In this section we review the basic results in 1-dimensio-
nal Size Theory. We confine ourselves to recall those re-
sults that in the following sections will be extended to the
k-dimensional setting, where shapes will be studied with re-
spect to functions @ : M — R¥. When not explicitly stated,
the different notations ¢ and ¢ will make self-evident if we
are referring to the 1- or to the k-dimensional case.

Two main tools have been introduced in Size Theory: size
functions and the natural pseudo-distance.

The 1-dimensional size function £(Aq o) is a shape de-
scriptor of the pair (M, ¢), called size pair, where M
is a topological space representing the studied object, and
¢ : M — R is a continuous function, called measuring
function. Here we assume that M is a non-empty, com-
pact and locally connected Hausdorff space. Intuitively, the
size function associated with the size pair (M, ¢) captures
the topological changes occurring in the lower level sets
Mp <x)={P e M :@(P) <x} as x varies in R. More
formally, we have the following definitions (cf. [14, 27, 44]).

Definition 1 For every y € R, two points P, Q € M are
said to be (¢ < y)-connected if and only if a connected sub-
set of M{p < y) exists, containing P and Q.

Definition 2 The 1-dimensional size function associated
with the size pair (M, @) is the function £(rq,y) : {(x,y) €
R?: x < y} — N, defined by setting £ a1, (x,y) equal
to the number of equivalence classes in which the set
M({p < x) is divided by the (¢ < y)-connectedness relation.

In order to make this definition clear, we refer the reader
to Fig. 1. The object to be studied is the curve M depicted by
a solid line, and the measuring function ¢ is distance from
the point P. The size function £ A4, is illustrated on the
right. As can be seen, the domain {(x, y) € R?:x < y}is
divided into triangular regions (that may be bounded or un-
bounded), in which the value of £, ,) is constant. The dis-
played numbers correspond to the values taken by the size
function in each region. For example, fora <x <y < b,
the set M{p < x) consists of two connected components

Fig. 1 (a) The object to be studied is the curve M depicted by a solid
line, and its features are investigated through the measuring function ¢
distance from the point P. (b) The size function £(a4,)

that cannot be joined under y. So £(aq,4)(x,y) =2 for
a<x<y<b. Fora<ux<band y > b, the two con-
nected components of M{p < x) can be joined under y, so
LM y) =1,

It is not difficult to see that £ 4)(x, ¥) counts the con-
nected components in M(p < y) containing at least one
point of M{p < x).

The shape descriptions furnished by size functions can
be compared using an appropriate distance, called match-
ing distance [14, 15]. In this way, assessing the similarity
between objects is achieved by computing the matching dis-
tance between the corresponding size functions.

The core of the definition of matching distance is the ob-
servation that the information contained in a size function
can be combinatorially stored in a formal series of lines and
points of the plane, called respectively cornerlines (or cor-
nerpoints at infinity) and cornerpoints (cf. [21, 30, 35]). Pre-
cisely, we have the following definitions.

Definition 3 For every vertical line r, with equation x =k,
we define the number w(r) as the minimum, over all the
positive real numbers € with k +€ < 1/¢, of

LMk +€,1/€) —Lp )k — €, 1/€).

When this finite number, called multiplicity of r for £ a4, ),
is strictly positive, we call the line r a cornerline (or corner-
point at infinity) for the size function.

Definition 4 For every point p = (x,y) with x < y, the
number p(p) is the minimum over all the positive real num-

bers €, with x + € <y — ¢, of

LMy (x+€,y—€) —Lipp(x —€,y—€)
—E(M’(p)(x +e€,y+¢€) +E(M’¢,)(x —€,y+¢€).
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Fig. 2 (a) Size function Yr b y
corresponding to the formal a j
series r +a + b + c. (b) Size Y

function corresponding to the 2 3

formal series r’ +a’ + ¢’.

(¢) The matching between the
two formal series, realizing the
matching distance between the
two size functions
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The finite number u(p) is called multiplicity of p for
€M, ) Moreover, we call cornerpoint for £ a4 o) any point
p such that the number @ (p) is strictly positive.

Cornerpoints and cornerlines allow us to compactly rep-
resent size functions as formal series (cf. Fig. 2(a) and (b)),
in virtue of the following theorem, asserting that the mul-
tiplicities of cornerpoints and cornerlines are sufficient to
compute size functions’ values (cf. [15, 30]). For the sake of
simplicity, in this statement, lines with equation x = k are
identified to points “at infinity” with coordinates (k, 00).

Theorem 1 For every (X, y) with x <y < 00 we have

Mg E D= Y

(x,y): x<y=oo
XX, y>y

w((x, ).

Given two size functions £; and ¢, their comparison can
be translated to the problem of comparing their multisets of
cornerpoints. Hence, let us consider the multiset Cy (resp.
C») of all cornerpoints for £1 (resp. £;) counted with their
multiplicities, augmented by adding a countable infinity of
points of the diagonal {(x, y) € R?: x = y}. We can com-
pare £1 and £, using the matching distance

dmarch (€1, €2) = minmax §(p, o (p))
o peCy

where o varies among all the bijections between C; and C;
and

$((x, ), (¥, y) = min{max{lx ="y =Yl

5l
max , .
2 2

Roughly speaking, the matching distance dqc; between
two size functions is the minimum, over all the matchings
between the cornerpoints of the two size functions, of the
maximum of the L,-distances between two matched cor-
nerpoints. Since two size functions can have a different num-
ber of cornerpoints, these can be also matched to points of
the diagonal, as illustrated in Fig. 2(c). Notice that the defi-
nition of § implies that matching two points of the diagonal

@ Springer

(b) ©

has no cost. For more details on this distance we refer the
reader to [14, 15].

A key property of the matching distance is its stability
with respect to perturbations of the measuring functions, as
stated by the following theorem ([14, 15]).

Theorem 2 If (M, ),
maxpepm l9(P) — x(P)| < n,
dmatch(e(./\/l,w)y E(M,x)) =7.

(M, x) are size pairs and
then it holds that

The second tool of Size Theory is the natural pseudo-
distance (cf. [17-20, 31]). It is a measure of the similarity
between two size pairs not mediated by any shape descrip-
tor. The idea underlying the definition of the natural pseudo-
distance between two size pairs (M, @) and (N, ¥), with
M and N homeomorphic, is to measure the maximum jump
between the values taken by the measuring functions ¢ and
¥ when M is homeomorphically deformed into N

d((M, @), N, ¥)) =inf max |p(P) — ¥ (f(P))],
f PeM

where f varies among all the homeomorphisms between M
and \V.

The matching distance turns out to be less informative
about the dissimilarity between the studied shapes than the
natural pseudo-distance. Indeed, it holds that

dmarcn (CM.p)s CN ) < d((M, ), (N, ¥)) ey

(cf. [14, 15]).

Nevertheless, the computation of the natural pseudo-
distance can be accomplished only in a few cases. There-
fore inequality (1) turns out to be very useful as an esti-
mation from below of the natural pseudo-distance. More-
over, in [14] we have proved that d,,qc; gives the best lower
bound for the natural pseudo-distance, in the sense that any
other distance between size functions would furnish a worse
bound.

It is worth mentioning here that, using tools of Alge-
braic Topology, other lower bounds for the natural pseudo-
distance are obtained in [31] by means of size homotopy
groups. These are shape descriptors that generalize size
functions by taking into account classes of loops in the lower
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level sets instead of connected components. However, size
homotopy groups are not computationally feasible. Always
from the perspective of Algebraic Topology, yet another
shape descriptor, the Size Functor, has been developed in [5]
for 1-dimensional measuring functions, based on homology.

More recently, similar ideas have independently led
Edelsbrunner et al. to the definition of Persistent Homol-
ogy (cf. [23, 24]), and Allili et al. to the definition of the
Morse Homology Descriptor (cf. [2]).

In particular, the concepts of size function and corner-
point have been recently rediscovered in the framework of
Persistent Homology (cf. [23, 24]). In the terminology of
Persistent Homology, size functions correspond to the di-
mension zero persistent Betti number while formal series of
cornerpoints correspond to persistence diagrams. Also the
theorem stating the stability of the matching distance has a
counterpart in Persistent Homology (cf. [10, 11]). Moreover,
the first persistent homology group equals the Abelianiza-
tion of the first size homotopy group.

3 k-dimensional Size Functions

Multidimensional size functions are the extension of the no-
tion of size function to the case when the measuring function
is multivalued, that is it takes values in R¥ instead of R. In
other words, a k-dimensional measuring function ¢ is a k-
tuple (¢1, - .., @) of 1-dimensional measuring functions.

3.1 Motivation

The idea of using k-dimensional measuring functions arises
from the observation that the shape of an object can be more
thoroughly characterized by means of a set of measuring
functions, each investigating specific features of the shape
under study, e.g., scientific data from physical or medical
studies that typically consists of a large number of measure-
ments taken within a domain of interest. This observation
has quite early led to the definition, in [31], of multidimen-
sional measuring functions and, consequently, of multidi-
mensional size functions and natural pseudo-distance. How-
ever, this research line has not been exploited in concrete ap-
plications because it was not clear how to develop efficient
algorithms for the computation and comparison of multidi-
mensional size functions. Therefore, most efforts have been
paid to the search for batteries of 1-dimensional measuring
functions to be used separately to produce 1-dimensional
size functions, whose information would be merged a pos-
teriori (cf., e.g., [16, 33, 36, 41, 42]). Although a statisti-
cal method is studied in [9], no general strategy is avail-
able to carry out the blending of 1-dimensional size func-
tions in order to produce a single shape descriptor. On the
contrary, the possibility of working from the beginning with

k-dimensional measuring functions allows us to produce just
one shape descriptor containing the information of k differ-
ent measuring functions at the same time.

A natural question arises, whether the results obtained us-
ing k-dimensional measuring functions were not obtainable
from k 1-dimensional measuring functions. Actually, a re-
sult of this paper is not only the introduction of a procedure
to carry out computations in k-dimensional Size Theory,
but also furnishing the proof, illustrated by examples, that
k-dimensional size functions do not simply contain the sum
of the information contained in 1-dimensional size func-
tions.

3.2 Definitions

For the present paper, M, A denote two non-empty com-
pact and locally connected Hausdorff spaces.

In Multidimensional Size Theory [31], any pair (M, @),
where o = (@1, ..., 1) : M — RF is a continuous function,
is called a size pair. The function ¢ is called a k-dimensional
measuring function. The following relations < and < are
defined in R*: for X = (x1,...,xx) and y = (y1, ..., yk), we
say X <y (resp. X < y)if and only if x; < y; (resp. x; < y;)
for every index i =1, ..., k. Moreover, RF is endowed with
the usual max-norm: ||(x1, x2, ..., Xk)|loo = Maxi<;<k |X;|.
In this framework, if M and N are homeomorphic, the size
pairs (M, @) and (\V, ) can be compared by means of the
natural pseudo-distance d, defined as

d((M, §), (N, ¥)) = inf max [|G(P) — ¥ (f (P))lloo ,
f PeM

where f varies among all the homeomorphisms between M
and N. The term pseudo-distance means that d can vanish
even if the size pairs do not coincide.

Now we introduce the k-dimensional analogue of size
function for a size pair (M, ¢). We shall use the following
notations: A1 will be the open set {(¥,y) € R x RF : ¥ <
v}, while A = dA™. Here, and in what follows, RF x R¥ and
Rk are identified.

For every k-tuple X = (x1,...,xx) € R¥, let M(§ < X)

betheset {P e M :¢;(P)<x;, i=1,...,k}.
Definition 5 For every k-tuple y = (y1,..., y) € R¥, we
shall say that two points P, Q € M are (¢ < y)-connected
if and only if a connected subset of M (g < y) exists, con-
taining P and Q.

Definition 6 We shall call (k-dimensional) size function as-
sociated with the size pair (M, ¢) the function £(pq,g) :
A" — N, defined by setting £(A,5)(X, ¥) equal to the num-
ber of equivalence classes in which the set M (¢ < X) is di-
vided by the (¢ < y)-connectedness relation.

@ Springer
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Remark 1 In other words, €A1, (X,y) counts the con-
nected components in M (¢ < ¥) containing at least one
point of M (@ < X).

The direct representation of multidimensional size func-
tions from their definition involves working in domains
of R?*, so that it becomes rapidly inaccessible as k in-
creases. Moreover, a direct generalization of cornerpoints
from the 1-dimensional to the multidimensional case is not
straightforward.

These obstacles in treating the multidimensional case ap-
pear also in the related theory of Multidimensional Persis-
tent Homology (see [6]). Indeed, the authors conclude that
paper claiming that multidimensional persistence has an es-
sentially different character from its 1-dimensional version,
since their approach does not seem to lead to a concise,
complete and stable descriptor in the multidimensional case,
whereas it does in classical Persistent Homology (see [10]).
Probably for this reason, in Persistent Homology a differ-
ent strategy has been developed to study the persistent ho-
mology groups associated with two 1-dimensional measur-
ing functions at the same time (see [12]). It is based on the
idea of interpolating the two measuring functions and con-
sidering parametric families of persistent homology groups,
producing the so-called vineyards. We shall explore the re-
lations between multidimensional size functions and vine-
yards in Sect. 7.

A combinatorial representation of size functions by for-
mal series of cornerpoints is central in order to define a good
distance between size functions and obtain lower bounds
for the natural pseudo-distance, as we have seen in the
1-dimensional case. In the following sections we shall show
that this can be achieved by foliating the domain AT of
R?* into half-planes so that the restriction of multidimen-
sional size functions to each leaf of this foliation actually is
a 1-dimensional size function. Therefore, the theory devel-
oped for k = 1 applies to each leaf of the foliation, yielding
a combinatorial treatment also in the multidimensional case.

4 Reduction to the 1-dimensional Case

In this section, we will show that there exists a parameter-
ized family of half-planes in R¥ x R¥ such that the restric-
tion of £(Aq,5) to each of these planes can be seen as a par-
ticular 1-dimensional size function.

Definition 7 For every unit vector [ = Iy, ..., 1) of RK
such that /; > 0 fori =1,...,k, and for every vector b=
(b1, ...,by) of R* such that Zle b; =0, we shall say that
the pair (Z , l;) is admissible. We shall denote the set of all
admissible pairs in R* x R¥ by Admy. Given an admissible
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pair (I, b), we define the half-plane 75, of R* x R¥ by the
following parametric equations:

F=sl+b,
y=tl+b

fors,t € R, with s < ¢.

Proposition 1 For every (X,y) € AT there exists one and
only one admissible pair (I, b) such that (X,7) € Q5

Proof The claim immediately follows by taking, for i =
L,...,k,

Vi —Xi
li = - ,
Vi Zj:[(yj —xj)2
k k
by — Xi Gt YT Vi)
i = )

Z];':l j = x;)

-

Then, X = sl + b, y =t] + b, with

k [k
Z’;zlxj _ Zj:lxj Zj:l(yj —xj)?

B Z];':I (yj—xj)

k
Zj:l lj
k . Zk : Zk (y;i —xi)?
Zj:l YVj _ j=1Yj =10 — X
k = k :
D=1l > i=1 (v —x)) 0

Now we can prove the reduction to the 1-dimensional
case.

Theorem 3 Let (T, I;) be an admissible pair, and F(“;i ) :
M — R be defined by setting ’

@i (P) —b; }

Fé_(P)=
apP) =, max, { I
Then, for every (3, ¥) = (s|+b, tI+b) € 7 j ) the following

equality holds:

L) (X, ) = Lm0

Proof For every X = (x1, ..., x) € R¥, with x; = sl + b,
i=1,...,k,itholds that M (¢ < X) :M(F“ia) < s). This

. by —
is true because

M@ =<X)={PeM:gi(P)<x;, i=1,...,k}
={PeM:g(P)<sli+b;,i=1,...,k}

={PeM:%5s, i=1,...,k}
i

_ é
= M<F(T,E) <s).
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Analogously, for every ¥ = (y1,..., w) € R¥, with y; =
tli + bj, i =1,....k, it holds that M(¢ < J) =
M(F(‘;i 5 <t). Therefore Remark | implies the claim. [J

In the following, we shall use the symbol ng 5 in the
sense of Theorem 3. ’

Remark 2 By applying the parameterization described in
Definition 7, we can change the problem of computing and
describing k-dimensional size functions into the one of com-
puting and describing families of 1-dimensional size func-
tions. We point out that the same technique can be straight-
forwardly applied to the ranks of size homotopy groups
and to the ranks of multidimensional persistent homology
groups, since our approach allows us to exploit the theory
developed in dimension 1 essentially without any change.

Remark 3 Theorem 3 allows us to represent each multidi-
mensional size function as a parameterized family of formal
series of points and lines, on the basis of the description in-
troduced in [21, 30, 35] for the 1-dimensional case and re-
called in Sect. 2. Indeed, we can associate a formal series
o0 h with each admissible pair (7, l;), with %05 describ-

ing the 1-dimensional size function ¢ M. F(?,E)). The fam-
ily {cr(; A (7, l;) € Admy} is a new complete descriptor for
£(M,§)> in the sense that two multidimensional size func-
tions coincide if and only if the corresponding parameter-

ized families of formal series coincide.

5 Lower Bounds for the k-dimensional Natural
Pseudo-Distance

As recalled in Sect. 2, 1-dimensional size functions can
be compared by means of a distance, called matching dis-
tance. This distance is based on the observation that each
1-dimensional size function can be represented by a formal
series of cornerpoints. The matching distance is computed
by finding an optimal matching between the multisets of
cornerpoints describing two size functions. Key properties
of the matching distance are its stability under perturbations
of the measuring functions and the possibility of computing
lower bounds for the natural pseudo-distance. In this section
we show that these results are still valid also in the multi-
dimensional case. Moreover, we prove that the multidimen-
sional matching distance provides a better lower bound for
the natural pseudo-distance than the 1-dimensional match-
ing distance. We conclude the section with an example
showing that the information contained in size functions cor-
responding to measuring functions ¢ = (¢y, ..., @) is not
simply the sum of that contained in the 1-dimensional size

functions corresponding to ¢1, ..., ¢k, considered indepen-
dently. In Sect. 6 we shall check this point on a dataset of
shapes.

5.1 Main Results

In the sequel, we shall denote by dma,ch(ﬂ( MF? )
@b
K( N Y )) the matching distance between the 1-dimensional

)

size functions £ and ¢

v Vo
M, F(l .b)) W, F(i,B))

As an easy corollary of Theorem 3 and Remark 3 we have

that the set of 1-dimensional size functions ¢ é ., as
(M’F(T,E))

(Z, l;) varies in Admy,, completely characterizes £(Af,g).

Corollary 1 Let us consider the size pairs (M, ), (N, 12).
Then, the identity Lp,5) = Z(N,Jf) holds if and only if

dmatch (E(M,F“j’ ) E(J\/, )) =0, for every admissible pair

v
@b F;

@.b)

a.b).

The next result proves the stability of d,;,.c;, With respect
to the chosen measuring function, i.e. that small enough
changes in ¢ with respect to the max-norm induce small

changes of ¢ MF?) with respect to the matching distance.
D)

Proposition 2 If (M,¢), (M, x) are size pairs and
maxpep |@(P) — X (P)lloo < €, then for each admissible

pair (Z, I;), it holds that

Amarch (€ R i)
e (M’F:’iE)) (M,F(’;B))

Proof From Theorem 2, taking 7 = maxpe g |F(¢; 13)(P) —

% .
F(T,I?)(P) |, we obtain that

Amarch (€ g s L i)
e (M’F:’lib) (M’F@E))

_
(P)=Fgp

(P)I.

< max F‘Z’—
= g \Fih)

Let us now fix P € M. Then, denoting by ¢ the index for

(P)=b;
li

which max; % is attained, by the definition of Fg B

and FX . we have that
(I,b)

@ _ X
F(T,Z)(P) F(ij,’)(P)

@i (P) —b; Xxi(P) —b;
=max ————— — -
i ; i l;
_a®)—b  Xi(P)—bi

l; i l;
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P —by  xa(P) b

- b b

_ P = x(P) _ l¢(P) — X (P)lloo
B b T oming—y, gkl

In the same way, we obtain F (P) — F~

(lb(P) =<

W. Therefore, if maxpepq [|@(P) — X(P)loo
567
Ig(P) — X (P)lloo
max |F P)—F%_ (P
| (zb)( )= P = max min;—, ki
€
T omini—y, il o

Analogously, it is possible to prove that dpg;, is stable
with respect to the choice of the half-planes in the folia-
tion. Indeed, the next proposition states that small enough
changes in (f, l;) with respect to the max-norm induce small

changes of ¢ M.F? with respect to the matching distance.
@b

)
Proposition 3 If (M, §) is a size pair, (I, b) € Admy. and €
is a real number with 0 < € < min;—1__x!;, then for every
admissible pair (I', b") with ||(I, b) — (I, b)|lco < €, it holds
that

h(L ¢ )
matc (M F(l b)) (M F(f/ ];/ )

.. MaXper I6(P)lloo + llloo + 1161l co
- min;—p, x{li(l; —€)}

Proof From Theorem 2, taking n = maxpea/ | F(l b)( P) —
(1, 2 )(P)I , we obtain that

dmarcn (€ A )
martc (M F(,E)) (M F(V;/h/)

<}§n3\§lIF~~(P) (P)I.

@b (1' b
Let us now fix P € M. Then, denoting by ¢ the index for

which max; M is attained, by the definition of F((‘; 5

and F(z’ 5y Ve have that
¢
Fi5®) — (1/ 5 (P)
¢i(P) — b, PP~
= max -
i l; i l/
_a@®) =k gi(P) b
l; i ll{
_@aP) b w(P) b
- ; li/
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_ (L = L)y (P) — by + b,
Ll
= Be(P) + L0 —by) + by, = 1)
B l;lf
|l/—ll|¢L(P)|+lA|bA byl + |bg|Il; = L]
ll/

_ €UIB(P) oo+ Illoo + l1Blloc)
B li(l; — €)

_ €GPl + Illoo + Bl oc)
= mini—y g {li(li —€)}

(P) — FZ_ (P) <

Analogously, we can prove that F (1’ ) (1,b)

€GP oo+ Too +B]oo)
min—1 i Gr—e)) - Lherefore,

Ign%llF i (P) — (P)]

,b) (l’ )

o maxpept 1P lloo + oo + 1Bl
- min;=1,___k{li(li —€)}

O

We underline that Proposition 2 and Proposition 3 prove
the stability of our computational approach.

Now we are able to present our next result, showing that a
lower bound exists for the multidimensional natural pseudo-
distance.

Theorem 4 Let (M, @) and (N, 1/7) be two size pairs,
with M, N' homeomorphic. Setting d(M, @), N, ) =
inf f maxpepq lG(P)— 17/(f(P)) lloo, Where f varies among
all the homeomorphisms between M and N, it holds that

sup min I - dyparen(€ é 4L v )
L . M, F?
d.ByeAdmy =1 M-Fgs) WV.Fig)

<d((M,$), N, ¥)).

Proof For any homeomorphism f between M and N, it
holds that £ . Moreover, by applying

- 1/7(f<P)>||oo and
X = w f, and observing that FY 05 ° f= F(l 5 , we have

=/
v v
NF(I b)) M, F(l ) of)

Proposition 2 with € = maxpe g ||g0(P)

min l 1ch (£ g )
i=l,..., Amatch M, F(Vz)b)) (NF:fb))

= max lo(P) =¥ (f(P)lle

for every admissible (i, l;). Since this is true for each home-
omorphism f between M and N/, the claim immediately
follows. [l
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Remark 4 We observe that the left side of the inequality in
Theorem 4 defines a distance between multidimensional size
functions associated with homeomorphic spaces. When the
spaces are not assumed to be homeomorphic, it still verifies
all the properties of a distance, except for the fact that it may
take the value 4+o00. In other words, it defines an extended
distance.

Definition 8 Let (M, ¢) and (N, KZ) be two size pairs. We
shall call multidimensional matching distance the extended
distance defined by setting

Dmatch(g(MJﬁ)’ E(./\f,iz))

= sup min ;-

L
@ Byeadmy = e C Fos)' Covrls)

@, b)

Theorem 4 states that Dyaren (€A, 5)s £ W, ]7/)) is a lower
bound for the natural pseudo-distance d (M, @), (N, ¥)).

Remark 5 If we choose a non-empty subset A C Admy
and we substitute SUP( by eAdmy with SUP(/ jyea in Defini-
tion 8, we obtain an (extended) pseudo-distance between
k-dimensional size functions. If A is finite, this pseudo-
distance appears to be particularly suitable for applications,
from a computational point of view. The key point here
is that Proposition 3 ensures the stability with respect to
the choice of the considered half-planes of the foliation.
Moreover, this pseudo-distance furnishes a lower bound
for the natural pseudo-distance, since it results to be less
than or equal to the multidimensional matching distance

Dimarcn (€M, 5) € )

Remark 6 Another interesting choice for applications could
be the weighted mean pseudo-distance computed on the
finite subset A = {(I/,bJ) : ..,h} € Admy, and

defined as Z] yw/ -min—y kL - munh(f(M F oy
) (W b7y
) (assuming that w’/ are real numbers with

]_1

fo

w’/ > 0, for every j =1,...,h, and Zh w/ = 1): In-
deed, it takes 1nt0 account the 1nf0rmat10n conveyed from
each leaf (l J bJ ) € A. This weighted mean pseudo-distance
between size functions gives a lower bound for the natural
pseudo-distance that is at most as good as that of Remark 5.

The following result proves that the lower bound for the
natural pseudo-distance provided by Dyaren (€M, 5)s £ W, ‘7/))
is better than the ones obtained from the 1-dimensional
matching distances  dmarch (b M, g)> EN ), fOor i =
1,..., k.

Proposition 4 Let (M, $) and (N, ) be two size pairs,

with ¢ = (@1, ... @k)s ¥ = (U1,...,Vx). Then, for j =
., k, it holds that

dmalch(z(./\/l,gaj)s E(/\/,!//j)) = Dmatch(e(M,(Z)s Z('/\/"@))-

Proof Let p = maxpepm ||¢(P)llc and v = maxgpen
||1/f(Q)||C><J For ] =1,...,k, con51der the admissible pair
(lJ bl) where 1/ = (lj,.. lk) and b/ = (b],...,b,i) are
defined by the following relations:

S
/=—, fori=1,...,k,
bk

pi = | T2 maxip, vy, ifi =
P 2 max{u, v}, ifij.

From Theorem 3, for every (X, y) = (sl} + b , 1t + bi )€
it follows that € aq,5)(X,y) = Z(M,F“—lj ) (s, 1),
Wb )

. (p _
with F~j ) (P) =

03 by

E(N’lz)()_évi) = Z(./\/-FJ/A (S,t)

i oiy)

maxic o # )= VR (P) b and FY. - ()=

i b
{]//(Q) L} = Vk(Wi(Q) — bj) for every
PeMand Qe N By the definition of d;4c;, We have

max;—1,,

match(z(M F‘p B )’K/\/FVZ . ))

4 bJ) "W by
= dnatch( \1, g - VR b))

= \/E ' dmatch (Z L

Mgty CN b))

=vk- dmarch (€ M.gp;)s N )

and hence min;—1, kl dma,ch(E(M o )’E(NF"-Q ) ) =

b7 Wby

ﬁ . match(g(M F(ﬂ B )76 )) =
(1 bJ) ’ (17 by

f(N,l//,-))- From the definition of Dyarcn (€ p.,3) Z(N 1/7))’ the

[l

claim immediately follows.

march (Z(M,(p_,-) s

5.2 An Example

As a consequence of Proposition 4, the multidimensional
size function associated with ¢ contains at least as much in-
formation about the studied shape as the whole set of the 1-
dimensional size functions associated with ¢1, ..., ¢r. Ac-
tually, the size function of ¢ can be strictly more informa-
tive than the set of the size functions of ¢1, ..., ¢. This fact
will be evident from the experiments illustrated in Sect. 6,
but can also be easily checked in the following example.

In R3 consider the set Q =[—1,1] x [—1,1] x [—1, 1]
and the sphere S of equation x% 4 y>+z? = 1. Let also d=

@ Springer
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Fig. 3 The topological spaces M
M and N and the size functions z y
L L j . associated T
(M, (”))) N, F(”) :
with the half plane 77 7, for : .
@.5) : HIES
l_( 55 )andb 0,0)

(®1, dy): R3 — R2 be the continuous function, defined as
CTD(x v,z) = (|x], |z|) In this setting, consider the size pairs
(M, ) and (N, V) where M =90, N =S, and ¢ and
w are respectively the restrictions of ® to M and V. In
order to compare the size functions £(r,g) and £, 7, we
are interested in studying the foliation in half-planes i 5y
where [ = (cosf,sin@) with 6 € (0, %), and b= (a,—a)
with a € R. Any such half-plane is represented by

x; =scosb +a,
Xp=ssinf —a,
y1 =tcosb +a,
yp=tsinf —a

with s, € R, s < t. Figure 3 shows the size functions

¢ s . and £ 7 ,for6=2%and a=0,ie. [ =
M, F(l b)) W ’F(Z.E)) 4

(—2 ) and b = (0, 0). With this choice, we obtain that

Voo
F(ZB) = V2max{p1, g2} = v2max{|x|., [z} and Fj; =

V2max{y1, Y2} = v2max{|x|, |z|}. Therefore, Theorem 3
implies that, for every (x1, x2, y1, 2) € i b

S Ky t t
Em.) (x1, X2, J’I,J’Z)—E(M(p)<\/§ ﬁﬁ_z)
=1 (s, 1),
(M, F(lb))
S kY t t
Env gy X1 X2, ¥1,32) = £y NN
(NF (S 1.

@ b)

In this case, by Theorem 4 and Remark 5 (applied for A con-
taining just the admissible pair that we have chosen), a lower
bound for the natural pseudo-distance d (M, §), (N, %)) is
given by

\/E \/E
I h(z F 4 ) (\/_2 1)
2 ma ¢ (M a, b)) (N F(‘;Ib)
1 \/_
= .

Indeed, the matching distance dy;qscn (£ M. F(‘” b)), E( I Fz,b) )

is equal to the cost of moving the point of coordinates

@ Springer

(0, +/2) onto the point of coordinates (0, 1), computed with
respect to the max-norm. The points (0, V2) and (0, 1) are

cornerpoints for the size functions ¢ M. F([;, 3 and E( N F([ h)
respectively.

We conclude by observing that £(Aq,¢,) = £(n,y,) and
L(M,py) = LNy, In other words, the multidimensional
size functions, with respect to @, 1}, are able to discriminate
the cube and the sphere, while both the 1-dimensional size
functions, with respect to ¢1, ¢ and V1, ¥, cannot do that.
This higher discriminatory power of multidimensional size

functions motivates their definition and use.

6 Computational Issues and Experiments

We now discuss some issues arising when applying in a dis-
crete setting the concepts defined in the previous sections for
the continuum. First, a computational scheme coherent with
the mathematical model is illustrated. Next, this scheme is
applied to different datasets of discrete models.

6.1 Computational Aspects: PL and Digital
Implementation

When dealing with Computer Graphics and Computer Vi-
sion applications, a relevant problem is to find a suitable dis-
cretization of both the space M and the function ¢. As clas-
sical discrete models we mention the simplicial complexes
and the digital spaces. In this Section we highlight how our
theory is able to go well in both model representations.

Given a model | X| represented by the geometric realiza-
tion of a simplicial complex X of arbitrary dimension 7, and
a piecewise linear map ¢ : |X| — R¥, first defined on the
vertices of X and then linearly extended over all the other
simplices by using barycentric coordinates, we consider the
size pair (| X|, ¢). Triangulations and tetrahedralizations are
examples of geometric realizations of simplicial complexes
for n =2 and n = 3, respectively.

Digital spaces are mainly relevant in image processing.
A digital space is often represented by a graph structure
based on the local adjacency relations of the digital points
(e.g., pixels, voxels, etc.) [22]. In our experiments on digital
spaces, the shape of interest is represented by the non-zero
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points of a binary 3D image, but our reasonings are immedi-
ately applicable to 2D and higher dimensions. Moreover, the
procedure would be analogous if the shape were represented
by all the points of the image (zero and non-zero). To obtain
a size pair from this data, we take a geometric realization |/ |
of a graph that encodes the non-zero elements of the image
as nodes and the neighborhood adjacency among the digital
points as edges. Depending on the number of neighbors that
may be adjacent to a point, the connectivity (i.e. the number
of edges) of the graph depends on the number of neighbors
that are admitted to be adjacent to a point in a 2D image
(i.e., 8-, 6- or 4-neighborhoods) or 3D image (e.g., 6-, 18- or
26-neighborhoods). Then, the size pair is the pair (||, ¢),
where ¢ : |[I| > Rf is a piecewise linear function first de-
fined on the nodes of the graph and then linearly extended
to the edges.

Once the size pair has been identified, the proposed re-
duction of k-dimensional size functions to the 1-dimensional
case allows us to use the existing framework for computing
1-dimensional size functions [13], based on a discrete struc-
ture.

The algorithm in [13] takes as input a size graph, i.e. a
pair (G, f) where G is a graph and f : V(G) —> R is a
function labeling each vertex of G by a real number. For the
simplicial case, our input is given by the 1-skeleton of the
complex X, with the nodes labeled by the values of the re-
striction of ¢ on the vertices of the complex. For the case of
digital spaces, the size graph corresponds to the graph used
to encode the binary image. Similarly to the simplicial case,
the node labels given in input correspond to the restriction
of ¢ to the vertices of the graph.

The output of the algorithm is the multiset of corner-
points and cornerlines that completely determines the dis-
crete size function of the size graph. We recall the definition
of discrete size function of a size graph ([32]): For every
a <b, L, f(a,b) is the number of components containing
at least one vertex labeled by a value not greater than a, of
the subgraph obtained by cutting away the vertices labeled
by a value strictly greater than b (and the connecting edges,
too). It is important to notice that, due to the piecewise lin-
ear nature of ¢, for both the simplicial and the digital model,
the discrete size function of the size graph coincides with the
size function of the original size pair.

The algorithm in [13] directly computes the multiset of
cornerpoints and cornerlines that completely determines a 1-
dimensional size function in O (nlogn +m - «(2m + n, n))
operations, where n and m are the number of vertices and
edges in the size graph, respectively, and « is the inverse of
the Ackermann function [1]. Following Remark 5, we evalu-
ate the k-dimensional size function with measuring function
@ over a subset A C Admy, of half-planes whose cardinality
is h. Hence, we extract & 1-dimensional size functions, i.e.,
one for each half-plane of A. Therefore, the computational

complexity for evaluating the k-dimensional size function
over h half-planes is O(h - (nlogn +m - ¢ (2m + n, n))).

In the same way, as stated in Definition 8, the computa-
tion of the k-dimensional matching distance easily follows
from the computation of the 1-dimensional matching dis-
tance dpqrn together with the computation of the minimum
of the k factors [;, fori =1, ..., k, over the set A of half-
planes. Since the computational complexity for computing
the 1-dimensional matching distance in a single half-plane
is O(p*>), with p the number of cornerpoints taken into
account for the comparison, it follows that computing the k-
dimensional matching distance between two k-dimensional
size functions requires O (A - ( pz‘5 + k)) operations.

6.2 Experimental Results

We present some experimental results on a set of 8§ human
models represented by triangle meshes and 6 different ob-
jects represented by voxelized digital models. Our goal is to
check the stability of the proposed framework and to vali-
date its potential for shape comparison.

To this aim, we have to define a multidimensional mea-
suring function to describe the shapes, and to choose and
discretize a foliation, for both the cases of meshes and digi-
tal objects.

Let us begin with triangle meshes. We define a 2-
dimensional measuring function extending to triangle
meshes and to the multidimensional case the reasonings in
[36], where complete families of invariant 1-dimensional
measuring functions are introduced. For a given triangle
mesh of vertices {Py, ..., P,} we compute the barycenter
B=1%" | P, and normalize the model so that it is con-
tained in a unit sphere. We then define a vector

Yi1(Pi— B)I|Pi — B|
Yo 1P = BIP?

A parametric family of real-valued functions can be defined
by setting, for each point P; and for each @ € R

-
V=

I|P; — (B +ad)||
max; |[|Pj — (B +av)||’

Yo(P) =1~
We can now set

@(O(l,az)(Pi) = (gDOll (Pi)a waz(Pi))

withay,p € R,i =1, ..., n. The 2-dimensional measuring
function we used in our experiments is ¢ = ¢(1,_1).

It is worth noticing that the 2-dimensional measuring
functions @(4,.4,) are invariant with respect to translation
and rotation. Moreover, ¢, a,) is well defined also if, e.g.,
for symmetry reasons, v is the null vector. The invariance
with respect to scale comes from the a priori normalization
of the model.

@ Springer
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We write the foliation of R?> x R? as proposed in
Sect. 5.2, that is to say we consider the foliation in half-
planes 75y where [ = (cosh,sinf) with 6 € (0, %), and
b= (a,—a) witha € R.

In the following examples, we consider the set A =
{(l;,b), i =1,...,17} of admissible pairs (cf. Remark 5),
where fl = (cosb;, sin6;) with 6; = %i, i=1,...,17, and
b = (0,0). For each half-plane 7; identified by (/;,b) € A,
we compute the 1-dimensional measuring function F;’i’};)
defined in Theorem 3.

For each model X, Figs. 4 and 5 show, from left to

right, the behavior of £ 5)(X,y) = E(IC,F(‘?_ 5))(5, t) on the

half-planes 7; corresponding to 6; = {5, %, T %, 5]—72’ No-
tice that, for space reasons, only a subset of A is selected for
displaying, while the computations and results presented in
the following refer to all the half-planes in the subset A.

Looking at the whole set of results in Figs. 4 and 5 sug-
gests that multidimensional size functions have a high po-
tential for comparing shapes. Indeed, it can be seen that
the similarity between the models is reflected in the similar-
ity between the corresponding 2-dimensional size functions.
Moreover, the information is distributed all over the half-
planes of the foliation, with a recognizable trend in similar
models.

The behavior, in particular, of the 2-dimensional size
functions computed on the first two models shown in Fig. 4
confirms the stability property suggested by Proposition 2.
Indeed, the second model X, is a simplified version of
the first model Ky, that is to say that K has 10% of the
vertices of the original model ;. It can be seen that the
2-dimensional size functions of these two models are almost
identical when restricted to the half-planes of the foliation:
The perturbation of the pair (K1, ¢) produces small changes
in the resulting size function, which are located near the di-
agonal. Indeed, cornerpoints that appear near the diagonal
correspond to small details or noisy features, while corner-
points that appear far away from the diagonal are represen-
tative of more significant shape features [29].

The computation on our set of models of the multidimen-
sional matching distance in Definition 8 also furnishes inter-
esting insights. In particular, the values reported in Table 1
confirm the higher discriminatory power of 2-dimensional
size functions with respect to the 1-dimensional case. Each
cell of the table provides two values. The first one is the
value of the 2-dimensional matching distance between the
corresponding models. The second one is obtained comput-
ing the 1-dimensional matching distance between the size
functions associated to the 1-dimensional measuring func-
tions ¢ and ¢_1, and taking the maximum value. For all
the models in the dataset, the 2-dimensional matching dis-
tance produces an (at least 35 times) better lower bound
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for the 2-dimensional natural pseudo-distance (cf. Propo-
sition 4). In other words, this example confirms that com-
paring 2-dimensional size functions furnishes a better ap-
proximation of the 2-dimensional natural pseudo-distance,
with respect to comparing the single 1-dimensional measur-
ing functions corresponding to the components of ¢.

The experiments on digital spaces are performed over 3D
binary images. In our settings, the nodes of the size graph
correspond to the non-zero voxels and the edges are yielded
by the 26- neighbor relation.

The models adopted in our experiments are taken from
the McGill 3D Shape Benchmark.! To analyze these digi-
tal models we define a trivariate function ¢ = (¢x, @y, ¢2),
with @, (v) =V, — |vx — Bxl, ¢y(v) =V, — |v, — By| and
¢:(v) =V, — |v; — B;|; here v = (vx, vy, v;) denotes a
voxel, B = (By, By, B;) is the barycenter of the model, and
Vy = max, |vx — By| (analogous definition for V), and V).
In other words, we discriminate the models with respect to
their spatial extent.

We choose the foliation of R? x R where a half-plane is
represented by:

X1 =scosfsing + a,
Xy =ssinfsing + b,
x3=scos¢ — (a+Db)
yp =tcosfsing +a,
Yo =tsinfsing + b,
y3=tcos¢ — (a+Db)
with 5,7 € R, s <1, a,b e R, and 0 < 0,¢ < 5. In
our experiments, we consider the half-planes identified
by a = b = 0 and the following pairs of angles (0, ¢):
& DEDGR EHGEDGEDGEB.
T on Sm &w
37 (925 )

The results proposed in Table 2 describe the dimension of
our digital models, the average time taken by our algorithm
to extract the 1-dimensional size function on a half-plane
of the foliation, the total time required to compute the size
function on the 9 half-planes considered, and the average
and the total number of cornerpoints of the size function on
the 9 half-planes.

Finally, Table 3 highlights how also for 3D images the
matching distance obtained over the half-planes of the fo-
liations using more than one function improves the lower
bound approximation of the natural pseudo-distance. We no-
tice that the results contained in the fifth row of Table 3 pro-
vide the best approximation, over 9 half-planes selected in
the foliation, of the k-dimensional matching distance.

Thttp://www.cim.mcgill.ca/~shape/benchMark/.
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a

Fig. 4 2-dimensional size functions restricted to five leaves of the foliation, for the first four models

7 Links Between Dimension 0 Vineyards and
Multidimensional Size Functions

In a recent paper [12], Cohen-Steiner et al. have introduced
the concept of vineyard, that is a 1-parameter family of per-
sistence diagrams associated with the homotopy f;, inter-

polating between fy and f;. These authors assume that the
topological space is homeomorphic to the body of a simpli-
cial complex, and that the measuring functions f; are tame.
We shall do the same in this section. We recall that dimen-

sion p persistence diagrams are a concise representation of
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| -

Fig. 5 2-dimensional size functions restricted to five leaves of the foliation, for other four models

the function rank H,f’y , where H;,C’y denotes the dimension  equivalent to the knowledge of the function rank H;’y , com-
p persistent homology group computed at point (x, y) (cf.  puted with respect to the function f;. We are interested in the

[12]). Therefore, the information described by vineyards is  case p = 0. Since, by definition, for x <y, rank H;” coin-
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Table 1 Distances between models: the 2-dimensional matching distance between the 2-dimensional size functions associated with @(j,—1) (top
value) and the maximum between the 1-dimensional matching distances associated to the 1-dimensional measuring functions ¢; and ¢_; (bottom).
The 2-dimensional matching distance provides a better lower bound for the natural pseudo-distance. Notice also that the values related to the 1-
dimensional matching distance are each other very close, up to the considered number of digits, thus revealing a lower discriminatory power than

that provided by the 2-dimensional matching distance

] | 1Y) ¥ % L
i i Il \ =1 fl X 4
_.4* 0.0000 0.0181 0.1411 0.1470 0.1325 0.1287 0.1171 0.1187
N (} 0.0000 0.0003 0.0025 0.0026 0.0023 0.0022 0.0020 0.0021
) 0.0181 0.0000 0.1419 0.1478 0.1304 0.1265 0.1171 0.1187
;1 0.0003 0.0000 0.0026 0.0026 0.0023 0.0022 0.0020 0.0021
Y
(] 0.1411 0.1419 0.0000 0.0137 0.1583 0.1370 0.1127 0.1017
f ; 0.0025 0.0025 0.0000 0.0002 0.0028 0.0024 0.0020 0.0018
> 0.1470 0.1478 0.0137 0.0000 0.1533 0.1381 0.1137 0.1021
4 2 k 0.0026 0.0026 0.0002 0.0000 0.0027 0.0024 0.0020 0.0018
8 0.1325 0.1304 0.1583 0.1533 0.0000 0.0921 0.0588 0.1000
’f‘ 0.0023 0.0023 0.0028 0.0027 0.0000 0.0014 0.0016 0.0017
) 0.1287 0.1265 0.1370 0.1381 0.0921 0.0000 0.1069 0.1048
T 0.0022 0.0022 0.0024 0.0024 0.0014 0.0000 0.0019 0.0018
1
;{ 0.1171 0.1171 0.1127 0.1137 0.0588 0.1069 0.0000 0.0350
N 0.0020 0.0020 0.0020 0.0020 0.0016 0.0019 0.0000 0.0006
@ 0.1187 0.1187 0.1017 0.1021 0.1000 0.1048 0.0350 0.0000
=% 0.0021 0.0021 0.0018 0.0018 0.0017 0.0018 0.0006 0.0000

cides with the value taken by the size function £ A 7, (x, ¥),
it follows that, for x < y, dimension 0 vineyards contain the
same information as the 1-parameter family of size func-
tions {€ A, 7,)}ref0,1]- Anyway, another interesting link ex-
ists between dimension 0 vineyards and multidimensional
size functions. This link is expressed by the following the-
orem. In order to prove it, we need the next two lemmas.
The former states that the relation of (¢ < y)-connectedness
passes to the limit.

Lemma 1 Assume that (M, @) is a size pair and y =
D1y, vx) € RE_If, for every ¢ > 0, P and Q are (¢ <
(y1 +¢&,..., Yk + ¢&))-connected in M, then they are also
(¢ < ¥)-connected.

Proof For every positive integer number n, let K,, be the
connected component of M{¢ < (y; + %, e Ykt %)) con-
taining P and Q. Since connected components are closed
sets and M is compact, each K, is compact. The set (), K
is the intersection of a family of connected compact Haus-
dorff subspaces with the property that K, € K,, for every
n, and hence it is connected (cf. Theorem 28.2 in [45],

p. 203). Moreover, (), K, is a subset of M(¢ < y) and
contains both P and Q. Therefore, P and Q are (¢ < y)-
connected. O

The following lemma allows us to study the behavior of
multidimensional size functions near A (on A they have not
been defined because of instability problems when the mea-
suring functions are not assumed to be tame).

Lemma 2 Let (M, @) be a size pair. If X <y then lim,_, ¢+
E(M@)(f, 1 + & ...,k + &) is equal to the number
L (X, ¥) of equivalence classes of M{(¢p < X) quotiented with
respect to the (¢ < y)-connectedness relation.

Note that, for ¥ < ¥, L(X,y) simply coincides with
Lim,p) (X, ).

Proof of Lemma 2 First of all we observe that the func-
tion £(rq,5)(X, (1 + ¢, ..., Yk +¢€)) is nonincreasing in the
variable ¢, and hence the value lim,_ o+ £ aq,5) (X, (1 +
& ..., Yk + &)) is defined. The statement of the lemma is
trivial if lim,_ o+ € aq,) (K, (V1 + €, ..., Yk +€)) = +00,
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Table 2 Space and time requirements for the computation of the size function of some 3D images of different dimensions. |V| and | E| represent
the number of vertices and edges of the size graphs of the models. Avg. time is the average time required to compute the size function on a single
half-plane of the foliation, while Total time refers to the computation of the size functions on 9 half-planes. Analogously, Avg. |C| is the average
number of cornerpoints of the size function on a single half-plane of the foliation, and Total |C| is the sum of the number of cornerpoints of the

size functions on 9 half-planes. These results are obtained using a AMD Athlon 3500, with 2 GB RAM

Model V| |E| Avg. time Total time Avg. |C| Total |C|
19538 187005 0.035s 0.315s 180 1623
18779 193181 0.041s 0.369 s 84 756
11504 97757 0.015s 0.135s 16 142
29061 289461 0.056 s 0.504 s 15 133
114277 1233063 0.212s 1.908 s 28 254
5472 45689 0.006 s 0.054 s 14 122

since, for every & > 0, the inequality £(aq,g) (X, (y1 +
& ...,y +€)) < L(X,¥) holds by definition, and hence
the equality L(¥,y) = +oo immediately follows. Let us
now assume that lim,_, o+ Z(M@(ﬁ?, +e...,y+e)=
r < +oo. In this case a finite set P = {Py,..., P} of
points in M (@ < X) exists such that, for every small enough
e>0,every Pe Mg <X)is (g < (y1+ &, ...,y +8))-
connected to a point P; € P in M. Furthermore, for i # j
the points P;, Pj € P are not (¢ < (y1 +&,..., Yk + &))-
connected and hence not (¢ < y)-connected either. From
Lemma 1 it follows that every P € M{¢ < X) is (¢ < ¥))-
connected to a point P; € P in M. Therefore L(x,y) =r =
lim_, o+ E(M@)()_C', 1+e, ...,y +98). O

Theorem 5 For t € I = [0, 1], consider the family of size
pairs (M, f;) where f; is a homotopy between fy: M — R
and f) : M — R. Define ¥ : M x I — R3 by ¥(P,1) =
(fy(P),t, —t). Then, for everyt € I and x,y € R with x <
y, it holds that

rank Hg’y(t_)

= lim L mxr5) (X 1, =1,y +€, 14+, —1 +¢),
e—0t

@ Springer

where Hg o () denotes the dimension 0 persistent homology
group computed at point (X, y) with respect to f;.

Proof We know that rank H())C () is equal to the number of
equivalence classes of M{f; < x) quotiented with respect
to the (f; < y)-connectedness relation. On the other hand,
Lemma 2 states that lim,_, o+ £ Aqxr,5)(X, 1, =1,y +&,1 +
g, —t + ¢) is equal to the number of equivalence classes
of M x I{}¥ < (x,f,—f)) quotiented, with respect to the
(X < (3,1, —1))-connectedness relation. By definition of ¥,
this last number equals the number of equivalence classes
of M(f; < x) quotiented, with respect to the (f; < y)-
connectedness relation. This concludes our proof. (]

However, although these two links exist, the concept
of multidimensional size function has quite different pur-
poses than that of vineyard. First of all, vineyards are
based on a I-parameter parallel foliation of R>, while the
study of multidimensional size functions depends on a
(2k — 2)-parameter non-parallel foliation of At C R x R¥.
In fact, multidimensional size functions are associated with
k-dimensional measuring functions, instead of with a homo-
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Table 3 Multidimensional and 1-dimensional matching distance be-
tween an airplane and another airplane (first column) or a chair model
(second column). The first three rows refer to the multidimensional
matching distance using 3 different half-planes of the foliation, the
fourth and fifth row show the average and the maximum value of the
multidimensional matching distance using 9 planes, and the last three
rows represent the 1-dimensional matching distance using the single
components of ¢

0=5%,¢9=% 0.1337 0.7593
0=%.9=75% 0.1336 0.7592
0=1.0=7% 0.2198 0.4741
Average over 9 half-planes 0.1359 0.5449
Maximum over 9 half-planes 0.2198 0.7593
©x 0.0782 0.2543
@y 0.1151 0.3481
¥; 0.0712 0.0963

topy between 1-dimensional measuring functions. Further-
more, [12] does not aim to identify distances for the com-
parison of vineyards, while we are interested in quantitative
methods for comparing multidimensional size functions.

8 Conclusions and Future Work

We believe that this paper settles most of the problems con-
nected to multidimensionality in Size Theory. Indeed, by
reducing the theory of multidimensional size functions to
the 1-dimensional case by a suitable change of variables, we
have proved that multidimensional size functions are stable,
with respect to the new distance D41, Moreover they ad-
mit a simple and concise description. Our experiments show
how to use them in concrete applications building on the ex-
isting computational techniques.

However some questions could be further investigated.
Among them we list a few here.

o Choice of the foliation. Other foliations, different from
the one we propose are possible. In general, we can
choose a family T of continuous curves 75 : R — RF such
that (i) for s < ¢, y3(s) < ¥5 (1), (ii) for every (¥, y) € AT
there is one and only one j; € I' through X, y and each
component of y; is surjective (iii) the curve y; depends
continuously on the parameter & (this last hypothesis is
important in computation for stability reasons). In this
case, the leaves of the foliation are given by the surfaces
(Y5 (s), Y5 (1)), with s < t, parameterized by s, £. It would
be interesting to study the dependence of our results on
the choice of the foliation.

e Choice of the planes inside the foliation. The compari-
son technique expressed by Remark 5 requires the choice
of a finite set of foliation leaves, on which we compute the
reduction from multidimensional to 1-dimensional size
functions. It would be interesting to determine a method
to make this choice optimal.

o Existence of size pairs having assigned k-dimensional
size functions. At this time we do not know if any link ex-
ists between the 1-dimensional size functions associated
with the planes i) apart from continuity. A question
naturally arises about the conditions of existence of size
pairs having an assigned continuous family of size func-
tions on the planes of our foliation.

e Reduction moves for the multidimensional size graph.
In the discrete framework, the computation of 1-dimen-
sional size functions is usually speeded up by applying
some reduction moves to the size graph. Similar moves
can be introduced in the multidimensional setting ([8])
but so far we do not know when this reduction is worth its
computational cost.
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