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Abstract. Let us consider two closed homeomorphic manifolds M;N of class C 1 and two
functions j : M ! R, c : N ! R of class C 1. The natural pseudodistance d between the pairs

ðM; jÞ; ðN;cÞ is defined as the infimum of Yð f Þ ¼def maxP AMjjðPÞ � cð f ðPÞÞj, as f varies
in the set of all homeomorphisms from M onto N. In this paper we prove that a suitable
multiple of d by a positive integer k coincides with the distance between two critical values of
the functions j;c.
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Introduction

The problem of comparing two manifolds M and N by computing the infimum of
an operator Y defined on a suitable set H of homeomorphisms is a classic object of
study in many fields of Geometry. The Fréchet distance (cf. [1]), the Lipschitz dis-
tance (cf. [9]) and, in some senses, the Teichmüller distance (cf. [16]) are only a few
examples showing the importance of such an approach to comparing manifolds.

A simple way of defining the operator Y is the following one. For each manifold
we choose a convenient real-valued function and compute how much each homeo-
morphism f A H ‘‘changes’’ such a function. This measurement is the value taken by
our operator Y at f . The usual task is to make Yð f Þ as small as possible, and to take
its infimum as a pseudodistance between the considered manifolds.

A structure on a manifold A can often be seen as a function j from another mani-
fold M to the real numbers (e.g., a Riemannian structure on a smooth manifold M
can be seen as a real-valued function defined on the Whitney sum TðMÞlTðMÞ).
Hence the functional Y also allows us to compare some kinds of structures on
manifolds by using suitable real-valued functions.

On the other hand, there are many examples of functions whose extrema have been
extensively used for studying and comparing manifolds (cf., e.g., [2, 9, 10, 11, 14]).
So, by assuming that two closed homeomorphic manifolds M;N of class C1 are
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given, we are naturally led to study the value d ¼def inf f AHðM;NÞ maxP AMjjðPÞ�
cð f ðPÞÞj for every arbitrary pair of functions j : M ! R, c : N ! R of class C1,
where the symbol HðM;NÞ denotes the set of all homeomorphisms from M onto
N. The functions j and c are called measuring functions.

The closeness of d to zero means that there are homeomorphisms for which the dif-
ference between the values taken by the measuring functions at corresponding points
is arbitrarily small. On the other hand, if such an infimum is large, we have that every
homeomorphism between the considered manifolds must change the values taken by
our measuring function considerably.

Finally, it is also interesting to highlight the strong similarity between the pseudo-
distance defined by the infimum of Yð f Þ and the Fréchet distance between surfaces.

Apart from its generality, the interest in the approach we have just described is
mainly due to its usefulness in modelling minimization problems in Applied Geome-
try. In particular, the purpose of comparing ‘‘shapes’’ of manifolds and topological
spaces for solving Computer Vision problems has made the computation of d a useful
task, together with the ‘‘twin’’ and strictly related concept of size function. For more
theoretical details and examples of practical applications we refer to [4, 5, 7, 12, 17,
18, 19, 20, 21, 22].

All these reasons, together with the challenging di‰culty in computing d, have
motivated our research.

In this paper we investigate some properties of the infimum d of Y. We prove that
a suitable multiple of d by a positive integer k coincides with the distance between
two critical values of the functions j and c (Theorem 6.2). Previous results should
be compared to those obtained in [3] for natural pseudodistances and in [6] for size
functions.

In the following Section 1 we give the main definitions, while in Section 2 our prob-
lem is made clearer by showing some examples. The core of the paper begins in Sec-
tion 3 where some key concepts for our proofs are given. Section 4 provides the
technical results required in Section 5 for proving our main result, in a weaker form
(Theorem 5.2). Section 6 allows us to weaken the hypotheses required in the previous
theorem, in order to arrive at Theorem 6.2. In Section 7 some final remarks are given.

1 Setting the problem

Let us consider the collection Size of all pairs ðM; j), where M is a closed manifold
of class C1 and j : M ! R is a function of class C1. We shall call ðM; jÞ a size pair

of class C1 and j a measuring function. However, from this section to Section 5 we
shall also assume that M is a smooth manifold and j is a smooth Morse function.
These hypotheses will simplify our proofs from a technical point of view. In Section 6
we shall weaken our assumptions and come back to the case of class C1.

Sometimes we shall speak about dilations of subsets of a smooth manifold M and
use the norm kP�Qk for P;Q A M. In these cases we shall implicitly assume that
an embedding of M into a Euclidean space has been arbitrarily chosen, so that both
previous concepts make sense. Obviously, Whitney’s Theorem assures that such an
embedding does exist.
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Assume ðM; jÞ; ðN;cÞ are two size pairs. The symbol HðM;NÞ will denote the
set of all homeomorphisms from M to N.

Definition 1.1. If HðM;NÞ0j, the function Y : HðM;NÞ ! R given by

Yð f Þ ¼ max
P AM

jjðPÞ � cð f ðPÞÞj

is called the natural size measure with respect to the measuring functions j and c.

In plain words, Y measures how much f changes the values taken by the measuring
functions at corresponding points.

Definition 1.2. We shall call natural size pseudodistance the pseudodistance d :
Size � Size ! RW fþyg defined by the formula:

dððM; jÞ; ðN;cÞÞ ¼ inf f AHðM;NÞ Yð f Þ if HðM;NÞ0j

þy otherwise.

�

In the following the symbol d will denote the value of the natural size pseudodistance
computed between the pairs ðM; jÞ and ðN;cÞ we are considering. As we previously
explained, such a pseudodistance gives a method for comparing two manifolds with
respect to the measuring functions we have chosen.

We point out that d is not a distance, since two size pairs can have a vanishing
pseudodistance without being equal (see Figure 5 for a non-trivial example).

In the following section we shall show that the infimum of Yð f Þ varying f in
HðM;NÞ is not always a minimum. When such an infimum is also a minimum,
we shall say that each homeomorphism f A HðM;NÞ with d ¼ Yð f Þ is an optimal

homeomorphism.
In order to simplify our notations, we shall assume that the manifoldsM andN do

not meet and that the corresponding measuring functions are obtained by restriction
of a function o : MWN ! R, so that j ¼ ojM and c ¼ ojN. Therefore we shall be
allowed to use just one symbol to denote both the measuring functions. These hypoth-
eses are not restrictive, since we can always replace the size pair ðN;cÞ with a new
size pair ðN;cÞ having vanishing pseudodistance from the previous one and such that
MXN ¼ j. Sometimes, when not confusing, we shall use the symbol o to denote
both ojM and ojN.

Example 1.3. In R3 consider the unit sphere S of equation x2 þ y2 þ z2 ¼ 1 and the
ellipsoid E of equation x2 þ 4y2 þ 9z2 ¼ 1. On S and E consider respectively the
measuring functions j and c that take every point of S and E to the Gaussian cur-
vature of the considered manifold at that point. We have dððS; jÞ; ðE;cÞÞ ¼ 35. In
fact jðSÞ ¼ f1g while cðEÞ ¼ ½4=9; 36�, and therefore for every f A HðS;EÞ it results
that Yð f Þ ¼ 35.
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Example 1.4. Consider the two tori T;T 0 HR3 generated by the rotation around
the y-axis of the circles lying in the plane yz and with centres A ¼ ð0; 0; 3Þ and
B ¼ ð0; 0; 4Þ, and radii 2 and 1, respectively (see Figure 1). As measuring function j
(resp. j 0) on T (resp. on T 0) we take the restriction to T (resp. to T 0) of the func-
tion z : R3 ! R, zðx; y; zÞ ¼ z. We point out that, for both T and T 0, the image of
the measuring function is the closed interval ½�5; 5�. We can easily prove that the
natural size pseudodistance between ðT; jÞ and ðT 0; j 0Þ is 2 (for a proof see [8]).
Moreover, the homeomorphism f , taking each point of T to the point having the
same toroidal coordinates in T 0, has natural size measure Yð f Þ ¼ 2.

Figure 1. In this case an optimal (i.e. minimizing Y) homeomorphism exists and d ¼ 2;
d equals the distance between a critical value of j and a critical value of j 0.

Figure 2. The natural pseudodistance between the size pairs ðM;oÞ and ðN;oÞ is
oðBÞ � oðAÞ.
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In general, d is far from being easily computable as in previous Examples 1.3 and 1.4.
In Example 1.3, for every homeomorphism f A HðS;EÞ we have that Yð f Þ equals
the Hausdor¤ distance dHðjðSÞ;cðEÞÞ between the sets jðSÞ and cðEÞ in R. Now it
is clear that the natural size pseudodistance dððM; jÞ; ðN;cÞÞ is always greater than
or equal to dHðjðMÞ;cðNÞÞ and therefore Yð f Þ must be the natural size pseudo-
distance we want to compute. We also point out that, in Example 1.3, the images of
j and c are di¤erent sets and so the natural size pseudodistance is trivially positive.

In Example 1.4 the natural size pseudodistance is strictly greater than the
(vanishing) Hausdor¤ distance between the images of the two measuring functions.

Computing natural size pseudodistances is usually very di‰cult. For this reason
the concepts of size function and size homotopy group have been developed, making it
easier to compute the value d, using some lower-bound theorems. Anyway, here we
cannot illustrate these strongly correlated concepts, and hence we refer to [5, 6, 7, 8]
for more details.

Remark 1.5. The presence of the word ‘‘size’’ in our definitions is due to the link exist-
ing between the pseudodistance d, size functions and size homotopy groups. How-
ever, for the sake of simplicity, we shall often drop the word ‘‘size’’ in the expressions
‘‘natural size measure’’ and ‘‘natural size pseudodistance’’. The term ‘‘natural’’ is used
in order to distinguish the pseudodistance studied here from other pseudodistances
we can define between submanifolds of the Euclidean space and between manifolds
paired with measuring functions (cf. [5]).

We observe that in the previous Examples 1.3 and 1.4 there is an optimal homeo-
morphism (in particular, all homeomorphisms in HðS;EÞ are optimal). It is impor-
tant to point out that optimal homeomorphisms do not generally exist, as we shall see
in the next section.

2 Some examples about curves and surfaces

Example 2.1. The first example we give is shown in Figure 2. M and N are planar
smooth curves and o is the ordinate function. It is clear that the natural pseudo-
distance d between the size pairs ðM;oÞ and ðN;oÞ equals oðBÞ � oðAÞ, that is, the
distance between a critical value of ojM and a critical value of ojN.

In this example no optimal homeomorphism exists, since it ought to take both the
maximum points for ojM to A, against injectivity.

Example 2.2. Let us consider the smooth curves M and N in Figure 3. The points A
and B are critical points of the function o and oðCÞ ¼ 1

2 ðoðAÞ þ oðBÞÞ ¼ oðGÞ. We
want to prove that the natural pseudodistance between the size pairs ðM;oÞ and
ðN;oÞ takes the value

d ¼ 1

2
ðoðAÞ � oðBÞÞ
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and that no optimal homeomorphism exists. In order to do that we shall construct a
sequence of homeomorphisms ð fnÞ for which limn Yð fnÞ ¼ 1

2 ðoðAÞ � oðBÞÞ and show
that Yð f Þ > 1

2 ðoðAÞ � oðBÞÞ for every homeomorphism f A HðM;NÞ.
Let us start by proving that for every e > 0 a homeomorphism ge : M ! N exists,

such that YðgeÞa 1
2 ðoðAÞ � oðBÞÞ þ 2e. Consider the points De;Ee;He and Fe in

Figure 3, verifying oðDeÞ ¼ oðHeÞ ¼ oðCÞ þ e and oðEeÞ ¼ oðFeÞ ¼ oðCÞ � e. We
choose a homeomorphism ge taking the arc DeCEe to the arc HeGFe in such a way
that geðDeÞ ¼ He and geðEeÞ ¼ Fe. Outside the arc DeCEe in M we define ge by taking
every point P to a point geðPÞ, verifying oðPÞ ¼ oðgeðPÞÞ.

For every n A N� f0g we set fn ¼ g1=n. It is easy to prove that

lim
n

Yð fnÞ ¼
1

2
ðoðAÞ � oðBÞÞ:

Now we have only to verify that no homeomorphism between M and N exists for
which Yð f Þa 1

2 ðoðAÞ � oðBÞÞ. If such a homeomorphism existed, for every P A M
we would have

joðPÞ � oð f ðPÞÞja oðAÞ � oðBÞ
2

and hence oð f ðAÞÞboðGÞboð f ðBÞÞ. Therefore we could easily find points P A M
for which joðPÞ � oð f ðPÞÞj > 1

2 ðoðAÞ � oðBÞÞ, contradicting our assumption.

Example 2.3. Consider the size pairs ðM;oÞ and ðN;oÞ in Figure 4, where M and
N are smooth surfaces embedded into R3. We want to prove that the natural pseu-
dodistance between these size pairs takes the value 1=2.

Figure 3. Construction of the homeomorphism ge for which YðgeÞa d þ e.
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The critical points P;Q A M for which oðPÞ ¼ 1 and oðQÞ ¼ 0 belong to the dis-
played closed set KHo�1ð½0; 1�Þ. First of all, we shall prove that db 1=2, by show-
ing that for every homeomorphism f : M ! N the inequality

Yð f Þ > 1

2
ðoðPÞ � oðQÞÞ ¼ 1

2

holds. Suppose f ðKÞ contains no point of N that is critical for o (otherwise Yð f Þ
would be at least 1 and our inequality would be already satisfied). Let A be the point
of f ðKÞ at which the measuring function oj f ðKÞ takes its maximum. Since A belongs
to the boundary of f ðKÞ, it must be oð f �1ðAÞÞ ¼ 0 and as P is internal to K ,
oð f ðPÞÞ < oðAÞ. In conclusion, Yð f ÞboðAÞ > oð f ðPÞÞ and hence Yð f ÞboðPÞ�
oð f ðPÞÞ > oðPÞ �Yð f Þ. It follows that Yð f Þ > oðPÞ=2 ¼ 1=2:

In order to complete our proof that the natural pseudodistance is really 1=2, we
still have to show a suitable sequence of homeomorphisms ð fnÞ such that

lim
n

Yð fnÞ ¼ 1=2:

Since the construction of such a sequence is conceptually similar to the one we gave
for the previous example about curves, we skip its analytic expression.

Example 2.4. Consider the smooth surfaces M and N displayed in Figure 5 and the
corresponding measuring function o. The dotted lines are level curves for the mea-
suring function o.

Figure 4. The natural pseudodistance between these size pairs is d ¼ 1=2.
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Property 1. The natural pseudodistance between the two size pairs vanishes.

It is easy to see that we can isotopically deform the former surface into the latter one
by a ‘‘torsion’’ exchanging the positions of the smallest humps. This deformation can
be performed by an arbitrarily small change in the values of the height o. Therefore
we can construct a sequence of homeomorphisms ð fnÞ from M to N such that
Yð fnÞ ! 0.

Property 2. No optimal homeomorphism exists between the two size pairs.

Suppose a homeomorphism f exists such that Yð f Þ ¼ 0. Consider a path g as in
Figure 5, chosen in such a way that, in the image of the path, no point P di¤erent
from A exists for which oðPÞ ¼ oðAÞ. We can easily verify that the image of the path
f � g must contain more than one point at which o takes the value oðAÞ. This is
against our assumptions, since Yð f Þ ¼ 0 implies oð f ðPÞÞ ¼ oðPÞ for every point P
in the image of g.

3 The concept of train of ‘‘limit d-jumps’’

In order to prove our main theorem we need some new definitions and technical
results. Assume two size pairs ðM;oÞ, ðN;oÞ are given.

Figure 5. An example of vanishing natural pseudodistance.
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The symbol SHðM;NÞ will denote the set of all sequences of homeomorphisms
ð fnÞ in HðM;NÞ such that Yð fnÞ ! d. Every sequence in SHðM;NÞ will be called
a d-approximating sequence.

Let us consider a sequence ð fnÞ A SHðM;NÞ. We shall say that a pair of points
ðP;QÞ A M�N is in relation with respect to ð fnÞ if a sequence ðPrÞ in M exists
together with a strictly increasing sequence ðirÞ in N such that

ðP;QÞ ¼ lim
r
ðPr; firðPrÞÞ:

In this case we shall write either PrQ or QrP, indi¤erently.
In the following part of this section we shall assume that 0 < d < þy. The fol-

lowing compact sets are defined with respect to each d-approximating sequence ð fnÞ:

Nþ
M ¼ Nþ

Mðð fnÞÞ ¼ fP A M j bQ A N : PrQ;oðQÞ � oðPÞ ¼ dg

N�
M ¼ N�

Mðð fnÞÞ ¼ fP A M j bQ A N : PrQ;oðPÞ � oðQÞ ¼ dg

Nþ
N ¼ Nþ

Nðð fnÞÞ ¼ fQ A N j bP A M : PrQ;oðPÞ � oðQÞ ¼ dg

N�
N ¼ N�

Nðð fnÞÞ ¼ fQ A N j bP A M : PrQ;oðQÞ � oðPÞ ¼ dg:

In plain words, the points P in Nþ
M are those for which a point Q A N exists, such

that the pair ðP;QÞ can be approximated arbitrarily well by a pair ðPn; finðPnÞÞ whose
‘‘jump’’ oð finðPnÞÞ � oðPnÞ is arbitrarily close to d. Hence, if we think of o as a
‘‘height’’ function (cf. the examples in the previous section), the points Pn have
images with height approximated by oðPnÞ þ d. In Nþ

M, the symbol M recalls the
manifold to which P belongs, while the symbol þ recalls that by taking P to Q we
increase the value of the measuring function. The notations used for the other three
sets are quite analogous.

It is clear that for every point P A Nþ
M a point Q A N�

N exists such that PrQ
(and vice versa) and that an analogous relation holds for the sets N�

M and Nþ
N. For

every sequence of homeomorphisms in SHðM;NÞ the sets NM ¼ Nþ
M WN�

M and
NN ¼ Nþ

N WN�
N are non-empty because of the compactness of the manifolds and the

continuity of the measuring functions.
Now we shall define the concept of ‘‘train’’ for a d-approximating sequence:

Definition 3.1. Let ðN0;N1; . . . ;NkÞ be an ordered ðk þ 1Þ-tuple of points in MWN
with kb 1 such that, for i ¼ 0; . . . ; k � 1 the following properties hold:

a) oðNiþ1Þ ¼ oðNiÞ þ d;

b) NirNiþ1:

In this case the ordered set ðN0;N1; . . . ;NkÞ will be called a train of limit d-jumps for

the sequence ð fnÞ (or, in short, a train) and its points will be called nodes. The pairs
ðNi;Niþ1Þ will be known as the wagons of the train. The number k will be called
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length of the train and each train that is not included in any other train will be said to
be maximal. If ðN0; . . . ;NkÞ is a maximal train, its wagons ðN0;N1Þ and ðNk�1;NkÞ
will be called initial and final train wagons (respectively), while N0 and Nk will be the
initial and final train nodes. The remaining nodes will be called internal nodes. The
symbol Wðð fnÞÞ will denote the set of all the train wagons (for all the existing trains).

Since each point belonging either to NM or to NN is a node for at least one train, the
set of all trains is not empty. Notice that the point P is an initial node for at least a
maximal train if and only if either P A Nþ

M �N�
M or P A Nþ

N �N�
N, whereas it is a

final node if and only if either P A N�
M �Nþ

M or P A N�
N �Nþ

N.
In Figure 6 we provide a graphic representation of a maximal train ðA;B;C;DÞ. In

particular, we have that A A Nþ
N;B A Nþ

M XN�
M;C A Nþ

N XN�
N and D A N�

M. Hence A
is the initial node and D is the final train node, while B and C are internal nodes. The
three ordered pairs ðA;BÞ; ðB;CÞ; ðC;DÞ are the three wagons in the train; ðA;BÞ and
ðC;DÞ are its initial and final wagon, respectively.

In Figure 7 we find the maximal train ðB;G;AÞ associated to the d-approximating
sequence we described in Example 2.2. In fact we can easily prove that BrG;GrA,
oðGÞ � oðBÞ ¼ d and oðAÞ � oðGÞ ¼ d. Hence B A Nþ

M;G A Nþ
N XN�

N and A A N�
M.

Remark 3.2. The last example shows that the existence of a train of length 2, such that
its initial node (in this case B) and its final node (in this case A) are critical points of
the measuring function o, guarantees that the natural pseudodistance equals half the
distance between two critical values of the measuring function. In the next two sec-
tions, our main goal will be to prove that it is always possible to construct a sequence
of d-approximating homeomorphisms such that all maximal trains begin and end at
critical points of the measuring function. The example we have just seen justifies our
task, since it points out a simple relation between d and the critical values of o.

Figure 6. A train of limit d-jumps given by the quadruple ðA;B;C;DÞ.
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4 Some technical results

All this section is devoted to some boring but necessary computations that will
allow us to prove our key Lemma 5.1 in Section 5. In this section and in the following
one M and N will be assumed to be smooth closed homeomorphic manifolds, while
j and c will be smooth Morse functions. We shall assume 0 < d < þy. Let Kj and
Kc be the sets of all critical points of the functions j and c. Since they are Morse
functions, Kj and Kc are finite sets, as are the sets jðKjÞ and cðKcÞ of all critical
values for the measuring functions.

Lemma 4.1. Suppose ð fnÞ is a d-approximating sequence and C is a compact subset of

M such that CXN�
M ¼ j. Then e ¼ eðCÞ > 0 and n ¼ nðeÞ exist such that

max
P AC

ðjðPÞ � cð fnðPÞÞÞa d � e Enb n:

Proof. Suppose our statement is false. Then a strictly increasing sequence ðniÞ in
N and a sequence ðPiÞ in C exist, such that jðPiÞ � cð fniðPiÞÞb d � 1=i for every
index i.

Because of the compactness of M and N, possibly by extracting a subsequence, we
can assume ðPiÞ and ð fniðPiÞÞ to be converging. Then the point P ¼ limi Pi belongs to
CXN�

M, that is a contradiction. r

Lemma 4.1 can be naturally extended to the sets Nþ
M;N�

N;Nþ
N.

By defining a suitable tangent vector field the following result can be proved.

Figure 7. An example of train of limit d-jumps given by the triple ðB;G;AÞ.
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Lemma 4.2. Let DHM be a non-empty open set, for which DXKj ¼ j. Then, for
each h > 0, a homeomorphism F : M ! M exists such that F ¼ id on M�D and

verifying hb jðPÞ � jðFðPÞÞ > 0, hb kP� F ðPÞk > 0 for every P A D.

Proof. Consider the tangent vector field v :¼ �l‘j where l : M ! ½0; 1� is a regular
function such that l ¼ 0 on M�D and l > 0 in D. The flow di¤eomorphism Ft of
v takes each point P A M to a new point FtðPÞ A M (here we are using the regularity
of j). If t is small enough, we get the wanted property by setting F ¼ Ft. r

The following two Lemmas 4.3 and 4.4 will be fundamental for the next results. Our
goal is to ‘‘improve’’ a d-approximating sequence of homeomorphisms ð fnÞ by elimi-
nating all the maximal trains that either do not begin or do not end at critical points.
The basic idea is that we can do it by means of a small perturbation of the homeo-
morphisms, which does not create new wagons.

As a first step in this direction, we shall get the following lemma, showing how to
eliminate the initial wagons ðP;QÞ when P A M� Kj. The technical details of the
proof of this lemma require the definition of two families ðDiÞi AN and ðEiÞi AN of dis-
joint open subsets of M. We shall use these families in two distinct but similar pro-
cedures.

Lemma 4.3. For every fixed d-approximating sequence ð fnÞ, a new d-approximating

sequence ðgnÞ exists such that, for every ðP;QÞ A M�N, we have

i) ðP;QÞ A WððgnÞÞ if and only if ðP;QÞ A Wðð fnÞÞ with P A Kj WN�
Mðð fnÞÞ;

ii) ðQ;PÞ A WððgnÞÞ if and only if ðQ;PÞ A Wðð fnÞÞ.

The previous lemma assures that the nodes of the new sequence ðgnÞ we get are
already nodes for ð fnÞ and that the initial node of every maximal train beginning in
M is a critical point for the measuring function j.

Proof. (Lemma 4.3) We use the symbol C to denote the compact set Kj WN�
Mðð fnÞÞ

and, for every i > 0, and the symbol Di to denote the open set

Di ¼ C1=ð2iÞ � C1=ð2iþ2Þ

where C a is the open dilation in M of C with radius a. Set D0 ¼ M� C1=2. In
Figure 8 the sets Di and Diþ1 are displayed (the sets Ei in the picture will be defined in
the following).

C is the set where the given sequence ð fnÞ and the sequence ðgnÞ we are going to
define will concide. We shall change ð fnÞ in M� C in such a way that Nþ

MððgnÞÞJC.
Set D ¼

S
i AN Di. Since Di XC ¼ j for every i, because of Lemma 4.1, ei > 0 and

ni A N exist such that

max
P ADi

ðjðPÞ � cð fnðPÞÞa d � eið4:1Þ

for every nb ni. We can also assume that limi!y ei ¼ 0.
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Lemma 4.2 assures the existence of a homeomorphism Fi : M ! M such that

ei

2
b jðPÞ � jðFiðPÞÞ > 0;

ei

2
b kP� FiðPÞk > 0 for P A Di

and FiðPÞ ¼ P , jðFiðPÞÞ ¼ jðPÞ , P A M�Di.

Since Di XDj ¼ j for i0 j and FiðPÞ ¼ FjðPÞ ¼ P for P A M� ðDi WDjÞ, the map
F : M ! M defined by setting FðPÞ ¼ FiðPÞ on Di and F ðPÞ ¼ P elsewhere is a
homeomorphism. Let us study the properties of trains for the new sequence ð ~ffnÞ
where

~ffn ¼ fn � F : M ! N:

Now, if P A M and Q A N, we want to prove that ðP;QÞ A Wðð ~ffnÞÞ if and

only if ðP;QÞ A Wðð fnÞÞ with P B D and that ðQ;PÞ A Wðð ~ffnÞÞ if and only if
ðQ;PÞ A Wðð fnÞÞ.

As an informal note, we point out that in Di the composition with F increases the
absolute value of every negative jump by a quantity less than ei=2 and that, all over
D, every positive jump decreases. By using the inequality (4.1), we can easily prove
that ð ~ffnÞ is still a d-approximating sequence.

Let us study the properties of nodes and wagons of the new sequence ð ~ffnÞ A
SHðM;NÞ. Note that PrQ for the sequence ð ~ffnÞ if and only if FðPÞrQ for the
sequence ð fnÞ. So we have the following:

a) if ðP;QÞ A Wðð fnÞÞ and P B D, then cðQÞ � jðPÞ ¼ d, PrQ for ð fnÞ and
P ¼ FðPÞ. It follows that F�1ðPÞrQ for ð ~ffnÞ with F�1ðPÞ ¼ P. Therefore
ðP;QÞ A Wðð ~ffnÞÞ.

Figure 8. The sets Di and Ei.
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b) if ðP;QÞ A Wðð ~ffnÞÞ then PrQ for ð ~ffnÞ and cðQÞ � jðPÞ ¼ d. Hence

cðQÞ � jðFðPÞÞ ¼ d þ jðPÞ � jðF ðPÞÞb d:

Since FðPÞrQ for ð fnÞ, it must be that cðQÞ � jðF ðPÞÞa d (as a simple consequence
of ð fnÞ being a d-approximating sequence) and therefore jðF ðPÞÞ ¼ jðPÞ. It follows
that P B D, F ðPÞ ¼ P and ðP;QÞ A Wðð fnÞÞ.

So we have proved that ðP;QÞ A Wðð ~ffnÞÞ if and only if ðP;QÞ A Wðð fnÞÞ and P B D.
We still have to examine the case the considered wagon begins at a point Q of N. We
have that

a 0) if ðQ;PÞ A Wðð fnÞÞ then P A N�
Mðð fnÞÞ and hence P B D, so that P ¼ F�1ðPÞ.

Moreover, since F�1ðPÞrQ for ð ~ffnÞ and jðPÞ � cðQÞ ¼ d, we have ðQ;PÞ A Wðð ~ffnÞÞ.

b 0) if ðQ;PÞ A Wðð ~ffnÞÞ we have to prove that ðQ;PÞ A Wðð fnÞÞ. This case requires

more attention. We must verify that changing ð fnÞ into ð ~ffnÞ does not create new
nodes for N�

M.

Since PrQ for ð ~ffnÞ then FðPÞrQ for ð fnÞ. If we prove that FðPÞ ¼ P then, as
jðPÞ � cðQÞ ¼ d, we get ðQ;PÞ A Wðð fnÞÞ.

Suppose that FðPÞ0P (and hence P A D) and choose a sequence ðPnÞ of points
in M such that Pn ! P. Then i; n A N will exist for which Pn A Di and FðPnÞ A Di

for every nb n. From (4.1) it follows that jðFðPnÞÞ � cð fnðFðPnÞÞÞa d � ei for
nb ni; n, and therefore

jðPnÞ � cð ~ffnðPnÞÞ ¼ ðjðPnÞ � jðF ðPnÞÞÞ þ ðjðFðPnÞÞ � cð fn � F ðPnÞÞÞ

a
ei

2
þ d � ei < d � ei

2
:

So P B N�
Mðð ~ffnÞÞ, against the hypothesis ðQ;PÞ is a wagon for ð ~ffnÞ. Therefore it must

be that F ðPÞ ¼ P, and hence ðQ;PÞ A Wðð fnÞÞ.

The sequence ð ~ffnÞ is not yet the one we wanted, since we have proved that ðP;QÞ A
Wðð ~ffnÞÞ if and only if ðP;QÞ A Wðð fnÞÞ and P A M�D, while we wanted to have
ðP;QÞ A Wðð ~ffnÞÞ if and only if ðP;QÞ A Wðð fnÞÞ and P A C. By means of a procedure
analogous to the one we used for constructing ð ~ffnÞ, we shall now show that we can
get a new sequence ðgnÞ for which the wanted property is fulfilled.

For every i A N let Ei be the open set

Ei ¼ C1=ð2iþ1Þ � C 1=ð2iþ3Þ

and define E ¼
S

i AN Ei. Because of our definition, we can easily verify thatSy
i¼0 qDi HE and M� ðDWEÞ ¼ C.
By applying the procedure we used for ð fnÞ and the set D to the sequence ð ~ffnÞ and

to the set E, we get a new homeomorphism F 0 : M ! M and then a new sequence
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ðgnÞ ¼ ð ~ffn � F 0Þ with the following property: ðP;QÞ A WððgnÞÞ if and only if ðP;QÞ A
Wðð ~ffnÞÞ with P A M� E and ðQ;PÞ A WððgnÞÞ if and only if ðQ;PÞ A Wðð fnÞÞ.

In conclusion, ðP;QÞ A WððgnÞÞ if and only if ðP;QÞ A Wðð fnÞÞ with P A M�
ðDWEÞ ¼ C, while ðQ;PÞ A WððgnÞÞ if and only if ðQ;PÞ A Wðð fnÞÞ. Hence our
lemma is proved. r

By exchanging the role of M and N and considering the sequence ð f �1
n Þ in the pre-

vious lemma, we get

Lemma 4.4. For every fixed d-approximating sequence ð fnÞ a new d-approximating

sequence ðgnÞ exists such that, for every ðP;QÞ A M�N, we have

i) ðP;QÞ A WððgnÞÞ if and only if ðP;QÞ A Wðð fnÞÞ;

ii) ðQ;PÞ A WððgnÞÞ if and only if ðQ;PÞ A Wðð fnÞÞ with Q A Kc WN�
Nðð fnÞÞ.

This result, in analogy with the previous one, allows us to obtain a new sequence such
that all the nodes in Nþ

N are either critical points or nodes in N�
N.

In conclusion, the last two Lemmas 4.3 and 4.4 allow us to assume that all initial
nodes of maximal trains are critical points. By applying the two previous lemmas to
the size pairs ðM;�jÞ and ðN;�cÞ we get the following two results, allowing us to
assume that all final nodes of maximal trains are critical points.

Lemma 4.5. For every fixed d-approximating sequence ð fnÞ a new d-approximating

sequence ðgnÞ exists such that, for every ðP;QÞ A M�N, we have

i) ðQ;PÞ A WððgnÞÞ if and only if ðQ;PÞ A Wðð fnÞÞ with P A Kj WNþ
Mðð fnÞÞ;

ii) ðP;QÞ A WððgnÞÞ if and only if ðP;QÞ A Wðð fnÞÞ.

Lemma 4.6. For every fixed d-approximating sequence ð fnÞ a new d-approximating

sequence ðgnÞ exists such that, for every ðP;QÞ A M�N, we have

i) ðQ;PÞ A WððgnÞÞ if and only if ðQ;PÞ A Wðð fnÞÞ;

ii) ðP;QÞ A WððgnÞÞ if and only if ðP;QÞ A Wðð fnÞÞ with Q A Kc WNþ
Nðð fnÞÞ.

5 The main result (weaker form)

By using the previous lemmas we can prove the existence of a d-approximating
sequence of homeomorphisms whose maximal trains begin and end at critical points.
As we pointed out in Remark 3.2, the existence of such a sequence allows us to estab-
lish a link between the natural pseudodistance and the distance between critical
values of the measuring functions.

Lemma 5.1. Assume 0 < d < þy. For every sequence of homeomorphisms ð fnÞ in

SHðM;NÞ a new sequence ðgnÞ exists in SHðM;NÞ such that all maximal trains begin

and end at critical points of the measuring functions and WððgnÞÞJWðð fnÞÞ.
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Proof. Set ĤH ¼ fðhnÞ A SHðM;NÞ jWððhnÞÞJWðð fnÞÞg. For every ðhnÞ A ĤH con-
sider the set TððhnÞÞ of all maximal trains which either do not begin or do not end
with critical points of the measuring functions. Define kððhnÞÞ as the length of the
longest train in TððhnÞÞ (we set kððhnÞÞ ¼ 0 if TððhnÞÞ ¼ j). It should be noted that
ĤH0j since it contains at least ð fnÞ.

Our lemma is proved if a ðgnÞ A ĤH exists such that kððgnÞÞ ¼ 0. So choose one

sequence ðgnÞ A ĤH such that kððgnÞÞ ¼ minfkððhnÞÞ j ðhnÞ A ĤHg. Suppose kððgnÞÞ > 0.
By applying Lemmas 4.3, 4.4, 4.5, 4.6 to the sequence ðgnÞ one after the other, we get
a sequence ð~ggnÞ. Since all trains in TððgnÞÞ became strictly shorter by changing ðgnÞ
into ð~ggnÞ, it must be that kðð~ggnÞÞ < kððgnÞÞ, against our assumption. r

We underline that the measuring functions take the set of all nodes of maximal trains
for the new sequence ðgnÞ we got in previous lemma to a finite set of real numbers. In
fact the length of the maximal trains is finite and the sets Kj and Kc (to which the
initial and final nodes of the maximal trains belong) are finite sets.

Now we can prove the main result in this section. As we previously said, this result
will allow us to obtain an interesting relation between the natural pseudodistance and
the critical values of the measuring functions.

Theorem 5.2. Assume that M and N are two smooth and closed homeomorphic mani-

folds and that j : M ! R and c : N ! R are two smooth Morse functions. Then, if

d denotes the natural size pseudodistance between the size pairs ðM; jÞ and ðN;cÞ, a
positive integer k exists for which one of the following properties holds:

i) k is odd and kd equals the distance between a critical value of j and a critical value

of c;

ii) k is even and kd equals either the distance between two critical values of j or the

distance between two critical values of c.

Proof. If d ¼ 0 then properties i) and ii) are trivially verified for k ¼ 1 and k ¼ 2.
Therefore we can assume d > 0. By applying Lemma 5.1, choose a sequence in
SHðM;NÞ such that all its maximal trains begin and end at critical points, and take
a maximal train ðN0; . . . ;NkÞ of this sequence. We have oðNkÞ � oðN0Þ ¼ kd with
N0;Nk A Ko, where o is the usual extension to MWN of the measuring functions.
This equality ends our proof. r

Notice that our theorem do not set hypotheses about the dimensions of the consid-
ered manifolds. Moreover it provides information about the admissible values for
the natural pseudodistance, although d is defined by means of the set of all possible
homeomorphisms between M and N, which may be quite di‰cult to study.

The previous result leads to the following

Definition 5.3. We call analytic folding number the smallest positive integer k for
which either i) or ii) in Theorem 5.2 holds.
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We have a particularly simple case when an optimal homeomorphism exists.

Theorem 5.4. Assume that M and N are two smooth and closed homeomorphic mani-

folds and that j : M ! R and c : N ! R are two smooth Morse functions. If an opti-

mal homeomorphism f A HðM;NÞ between the size pairs ðM; jÞ and ðN;cÞ exists,
then the natural size pseudodistance d equals the distance between a critical value of j

and a critical value of c.

Proof. If d ¼ 0 then our thesis is trivially verified. Therefore we can assume d > 0.
Choose the trivial d-approximating sequence ð fnÞ with fn ¼ f for every index n. For
this sequence the trains can only have length 1. Hence, by applying Lemma 5.1 we
get our result. r

We point out that the preceding result does not require the knowledge of an optimal
homeomorphism but only of its existence. The previous Examples 1.3 and 1.4 display
two simple cases to which Theorem 5.4 applies.

Remark 5.5. Examples 2.2 and 2.3 show that we cannot avoid the hypothesis of
the existence of an optimal homeomorphism in Theorem 5.4. In these cases we can-
not apply Theorem 5.4, since there is no optimal homeomorphism and, in fact, the
natural pseudodistance d ¼ dððM; jÞ; ðN;cÞÞ is not equal to the distance between a
critical value of j and a critical value of c.

Anyway, Theorem 5.2 applies, and we observe that, in our examples, d is half the
distance between two critical values of j.

Remark 5.6. Our main result is given by Theorem 5.2 (together with the extension we
shall give in Section 6). Unfortunately, as we have seen, some boring technical pas-
sages are needed in order to prove that. The technical details must not hide the sim-
plicity of our basic idea, that is the following: when we have a maximal train that
does not begin (or end) at a critical point, it is always possible to eliminate the initial
(final) node and to make the train shorter by slightly modifying the homeomorphisms
in the considered d-approximating sequence. If we assume that the measuring func-
tions are the ‘‘height’’ with respect to a suitable embedding of our manifolds into Rk,
then our task is to raise (lower) slightly the neighborhood of the first (last) node of
the train. This procedure is quite delicate, both because we have to manage a poten-
tially infinite set of maximal trains and because we want the shortening of a train not
to cause the lengthening of another one. This compels us to carefully evaluate the
displacement we are performing by providing all the lemmas given in Section 4 and
also Lemma 5.1. In particular the proof of Lemma 4.3 appears to be a little bit tricky,
since we have to manage an infinite number of local changes.

Lemma 5.1 requires the construction of a new sequence in order to obtain the
desired property. It may be interesting, anyway, to point out that a weaker property
actually holds for the original sequence ð fnÞ. Formally, assume ð fnÞ A SHðM;NÞ.
Then we can prove that there is a train for ð fnÞ whose ends are critical points for the
measuring functions. However, this train is not guaranteed to be maximal.
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The ideas underlying the proof of this statement are quite similar to the ones used
for proving our key Lemma 5.1, and we shall skip the technical details. We could
have proved Theorem 5.2 by using such a statement in place of Lemma 5.1. We
did not do that, since Lemma 5.1 appears to be much more useful for getting further
results.

6 Weakening the hypotheses about the regularity of measuring functions and
manifolds

Until now we have considered smooth Morse measuring functions and smooth mani-
folds. In this section we shall prove that this regularity can be largely weakened.

First of all we give the following useful result:

Lemma 6.1. Let ðM; jÞ and ðN;cÞ be two size pairs. Consider two sequences ðjnÞ and
ðcnÞ of measuring functions on M and N, converging to j and c with respect to the

C0-norm. Then

dððM; jÞ; ðN;cÞÞ ¼ lim
n

dððM; jnÞ; ðN;cnÞÞ:

Proof. It follows immediately from our definitions. r

We are now going to prove the following generalization of Theorem 5.2.

Theorem 6.2. Assume that M and N are two closed homeomorphic manifolds of class

C1 and that j : M ! R and c : N ! R are two functions of class C 1. Then, if d
denotes the natural pseudodistance between the size pairs ðM; jÞ and ðN;cÞ, a positive

integer k exists for which one of the following properties holds:

i) k is odd and kd equals the distance between a critical value of j and a critical value

of c;

ii) k is even and kd equals either the distance between two critical values of j or the

distance between two critical values of c.

Proof. First of all we weaken the hypothesis on the measuring functions. Assume
two size pairs ðM;oÞ and ðN;oÞ are given (MXN ¼ j), where o : MWN ! R is
a function of class C 1 and M;N are assumed to be smooth. It is well-known that the
set of smooth Morse functions is dense in the set of all functions of class C1 with
respect to the C1-norm (see, e.g., [15]). Hence, for every n A N� f0g, a smooth
Morse function on : MWN ! R exists such that

kon � okC 1 a
1

n
:

Moreover, since the size pairs ðM;onÞ and ðN;onÞ satisfy the hypotheses of Theo-
rem 5.2, two critical points Nn and N 0

n for on and a positive integer kn exist, such that
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kndððM;onÞ; ðN;onÞÞ ¼ jonðNnÞ � onðN 0
nÞj:

Since MWN is compact and the di¤erential don converges to do, two critical
points N and N 0 for o exist such that Nn ! N, N 0

n ! N 0 (possibly by extracting
subsequences). Furthermore, because of the boundness of the set fkng, we can
assume that a positive integer k exists such that kn ¼ k for every index n.

Since onðNnÞ ! oðNÞ and onðN 0
nÞ ! oðN 0Þ, then Lemma 6.1 implies

kdððM;oÞ; ðN;oÞÞ ¼ lim
n

kndððM;onÞ; ðN;onÞÞ ¼ joðNÞ � oðN 0Þj:

We have thus proved that Theorem 5.2 can be extended to measuring functions of
class C1. In the following we shall prove that even the manifolds can be assumed to
be only of class C1. Therefore, let us make the assumption that ðM; jÞ and ðN;cÞ
are two size pairs of class C1 (thus M and N are manifolds of class C1 and j and
c are measuring functions of class C1). Then two smooth manifolds M;N
(MXN ¼ j) and two di¤eomorphisms a1 : M ! M; a2 : N ! N of class C1 exist
(see, e.g., [13]). It is easily verified that dððM; jÞ; ðM; j � a1ÞÞ ¼ 0 and
dððN;cÞ; ðN;c � a2ÞÞ ¼ 0.

Now apply the extension of Theorem 5.2 for measuring functions of class C1 to the
size pairs ðM; j � a1Þ and ðN;c � a2Þ. Call o the usual extension of j � a1 and c � a2
to MWN, and a the extension of a1 and a2 to MWN. Consider two critical points
N and N 0 for o such that either i) or ii) holds with respect to the critical values
oðNÞ;oðN 0Þ. Obviously, the points aðNÞ and aðN 0Þ belong to MWN and are criti-
cal points for o (i.e. the extension of j and c). Since dððM; j � a1Þ; ðN;c � a2ÞÞ ¼
dððM; jÞ; ðN;cÞÞ, we easily get the result. r

In a similar way, also Theorem 5.4 can be extended to the following.

Theorem 6.3. Assume that M and N are two closed homeomorphic manifolds of class

C1 and that j : M ! R and c : N ! R are of class C1. If an optimal homeomor-

phism f A HðM;NÞ between the size pairs ðM; jÞ and ðN;cÞ exists, then the natural

pseudodistance d equals the distance between a critical value of j and a critical value

of c.

7 Conclusions and final remarks

In this paper we have proved that the natural pseudodistance and the critical values
of the measuring functions involved are strongly related, even when we cannot obtain
an optimal homeomorphism f with respect to the operator Y. In fact, Theorem
6.2 shows that the natural pseudodistance is always a submultiple of the distance
between two suitable critical values of the measuring functions.

In two following papers, using the tools given in this work, we shall prove that
stronger constraints can be obtained for the analytical folding numbers, when the
considered manifolds are curves or surfaces.
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