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NATURAL PSEUDODISTANCES BETWEEN CLOSED SURFACES

PIETRO DONATINI*, PATRIZIO FROSINI*‡

Abstract. Let us consider two closed surfaces M, N of class C1 and two
functions ϕ : M → R, ψ : N → R of class C1, called measuring functions.
The natural pseudodistance d between the pairs (M, ϕ), (N , ψ) is defined as

the infimum of Θ(f)
def
= maxP∈M |ϕ(P ) − ψ(f(P ))|, as f varies in the set of

all homeomorphisms from M onto N . In this paper we prove that the natural
pseudodistance equals either |c1− c2| or 1

2
|c1− c2|, or 1

3
|c1− c2|, where c1 and

c2 are two suitable critical values of the measuring functions. This equality
shows that a previous relation between natural pseudodistance and critical
values obtained in general dimension can be improved in the case of closed
surfaces. Our result is based on a theorem by Jost and Schoen concerning
harmonic maps between surfaces.

Introduction

The natural pseudodistance is a new variational approach to the comparison of
manifolds endowed with real-valued functions defined on them. In [2] we proved a
result about the values that such a pseudodistance δ can take in general dimension.
In this work we focus on the 2-dimensional case, showing that the previous result can
be improved in the case of closed surfaces. Assuming that two homeomorphic closed
manifolds M and N of class C1 are given together with two functions ϕ : M→ R,
ψ : N → R of class C1 (called measuring functions), we consider the value

δ((M, ϕ), (N , ψ))
def
= inf

f∈H(M,N )
max
P∈M

|ϕ(P )− ψ(f(P ))|,

where H(M,N ) denotes the set of all homeomorphisms from M onto N . The
number d = δ((M, ϕ), (N , ψ)) is called the natural pseudodistance between the
pairs (M, ϕ) and (N , ψ) (called size pairs).

The closeness of d to zero means that there are homeomorphisms for which the
difference between the values taken by the measuring functions at corresponding
points is arbitrarily small. On the other hand, if the infimum is large, we find that
every homeomorphism between the considered manifolds must change the values
taken by our measuring function considerably.

In [2] we proved (Theorem 6.2) that a suitable multiple of d by a positive integer
k coincides with the distance between two critical values of the functions ϕ,ψ. It
is interesting to observe that in every known example, the minimum possible value
for k is 1 or 2. In this paper we shall show that, in the 2-dimensional case, the
minimum value for the integer k is either 1, 2, or 3. We remark that an analogous
statement has been proved in [4] for curves, too, using different techniques, but in
this case we are able to prove that only the values 1 and 2 are possible.
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Besides its intrinsic interest from a purely mathematical point of view, the nat-
ural pseudodistance between closed surfaces associated with measuring functions
can also be used for shape comparison purposes, together with the “twin” and
strictly related concept of size function. For more theoretical details and examples
of practical applications we refer to [1, 10, 18, 19, 20, 21].

In the following Section 1 we sketch the main ideas in this paper. In Section 2 we
give the main definitions and some examples, while in Section 3 further examples
are given, highlighting some characteristic phenomena. In Section 4 the concepts
of train and minimal d-approximating sequence are illustrated, together with some
related results. In Section 5 we prove our main result (Theorem 5.7) about the
natural pseudodistance between closed surfaces endowed with measuring functions.
In Section 6 open problems and further research are briefly described.

1. The point of this paper

As reported in the previous section, it was proved in [2] that the natural pseu-
dodistance between size pairs always equals |c1−c2|/k, where c1, c2 are two suitable
critical values of the measuring functions and k is an appropriate integer number.
The minimum possible value for k is called the analytic folding number.

It is interesting to observe that in every known example, the analytic folding
number is 1 or 2.

Two questions naturally arise: Are there examples showing an analytic folding
number strictly greater than 2? Is this question related to the dimension of our
manifolds?

In this paper we take a first step forward in order to answer these questions.
It is important to observe right now that the attempt to minimize the change

Θ(f)
def
= maxP∈M |ϕ(P )−ψ(f(P ))| in the measuring functions under the action of

f does not, in general, lead to a homeomorphism, as we are going to show in the
following section. Degeneracies can arise, and hence we cannot confine ourselves
to studying a single optimal homeomorphism. Instead of a single homeomorphism,
approximating sequences of homeomorphisms must be considered. In some senses,
“optimal” approximating sequences (fi) of homeomorphisms exist, converging to
relations that represent the best way to take one manifold to another with respect
to the change in the measuring functions. The study of these relations leads us to
define the concept of train of “limit d-jumps”, describing some degeneracies corre-
sponding to the sequence (fi). As we are going to see in the following sections, the
properties of these structures imply the properties of the analytic folding number.

How can we study these properties?
In [2] local deformations were used, based on the flow diffeomorphism of the

gradient of the measuring functions but, unfortunately, this approach does not
seem to be sufficient to answer the questions we posed. The main idea of this paper
is to use the theory of harmonic maps to confront the bidimensional case. A result
by Jost and Schoen exists, allowing us to study the case of surfaces.

We shall proceed this way. We shall consider each “optimal” sequence (fi)
of homeomorphisms between the manifolds M and N we are examining, where
optimal means that infi maxP∈M |ϕ(P )−ψ(fi(P ))| equals δ((M, ϕ), (N , ψ)). Then
we shall describe the degeneracies related to (fi) using a train of “limit d-jumps”,
and assume that the degeneracies of (fi) are minimal with respect to a suitable
order ¹ we are going to define.
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Finally, we shall apply a local harmonization procedure to each fi far away from
the critical points, using Jost and Schoen’s Theorem. The key remark will be that
the change we are going to apply produces a new sequence that is “smaller” than
(fi) with respect to ¹. Since (fi) will already be minimal, some further information
about the length of the trains of d-jumps for (fi) will be derived, implying the main
result obtained in this paper.

Some technicalities will be necessary in order to use our ideas in practice, but
the key point is simply the possibility (in some senses unexpected) of reducing the
change of the measuring functions by locally decreasing the energy of the transfor-
mations we use between our manifolds. The following sections will formalize the
ideas we have just described.

2. The natural pseudodistance

2.1. The main definition. The definition of natural pseudodistance can be in-
troduced for n-dimensional manifolds. Let us consider the set Sizen of all pairs
(M, ϕ), where M is a closed n-manifold of class Ck and ϕ : M→ R is a function
of class Ck. We shall call (M, ϕ) an (n-dimensional) size pair of class Ck and ϕ a
measuring function.

Assume (M, ϕ), (N , ψ) are two size pairs. H(M,N ) will denote the set of all
homeomorphisms from M to N .

Definition 2.1. If H(M,N ) 6= ∅, the function Θ : H(M,N ) → R
Θ(f) = max

P∈M
|ϕ(P )− ψ(f(P ))|

is called natural size measure with respect to the measuring functions ϕ and ψ.

In other words, Θ measures how much f changes the values taken by the mea-
suring functions, at corresponding points.

Definition 2.2. We shall call natural size pseudodistance the pseudodistance
δ : Sizen × Sizen → R ∪ {+∞} so defined:

δ((M, ϕ), (N , ψ)) =
{

inff∈H(M,N ) Θ(f) if H(M,N ) 6= ∅
+∞ otherwise.

In the following, the symbol d will denote the value of the natural pseudodistance
δ computed between the pairs (M, ϕ) and (N , ψ) that we are considering. As
we previously explained, this pseudodistance gives a method for comparing two
manifolds with respect to the measuring functions chosen.

We point out that δ is not a distance, since two size pairs can have a vanishing
pseudodistance without being equal. On the other hand, the symmetry property
and the triangle inequality can be trivially proved.

Remark 2.3. The presence of the word “size” in our definitions is due to the link
existing between the pseudodistance δ, size functions and size homotopy groups
(cf. [7, 11]). However, for the sake of simplicity, we shall often drop the word “size”
in the expressions “natural size measure” and “natural size pseudodistance”. The
term “natural” is used in order to distinguish the pseudodistance studied here from
some pseudodistances we can define between the submanifolds of the Euclidean
space (cf. [6]) and from other pseudodistances between manifolds paired with mea-
suring functions.
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In spite of the considerable difficulty in computing natural size pseudodistances,
the following result holds for the general dimension n (cf. [2]):

Theorem 2.4. Assume that M and N are two homeomorphic closed manifolds of
class C1 and that ϕ : M→ R and ψ : N → R are two functions of class C1. Then,
if d denotes the natural pseudodistance between the size pairs (M, ϕ) and (N , ψ),
a positive integer k exists for which one of the following properties holds:

(i) k is odd and kd equals the distance between a critical value of ϕ and a
critical value of ψ;

(ii) k is even and kd equals either the distance between two critical values of ϕ
or the distance between two critical values of ψ.

The smallest positive integer k for which either (i) or (ii) of Theorem 2.4 holds is
called the analytic folding number for the pairs (M, ϕ) and (N , ψ). It is interesting
to observe that in every known example, the analytic folding number is 1 or 2.

In this paper we shall prove that in the case of two homeomorphic closed surfaces
of class C1, endowed with C1 measuring functions, the analytic folding number al-
ways equals either 1, 2 or 3. This fact, besides showing a particular property of the
2-dimensional case, allows us to make a direct computation of natural pseudodis-
tances for closed surfaces easier.

However, the hypothesis n = 2 will be not used until Section 5.
In the following Section 3, we shall show that the infimum of Θ(f) varying f in

H(M,N ) is not always a minimum. When such an infimum is also a minimum,
we shall say that each homeomorphism f ∈ H(M,N ) with d = Θ(f) is an optimal
homeomorphism.

In the case where an optimal homeomorphism exists, the following result holds
(Theorem 6.3 in [2]).

Theorem 2.5. Assume that M and N are two C1 closed homeomorphic manifolds
and that ϕ : M→ R and ψ : N → R are of class C1. If an optimal homeomorphism
f ∈ H(M,N ) between the size pairs (M, ϕ) and (N , ψ) exists, then the natural
pseudodistance d = δ((M, ϕ), (N , ψ)) equals the distance between a critical value of
ϕ and a critical value of ψ.

N.B.: For the sake of conciseness, all through this paper we shall use the ex-
pression “closed surface” to mean a closed 2-manifold (we shall not require this
manifold to be connected).

In order to simplify our notations, we shall assume that the manifolds M and
N do not meet, and that the corresponding measuring functions are obtained by
restriction of a function ω : M ∪ N → R, so that ϕ = ω|M and ψ = ω|N . In
this way we can use just one symbol to denote both measuring functions. These
hypotheses are not restrictive, since we can always replace the size pair (N , ψ) with
a new size pair (N̂ , ψ̂), having vanishing pseudodistance from the previous one and
such that M∩ N̂ = ∅. Sometimes, when not confusing, we shall use the symbol ω
to denote both ω|M and ω|N .

Moreover, it is easy to prove that, for every 2-dimensional size pair (M, ω) of
class Ck, an integer m and an embedding g : M→ Rm of class Ck exist such that
xm(P ) = ω(g−1(P )) for each point P ∈ g(M). If ω is Morse (i.e., smooth and
having invertible Hessian at each critical point), we can assume that xm is Morse
on g(M), too. In other words, there is no lack of generality in assuming that the
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measuring functions associated with the studied closed surfaces M, N are obtained
by restriction of the xm-coordinate in Rm. Sometimes, when not confusing, we shall
use the symbol xm to denote both xm|M and xm|N and use the expression “height
of a point”. For the sake of clarity, in our examples and figures we shall often
assume that our measuring function is the z-coordinate in R3.

Example 2.6. In R3 consider the unit sphere S of equation x2 + y2 + z2 = 1 and
the ellipsoid E of equation x2 + 4y2 + 9z2 = 1. On S and E consider respectively
the measuring functions ϕ and ψ that take every point of S and E to the Gaussian
curvature of the considered manifold at that point. We have δ ((S, ϕ), (E , ψ)) = 35.
In fact ϕ(S) = {1}, while ψ(E) = [4/9, 36], and therefore for every f ∈ H (S, E) it
results that Θ(f) = 35.

Example 2.7. Consider the two tori T , T ′ ⊂ R3 generated by the rotation around
the y-axis of the circles lying in the plane yz, with centres A = (0, 0, 3) and B =
(0, 0, 4), and radii 2 and 1, respectively (see Figure 1). As a measuring function
ϕ (resp. ϕ′) on T (resp. on T ′) we take the restriction to T (resp. to T ′) of the
function ζ : R3 → R, ζ(x, y, z) = z. We point out that, for both T and T ′, the
image of the measuring function is the closed interval [−5, 5]. We can easily prove
that the natural size pseudodistance between (T , ϕ) and (T ′, ϕ′) is 2 (for a proof
involving size homotopy groups see [11]). Moreover, the homeomorphism f , taking
each point of T to the point having the same toroidal coordinates in T ′, has natural
size measure Θ(f) = 2.

Figure 1. In this case an optimal (i.e. minimizing Θ) homeomor-
phism exists and d = 2; d equals the distance between a critical
value of ϕ and a critical value of ϕ′.

In general, d is far from being easily computable as in the previous Examples 2.6
and 2.7. In Example 2.6, for every homeomorphism f ∈ H(S, E) we have that Θ(f)
equals the Hausdorff distance δH (ϕ(S), ψ(E)) between the sets ϕ(S) and ψ(E) in
R. Now it is clear that the natural size pseudodistance δ ((M, ϕ), (N , ψ)) is always
greater than or equal to δH (ϕ(M), ψ(N )) and therefore Θ (f) must be the natural
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Figure 2. The natural pseudodistance between the size pairs
(M, z) and (N , z) is z(B)− z(A).

size pseudodistance we want to compute. We also point out that, in Example 2.6,
the images of ϕ and ψ are different sets and so the natural size pseudodistance is
trivially positive.

In Example 2.7 the natural size pseudodistance is strictly greater than the (van-
ishing) Hausdorff distance between the images of the two measuring functions.

Computing natural size pseudodistances is usually difficult. For this reason the
concepts of size function and size homotopy group have been developed, making it
easier to compute the value d, using some lower-bound theorems. Anyway, here we
cannot illustrate these strongly correlated concepts, and hence we refer to [6, 7, 10,
11] for more details.

3. Some interesting examples about curves and surfaces

For the sake of clarity, even if this paper focuses on the bidimensional case, we
shall begin our formal treatment from 1-dimensional examples.

Example 3.1. The first example we give is shown in Figure 2. Here M and N are
smooth closed curves in R3, embedded in the xz-plane. It is clear that the natural
pseudodistance d between the size pairs (M, z) and (N , z) equals z(B)−z(A), that
is, the distance between a critical value of z|M and a critical value of z|N .

In this example no optimal homeomorphism exists, since it ought to take both
the maximum points for z|M to A, against injectivity.

Example 3.2. Let us consider the smooth closed curves M and N in Figure 3. The
points A and B are critical points of the function z and z(C) = 1

2 (z(A) + z(B)) =
z(G). We want to prove that the natural pseudodistance between the size pairs
(M, z) and (N , z) takes the value

d =
1
2
(z(A)− z(B))
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Figure 3. Construction of the homeomorphism gε for which
Θ(gε) ≤ d + ε.

and that no optimal homeomorphism exists. In order to do that we shall construct
a sequence of homeomorphisms (fi) for which limi Θ(fi) = 1

2 (z(A) − z(B)), and
show that Θ(f) > 1

2 (z(A)− z(B)) for every homeomorphism f ∈ H(M,N ).
Let us start by proving that, for every ε > 0, a homeomorphism gε : M → N

exists, such that Θ(gε) ≤ 1
2 (z(A)− z(B))+2ε. Consider the points Dε, Eε, Hε and

Fε in Figure 3, verifying z(Dε) = z(Hε) = z(C) + ε and z(Eε) = z(Fε) = z(C)− ε.
We choose a homeomorphism gε, taking the arc DεCEε to the arc HεGFε in such
a way that gε(Dε) = Hε and gε(Eε) = Fε. Outside the arc DεCEε in M we define
gε by taking every point P to a point gε(P ), verifying z(P ) = z(gε(P )).

For every i ∈ N− {0} we set fi = g1/i. It is easy to prove that

lim
i

Θ(fi) =
1
2
(z(A)− z(B)).

Now we have only to verify that no homeomorphism between M and N exists for
which Θ(f) ≤ 1

2 (z(A)− z(B)). If such a homeomorphism existed, for every P ∈M
we would have

|z(P )− z(f(P ))| ≤ z(A)− z(B)
2

and hence z(f(A)) ≥ z(G) ≥ z(f(B)). Therefore we could easily find points P ∈
M, for which |z(P )− z(f(P ))| > 1

2 (z(A)− z(B)), contradicting our assumption.

Example 3.3. Consider the size pairs (M, ω) and (N , ω) in Figure 4, where M
and N are smooth surfaces embedded into R3. We want to prove that the natural
pseudodistance between these size pairs takes the value 1/2.

The critical points P,Q ∈ M for which ω(P ) = 1 and ω(Q) = 0 belong to the
displayed closed set K ⊂ ω−1([0, 1]). First of all, we shall prove that d ≥ 1/2, by
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Figure 4. The natural pseudodistance between these size pairs is
d = 1/2.

showing that for every homeomorphism f : M→N the inequality

Θ(f) >
1
2
(ω(P )− ω(Q)) =

1
2

holds. Suppose f(K) contains no point of N that is critical for ω (otherwise Θ(f)
would be at least 1 and our inequality would already be satisfied). Let A be
the point of f(K) at which the measuring function ω|f(K) takes its maximum.
Since A belongs to the boundary of f(K), it must be ω(f−1(A)) = 0 and as P is
internal to K, ω(f(P )) < ω(A). In conclusion, Θ(f) ≥ ω(A) > ω(f(P )) and hence
Θ(f) ≥ ω(P )− ω(f(P )) > ω(P )−Θ(f). It follows that Θ(f) > ω(P )/2 = 1/2.

In order to complete our proof that the natural pseudodistance is really 1/2, we
still have to show a suitable sequence of homeomorphisms (fi) such that

lim
i

Θ(fi) = 1/2.

Since the construction of such a sequence is conceptually similar to the one we gave
for the previous example about curves, we skip its analytic expression.
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Figure 5. An example of vanishing natural pseudodistance.

Example 3.4. Consider the smooth surfaces M and N displayed in Figure 5 and
the corresponding measuring function ω. The dotted lines are level curves for the
measuring function ω.

Property 1. The natural pseudodistance between the two size pairs vanishes.

It is easy to see that we can isotopically deform the former surface into the
latter one by a “torsion”, exchanging the positions of the two smallest humps. This
deformation can be performed by an arbitrarily small change in the values of the
height ω. Therefore, we can construct a sequence of homeomorphisms (fi) from M
to N such that Θ(fi) → 0.

Property 2. No optimal homeomorphism exists between the two size pairs.

Suppose a homeomorphism f exists such that Θ(f) = 0. Consider a path γ as in
Figure 5, chosen in such a way that, in the image of the path, no point P different
from A exists for which ω(P ) = ω(A). We can easily verify that the image of the
path f ◦γ must contain more than one point at which ω takes the value ω(A). This
is against our assumptions, since Θ(f) = 0 implies ω(f(P )) = ω(P ) for every point
P in the image of γ.
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4. Some technical tools and definitions

4.1. The concept of train of “limit d-jumps”. In order to prove our main
theorem, we need some new definitions and technical results. Assume two size
pairs (M, ω), (N , ω) are given.

The symbol SH(M,N ) will denote the set of all sequences of homeomorphisms
(fi) in H(M,N ) such that Θ(fi) → d. Every sequence in SH(M,N ) will be called
a d-approximating sequence from (M, ω) to (N , ω).

Let us consider a sequence (fi) ∈ SH(M,N ). We shall say that a pair of points
(P, Q) ∈ M×N is in relation with respect to (fi) if a sequence (Pr) in M exists,
together with a strictly increasing sequence (ir) in N such that

(P, Q) = lim
r

(Pr, fir
(Pr)).

In this case we shall write either PρQ or QρP , indifferently.
In the remaining part of this section we shall assume that 0 < d < +∞. The

following compact sets are defined with respect to each d-approximating sequence
(fi):

N+
M = N+

M
(
(fi)

)
= {P ∈M | ∃Q ∈ N : P ρQ, ω(Q)− ω(P ) = d}

N−
M = N−

M
(
(fi)

)
= {P ∈M | ∃Q ∈ N : P ρQ, ω(P )− ω(Q) = d}

N+
N = N+

N
(
(fi)

)
= {Q ∈ N | ∃P ∈M : P ρQ, ω(P )− ω(Q) = d}

N−
N = N−

N
(
(fi)

)
= {Q ∈ N | ∃P ∈M : P ρQ, ω(Q)− ω(P ) = d} .

In other words, the points P in N+
M are those for which a point Q ∈ N exists,

such that the pair (P, Q) can be approximated arbitrarily well by a pair (Pr, fir (Pr))
whose “jump” ω(fir (Pr)) − ω(Pr) is arbitrarily close to d. Hence, if we think of
ω as a “height” function (cf. the examples in the previous section), the points Pr

have images with height approximated by ω(Pr)+d. In N+
M, the symbol M recalls

the manifold to which P belongs, while the symbol + recalls that, by taking P to
Q, we increase the value of the measuring function, i.e. the “jump” starting from
the node in M is “upwards”. The notations used for the other three sets are quite
analogous. The symbol − is used as a sign to denote nodes from which “downwards
jumps” start (the starting node belonging to the manifold shown as subscript).

It is clear that, for every point P ∈ N+
M, a point Q ∈ N−

N exists such that P ρ Q

(and vice versa), and that an analogous relation holds for the sets N−
M and N+

N .
For every sequence of homeomorphisms in SH(M,N ) the sets NM = N+

M ∪N−
M

and NN = N+
N ∪N−

N are non-empty because of the compactness of the manifolds.
Now we shall define the concept of “train” for a d-approximating sequence:

Definition 4.1. Let (N0, N1, . . . , Nk) be an ordered (k+1)-tuple of points inM∪N
with k ≥ 1 such that, for j = 0, . . . , k − 1 the following properties hold:

(a) ω(Nj+1) = ω(Nj) + d;
(b) Nj ρ Nj+1.

In this case the ordered set (N0, N1, . . . , Nk) will be called a train of limit d-
jumps for the sequence (fi) (or, in short, a train) and its points will be called nodes.
The pairs (Nj , Nj+1) will be known as the wagons of the train. The number k will
be called length of the train and each train that is not included (in the obvious
sense) in any other train will be said to be maximal. If (N0, . . . , Nk) is a maximal
train, its wagons (N0, N1) and (Nk−1, Nk) will be called initial and final train
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Figure 6. A train of limit d-jumps given by the quadruple (A,B, C, D).

wagons (respectively), while N0 and Nk will be the initial and final train nodes.
The remaining nodes will be called internal nodes. The symbol W

(
(fi)

)
will denote

the set of all the train wagons (for all the existing trains).

Since each point belonging either to NM or to NN is a node for at least one
train, the set of all trains is not empty. Notice that the point P is an initial node
for at least a maximal train if and only if either P ∈ N+

M−N−
M or P ∈ N+

N −N−
N ,

whereas it is a final node if and only if either P ∈ N−
M −N+

M or P ∈ N−
N −N+

N .
In Figure 6 we provide a graphic representation of a maximal train (A,B, C, D).

In this particular case, we have that A ∈ N+
N , B ∈ N+

M ∩N−
M, C ∈ N+

N ∩N−
N and

D ∈ N−
M. Hence, A is the initial node and D is the final train node, while B and

C are internal nodes. The three ordered pairs (A,B), (B, C), (C, D) are the three
wagons in the train; (A,B) and (C, D) are its initial and final wagons, respectively.

In Figure 7 we can find the maximal train (B, G, A) associated with the d-
approximating sequence we described in Example 3.2. In fact, we can easily prove
that BρG, GρA, z(G) − z(B) = d and z(A) − z(G) = d. Hence B ∈ N+

M, G ∈
N+
N ∩N−

N and A ∈ N−
M.

Remark 4.2. The example described in Figure 7 shows that the existence of a
train of length 2, such that its initial node (in this case B) and its final node (in
this case A) are critical points of the measuring function z, guarantees that the
natural pseudodistance d equals half the distance between two critical values of the
measuring function.

Our main goal will be to show that in the case of closed surfaces it is always
possible to construct a sequence of d-approximating homeomorphisms for which
we can demonstrate the existence of a train of length 1, 2 or 3, beginning and
ending at critical heights for the measuring functions. We shall do that in the next
subsection, 4.2, and in Section 5. The example we have just seen justifies our task,
since it points out a simple relation between d and the critical values of z.

Now, in order to attain our goal, we need to introduce the concept of minimal
d-approximating sequence.
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Figure 7. An example of a train of limit d-jumps given by the
triple (B, G,A).

4.2. Minimal d-approximating sequences. The concept of train that we have
just mentioned allows us to prove Theorem 2.4 cited in Section 2, and will be
central in the following sections, devoted to the proof of the main result in this
paper (Theorem 5.7). In this subsection we shall assume that M and N are smooth
homeomorphic closed manifolds and ϕ and ψ are Morse measuring functions on M
and N , respectively. We shall weaken these hypotheses at the end of this paper.

As we explained in the introduction, the main goal of this paper is to show that
the analytic folding number is either 1, 2 or 3 in the case of closed surfaces.

The idea is to extend the reasoning applied in Remark 4.2, about the example
described in Figure 7. In order to do that, from a constructive point of view we
need to take a d-approximating sequence and improve it by shortening its trains as
much as possible, until we get a train of length 1, 2 or 3, beginning and ending at
critical heights for the measuring functions.

This procedure will be carried out in two steps. The former will consist in a
reduction of the trains applicable in any dimension, which has been developed and
applied in [2] (Lemma 4.6 in this paper) in order that only trains beginning and
ending at critical points for the measuring functions remain.

The latter will be a reduction process, expressly developed for the case of sur-
faces, allowing us to get a further shortening of trains.

Our goal requires a formal definition of “improving” a d-approximating sequence.
Hence we need to define the following preordering ¹ on the set SH(M,N ) of

the d-approximating sequences.

Definition 4.3. If (fi) and (gi) are two d-approximating sequences, we set

(gi) ¹ (fi) (or, equivalently, (fi) º (gi))

if ϕ
(
N+
M

(
(gi)

)) ⊆ ϕ
(
N+
M

(
(fi)

))
and ϕ

(
N−
M

(
(gi)

)) ⊆ ϕ
(
N−
M

(
(fi)

))
.

Definition 4.4. Let (fi) and (gi) be two d-approximating sequences. We say that
(gi) ≺ (fi) (or, equivalently, (fi) Â (gi)) if (gi) ¹ (fi) and either ϕ

(
N+
M

(
(gi)

)) 6=
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ϕ
(
N+
M

(
(fi)

))
or ϕ

(
N−
M

(
(gi)

)) 6= ϕ
(
N−
M

(
(fi)

))
(i.e., at least one of the two inclu-

sions in Definition 4.3 is proper).
We shall say that (fi) ∈ SH(M,N ) is a minimal sequence if no sequence (gi) ∈

SH(M,N ) exists such that (gi) ≺ (fi).

Remark 4.5. The relations ¹ and ≺ could be defined by referring to the nodes
in N in place of the nodes in M. In fact, our definitions immediately imply
that the inclusion ϕ

(
N+
M

(
(gi)

)) ⊆ ϕ
(
N+
M

(
(fi)

))
is equivalent to the inclusion

ψ
(
N−
N

(
(gi)

)) ⊆ ψ
(
N−
N

(
(fi)

))
and the inclusion ϕ

(
N−
M

(
(gi)

)) ⊆ ϕ
(
N−
M

(
(fi)

))
is

equivalent to the inclusion ψ
(
N+
N

(
(gi)

)) ⊆ ψ
(
N+
N

(
(fi)

))
. An analogous statement

holds for proper inclusions.

We observe that, in our definition, (gi) ¹ (fi) does not mean that either (gi) ≺
(fi) or (gi) = (fi).

The minimal sequences for ≺ are, in some ways, the best sequences of homeo-
morphisms whose measure approximates the natural size pseudodistance, since they
minimize the sets ϕ

(
N+
M

)
and ϕ

(
N−
M

)
(and hence the sets ψ

(
N+
N

)
and ψ

(
N−
N

)
,

too, i.e. the sets of node heights for the four types of node we have considered).
Afterwards, we shall see that it is always possible to construct a d-approximating
sequence of homeomorphisms such that the sets ϕ

(
NM

)
and ψ

(
NN

)
are finite, and

that this can be done by using minimal sequences, too.
The existence of minimal sequences with respect to the preordering ≺ will be

important in the following Section 5.
The following lemma is the main tool used in [2] to prove Theorem 2.4 cited in

this paper (for a proof of this lemma see [2], pg. 710).

Lemma 4.6. Assume that 0 < d < +∞ and the measuring functions ϕ, ψ are
Morse. For every sequence of homeomorphisms (fi) in SH(M,N ) a new sequence
(gi) exists in SH(M,N ) such that all maximal trains begin and end at critical points
of the measuring functions and W

(
(gi)

) ⊆ W
(
(fi)

)
.

Remark 4.7. We observe that in Lemma 4.6 the relation (gi) ¹ (fi) is easily implied
by the inclusion W

(
(gi)

) ⊆ W
(
(fi)

)
.

The following proposition shows some properties of the minimal sequences we
are going to use, under the hypotheses that our measuring functions are Morse. In
the next pages the symbols Kϕ and Kψ will represent the sets of critical points of
the measuring functions ϕ and ψ, respectively. The sets of critical values of ϕ and
ψ will be denoted by ϕ(Kϕ) and ψ(Kψ).

Proposition 4.8. Assume that 0 < d < +∞ and the measuring functions ϕ, ψ are
Morse, and set A = {z ∈ R|∃c1, c2 ∈ ϕ(Kϕ)∪ψ(Kψ), r, s ∈ N : z−c1 = rd, c2−z =
sd}. Then the following statements hold:

(a) If a train for a d-approximating sequence begins and ends at critical points
of the measuring functions, the heights of its nodes belong to the finite set
A.

(b) For every d-approximating sequence (fi), a minimal sequence (hi) ¹ (fi)
exists whose maximal trains begin and end at critical points of the measuring
functions.

(c) If a d-approximating sequence (gi) is minimal, the height of every node of
its trains belongs to the finite set A.
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Proof. (a) It trivially follows from the definition of train. The finiteness of A follows
from the finiteness of the sets Kϕ and Kψ, and hence of the sets ϕ(Kϕ) and ψ(Kψ)
(here we are using the hypothesis that the measuring functions are Morse).

(b) Lemma 4.6 ensures that we can take a sequence (gi) ¹ (fi) whose maximal
trains begin and end at critical points of the measuring functions. The previous
statement (a) and the definition of the relation ≺ imply that no infinite descending
chain

(
(gi) Â (g1

i ) Â (g2
i ) Â . . .

)
beginning at (gi) can exist. Let us consider

the last term (g′i) in a maximal descending chain beginning at (gi). Obviously,
(g′i) is a minimal d-approximating sequence. Unfortunately, statement (b) is still
not proved, since some maximal train of (g′i) could either begin or end at regular
points of the measuring functions, contrary to what happens for (gi). However, by
applying Lemma 4.6 to (g′i) we get a new d-approximating sequence (hi) that is
still minimal and has the required property about maximal trains.

(c) Because of the previous statement (b), a minimal sequence (hi) ¹ (gi) ex-
ists whose maximal trains begin and end at critical points of the measuring func-
tions. Since (gi) is already minimal, it follows that ϕ

(
N+
M

(
(hi)

))
= ϕ

(
N+
M

(
(gi)

))
and ϕ

(
N−
M

(
(hi)

))
= ϕ

(
N−
M

(
(gi)

))
(and hence ψ

(
N−
N

(
(hi)

))
= ψ

(
N−
N

(
(gi)

))
and ψ

(
N+
N

(
(hi)

))
= ψ

(
N+
N

(
(gi)

))
). Statement (a) ensures that ϕ

(
NM(hi)

) ∪
ψ

(
NN (hi)

)
is included in the finite set A, and therefore the same happens to the

set ϕ
(
NM

(
(gi)

)) ∪ ψ
(
NN

(
(gi)

))
. ¤

5. Our main result

In Section 2 we have recalled (Theorem 2.4) that the natural pseudodistance
between two size pairs is related to the critical values of their measuring functions.

However, the examples we have displayed suggest that our results can be im-
proved. In fact our examples show an analytic folding number k that is never
greater than 2. In the first part of this section we shall prove (Theorem 5.4) that
the analytic folding number is never greater than 3, under the assumption that M
and N are two homeomorphic smooth closed surfaces and the measuring functions
ϕ, ψ are Morse. These hypotheses will make our proofs easier from a technical
point of view. In subsection 5.1 we shall weaken our assumptions and come back
to the case of class C1 (Theorem 5.7).

Now we introduce two lemmas. The former is trivial and clarifies the local nature
of the concept of node.

Lemma 5.1. Assume 0 < d < +∞. Let U be an open subset of M and (fi) and
(gi) be two d-approximating sequences such that, for every i ∈ N, fi coincides with
gi in U . Then N+

M
(
(fi)

)∩U = N+
M

(
(gi)

)∩U and N−
M

(
(fi)

)∩U = N−
M

(
(gi)

)∩U .

Proof. It immediately follows from the definitions of the sets N+
M and N−

M. ¤

A similar result obviously holds for an open subset V of N , and can easily be
obtained by interchanging the roles of the sequences (fi), (gi) and (f−1

i ), (g−1
i ) in

Lemma 5.1.
The useful property described by the following key lemma justifies the introduc-

tion of the concept of minimal sequence in the case of closed surfaces.

Lemma 5.2. Assume that M, N are smooth homeomorphic closed surfaces and
ϕ, ψ are Morse measuring functions on M and N , respectively. Suppose that
0 < d < +∞, and (fi) is a minimal d-approximating sequence from (M, ϕ) to
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(N , ψ). If N ∈ NM
(
(fi)

)
and ϕ(N) is not a critical value for the function ϕ, then

at least one of the values ϕ(N)− d, ϕ(N) + d is a critical value for the function ψ.

In other words, under the hypotheses of the lemma (possibly by exchanging the
roles of the two surfaces), if we consider the heights of three consecutive nodes
in a train of a minimal sequence, at least one of them is a critical value. The
proof of this property involves Jost and Schoen’s Theorem about harmonic maps
between surfaces and is the key passage in proving the main result of this paper
(Theorem 5.7).

Proof. We shall prove that if ϕ(N) is a regular value for ϕ and both ϕ(N)− d and
ϕ(N)+ d are regular values for ψ then we can get a new d-approximating sequence
(f̃i) such that (f̃i) ≺ (fi), contradicting the assumption that (fi) is minimal. So, in
the following we shall assume that ϕ(N) 6∈ ϕ(Kϕ) and ϕ(N)+d, ϕ(N)−d 6∈ ψ(Kψ).

Let us define the open sets Dε = {P ∈ M : |ϕ(P )− ϕ(N)| < ε} and Vε = {Q ∈
N : minQ̄∈Kψ

|ψ(Q) − ψ(Q̄)| < ε} (in other words Dε is the set of all points of
M whose height differs less than ε from the height of N , while Vε is the set of all
points of N whose height differs less than ε from the height of a critical point of
ψ). Moreover, let us choose ε > 0 so small that

(1) Dε does not contain critical points for ϕ;
(2) ∂Dε does not contain nodes belonging to NM

(
(fi)

)
;

(3) for i large enough, if Q ∈ fi(Dε) and |ϕ(N)− ψ(Q)| ≥ d− 2ε then Q 6∈ Vε.
The existence of an ε > 0 verifying (1) and (2) is ensured by the assumption

that ϕ(N) 6∈ ϕ(Kϕ) and the fact that the set of heights of the nodes is finite (see
Proposition 4.8(c)), always recalling that the measuring functions are Morse. As
regards (3), if for every positive ε we could find an arbitrarily large i and a Q̄ ∈
Vε ∩ fi(Dε) verifying |ϕ(N)−ψ(Q̄)| ≥ d− 2ε, then a wagon (N̂ , Q̂) should exist for
(fi), with ψ(Q̂) equal to a critical value of ψ, ϕ(N̂) = ϕ(N) and |ϕ(N̂)−ψ(Q̂)| = d,
since limi Θ(fi) = d. Therefore either ϕ(N) + d or ϕ(N) − d should be a critical
value for ψ, against our hypothesis.

Note: As a matter of fact, the expression “for i large enough” in (3) can be
replaced with the words “for i ≥ ī”, where ī is a natural number independent of ε.
We just require ε to be chosen strictly less than η/3, with η being the minimum
distance between the finite set of all critical values of the (Morse) function ψ and
the set {ϕ(N) + d, ϕ(N) − d}. In order to proceed this way we only have to take
ī so large that for every i ≥ ī the inequality Θ(fi) ≤ d + η/3 holds, implying
|ϕ(N) − ψ(Q)| ≤ d + η/3 + ε < d + 2η/3 for every Q ∈ fi(Dε). If we also assume
that |ϕ(N)−ψ(Q)| ≥ d− 2ε, then d− 2η/3 < |ϕ(N)−ψ(Q)| < d+2η/3 and hence
the distance between ψ(Q) and the set {ϕ(N) + d, ϕ(N)− d} must be strictly less
than 2η/3. Therefore ψ(Q) is more distant than η/3 > ε from the set of all critical
values of ψ and hence Q 6∈ Vε. Anyway, this change of statement is not necessary
for our proof, and we maintain the simpler version of (3).

Now, we are going to prove that a sequence (f̃i) ∈ SH(M,N ) exists such that
f̃i = fi in the closed set M−Dε and NM

(
(f̃i)

) ∩ Dε = ∅ (in other words, we can
eliminate all wagons from M to N , beginning in Dε).
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So, we start by setting f̃i(P ) = fi(P ) for P ∈M−Dε.
In order to define f̃i in Dε we have to consider each connected component C of Dε.

Because of hypothesis (1), C is (homeomorphic to) a cylinder. On C ∼= S1×(ϕ(N)−
ε, ϕ(N) + ε) let us define the product metric dθ2 + dϕ2, so that the function ϕ is
linear in C (i.e. ∇2ϕ ≡ 0). Here, dθ2 and dϕ2 are an arbitrarily chosen Riemannian
metric on S1 and the Riemannian metric on the interval (ϕ(N) − ε, ϕ(N) + ε)
induced by the Euclidean distance, respectively (cf. [8]).

Then consider a Riemannian metric µN on N in such a way that the measuring
function ψ is harmonic at each point of N −Vε. In other words, we require that ψ is
harmonic in N , with the possible exception of the closure of the set of those points
whose height has a distance smaller than ε from some critical height of ψ. We can
get this by using the construction in the previous paragraph. The set N − Vε is
a union of cylinders, and the level sets of ψ slice each cylinder into circles. Using
the construction in the last paragraph, it follows that we can choose a metric so
that ψ is harmonic on N − Vε. We refer to [8] and [9] for alternative proofs of the
existence of such a Riemannian metric.

In order to apply Jost and Schoen’s Theorem we need to work with diffeomor-
phisms. This implies that we have to approximate our homeomorphisms fi by
diffeomorphisms, without changing the trains of our d-approximating sequence.

Claim A. A sequence of diffeomorphisms (gi) exists such that W ((gi)) = W ((fi)).

Proof of Claim A. Since M and N are smooth surfaces, for each index i we
can find a diffeomorphism gi : M → N such that dN (fi(P ), gi(P )) ≤ 1/i for
every P ∈ M, where dN is the distance on N induced by the Riemannian metric
µN (cf., e.g., Corollary 1.18 in [22], and [17]). Hence PρQ with respect to (fi)
if and only if PρQ with respect to (gi) (recall subsection 4.1). This implies that
W ((gi)) = W ((fi)).

Because of Claim A, we can assume that each fi is a diffeomorphism, without
loss of generality.

The following Theorem holds (cf. [15]):

Theorem 5.3 (Jost and Schoen). Let Ω ⊂ M1 be a domain with non-empty bound-
ary ∂Ω consisting of C1 Jordan curves. Let h : Ω → M2 be a diffeomorphism of Ω
onto h(Ω). Suppose the curves h(∂Ω) are of class C2+α and are locally convex with
respect to h(Ω), i.e. h(∂Ω) has non-negative geodesic curvature with respect to the
normal pointing into h(Ω). There exists a harmonic diffeomorphism h̄ : Ω → h(Ω)
which is homotopic to h and satisfies h̄ = h on ∂Ω. Moreover, h̄ is of least energy
among all diffeomorphisms homotopic to h and assuming the same boundary values.

Jost and Schoen’s Theorem guarantees the existence of a diffeomorphism h̄ :
fi(C) → C that is harmonic in the set fi(C) and coincides with f−1

i at the boundary
of fi(C).

Now, we are ready to define f̃i(P ) in the case P ∈ Dε, by setting f̃i(P ) = h̄−1(P )
for every P ∈ C, and C varying in the set of all the connected components of Dε.
Practically, we are going to change fi into h̄−1 inside each cylinder C. Notice that
every f̃i is a homeomorphism fromM toN , verifying the equalities f̃i(Dε) = fi(Dε)
and f̃i(∂Dε) = fi(∂Dε).
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Figure 8. The cylinder C inside the set Dε and its image fi(C).
The subset Vε ∩ fi(C) is highlighted (in grey).

The key property of the new sequence (f̃i) is that its “jumps” starting from
Dε are controlled because of our hypotheses and the use of harmonic maps, and
the “largest” jumps of (f̃i) are not larger than the corresponding jumps of (fi).
Formally, the following claims B and C hold.

Claim B. maxfi(Dε) |ϕ ◦ f̃−1
i − ψ| = maxfi(∂Dε)∪(Vε∩fi(Dε)) |ϕ ◦ f̃−1

i − ψ|.
Proof of Claim B. The key remark is that the (continuous) function ϕ◦ f̃−1

i −ψ :
N → R is harmonic on fi(Dε) − Vε. In fact, on the one hand, since ϕ is linear
on Dε and f̃−1

i is harmonic on fi(Dε) it immediately follows that the function
ϕ ◦ f̃−1

i is harmonic on fi(Dε) (cf., e.g., Corollary 8.7.4 in [14]). On the other hand
ψ is harmonic on fi(Dε) − Vε, because of the Riemannian metric we have chosen
on N . Hence, because of the Maximum Principle, the restriction to fi(Dε)− Vε

of the function ϕ ◦ f̃−1
i − ψ must take its maximum also at a point of the set

∂(fi(Dε) − Vε). The same holds for the minimum value. This implies that the
restriction of ϕ ◦ f̃−1

i − ψ to the compact set fi(Dε) takes each extremum either
in the set fi(∂Dε) or in the set (Vε ∩ fi(Dε)). The thesis of our claim immediately
follows.

Claim C. For every large enough index i, if maxDε
|ϕ − ψ ◦ f̃i| ≥ d − ε then

maxDε
|ϕ− ψ ◦ f̃i| ≤ max∂Dε |ϕ− ψ ◦ fi|. Therefore, Θ(f̃i) ≤ Θ(fi), and hence the

new sequence (f̃i) is a d-approximating sequence from (M, ϕ) to (N , ψ).
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Proof of Claim C. Because of Claim B, a point Q̄ ∈ fi(∂Dε)∪(Vε∩fi(Dε)) exists
such that |ϕ◦ f̃−1

i (Q̄)−ψ(Q̄)| = maxfi(Dε) |ϕ◦ f̃−1
i −ψ| = maxDε

|ϕ−ψ◦ f̃i| ≥ d−ε,
under our hypothesis. Since f̃−1

i (Q̄) ∈ Dε, we have that |ϕ◦ f̃−1
i (Q̄)−ϕ(N)| ≤ ε. It

follows that |ϕ(N)−ψ(Q̄)| ≥ d−2ε and hence Q̄ 6∈ Vε (for i large enough), because
of the assumption (3) about Dε. Therefore Q̄ ∈ fi(∂Dε). Since the diffeomorphism
f̃−1

i coincides with f−1
i in the set fi(∂Dε), maxDε

|ϕ−ψ ◦ f̃i| ≤ max∂Dε
|ϕ−ψ ◦fi|.

So our claim is proved.

Lemma 5.1 (local nature of the concept of node) and the coincidence of f̃i and
fi outside Dε immediately imply the next claim.

Claim D. The set of all wagons arriving from M−Dε at N is equal for (fi)
and (f̃i). In particular, the following equalities hold:

N+
M

(
(f̃i)

) ∩ (M−Dε) = N+
M

(
(fi)

) ∩ (M−Dε)(5.0.1)

N−
M

(
(f̃i)

) ∩ (M−Dε) = N−
M

(
(fi)

) ∩ (M−Dε)

Finally, we can prove that under our hypotheses the new sequence (f̃i) is “better”
than (fi) in the sense expressed by the following statement, saying that no wagon
from M to N beginning in Dε exists.

Claim E. The set NM
(
(f̃i)

) ∩ Dε is empty.

Proof of Claim E. If an N ′ ∈ NM
(
(f̃i)

) ∩ Dε existed, then a sequence (Pr) of
points ofM converging to N ′ and a strictly increasing sequence (ir) in N would exist
such that the sequence

(
f̃ir (Pr)

)
converges and |ϕ(Pr) − ψ(f̃ir (Pr))| → d. Since

fi and f̃i coincide outside Dε and ∂Dε does not contain nodes for (fi) (hypothesis
(2) about Dε), we can assume that all points Pr belong to Dε, without loss of
generality. Then, because of Claim C, a converging sequence (Br) would also exist
such that |ϕ(Br) − ψ(fir (Br))| → d, where each Br is a point belonging to ∂Dε.
This fact would imply the existence of a node for (fi) belonging to ∂Dε, once more
against hypothesis (2).

In summary, we have seen that Dε does not meet NM
(
(f̃i)

)
, but contains at

least one node of NM
(
(fi)

)
, while N+

M
(
(f̃i)

)∩ (M−Dε) = N+
M

(
(fi)

)∩ (M−Dε)
and N−

M
(
(f̃i)

) ∩ (M− Dε) = N−
M

(
(fi)

) ∩ (M− Dε) (Claim D). It follows that
(f̃i) ≺ (fi). This contradicts the hypothesis that (fi) is a minimal sequence. ¤

Let us apply Lemma 5.2 to prove that the analytic folding number is never
greater than 3 for the closed surfaces.

Theorem 5.4. Assume that M and N are two homeomorphic smooth closed sur-
faces and that ϕ : M → R and ψ : N → R are two Morse functions. Then, if
d denotes the natural pseudodistance between the size pairs (M, ϕ) and (N , ψ), at
least one of the following properties holds:

(i) d equals the distance between a critical value of ϕ and a critical value of ψ;
(ii) d equals half the distance between two critical values of ϕ.
(iii) d equals half the distance between two critical values of ψ.
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(iv) d equals one third of the distance between a critical value of ϕ and a critical
value of ψ.

Proof. If d = 0, then ϕ and ψ have the same global minimum µ. Hence, d = |µ−µ|
and our thesis is trivial.

So let us assume d > 0. Let (hi) be a minimal sequence whose maximal trains
begin and end at critical points of the measuring functions (Proposition 4.8(b)) and
suppose N1 ∈M is the initial node of a maximal train (if no maximal train begins
in M, it is sufficient to exchange the roles of our surfaces; in this case properties
(ii) and (iii) exchange in the following). Therefore ϕ(N1) is a critical value for ϕ.
Let N2 ∈ N be the next node in the train. If ψ(N2) is a critical value for ψ, then
condition (i) holds. Otherwise, call N3 ∈ M the next node in the train (N3 exists
because ψ(N2) is not a critical value for ψ, and hence N2 is not the final node of
the train). If ϕ(N3) is a critical value for ϕ, then condition (ii) holds. Otherwise,
call N4 ∈ N the next node in the train (N4 exists because ϕ(N3) is not a critical
value for ϕ, and hence N3 is not the final node of the train). Lemma 5.2 applied
for N = N3 ensures that ψ(N4) = ϕ(N1) + 3d is a critical value for the measuring
function ψ. Therefore d = 1

3 (ψ(N4)− ϕ(N1)) and property (iv) holds. ¤
Remark 5.5. It may be interesting to note that Example 3.4 can be used to show
that the hypothesis of h(∂Ω) being locally convex with respect to h(Ω) is really
necessary in Theorem 5.3. In fact, consider the open surfaces M∗,N ∗ displayed
in Figure 9, obtained from the two surfaces M, N in Figure 5 by taking away
suitable closed neighborhoods of the critical points. On M∗ and N ∗ consider two
Riemannian metrics µM∗ and µN∗ such that ϕ and ψ are linear functions with
respect to µM∗ and µN∗ , respectively (cf. [8]). The metrics µM∗ and µN∗ are
the ones induced by the embeddings of M∗ and N ∗ in R3 displayed in Figure 10.
Notice that ∂M∗ is not locally convex with respect to M∗. We observe that a
diffeomorphism h : N ∗ →M∗ exists, preserving the height of the boundary points.
If a diffeomorphism h̄ : N ∗ → M∗ existed, harmonic in N ∗ and coinciding with
h at ∂N ∗, it should preserve the height of every point in N ∗, since the function
ϕ−ψ ◦ h̄ : N ∗ → R would be harmonic in N ∗ and take its maximum and minimum
at points of ∂N ∗, where ϕ− ψ ◦ h̄ vanishes. Moreover, we could easily extend h̄ to
a diffeomorphism h′ : N →M that preserves the height of every point outside N ∗.
Therefore, an optimal diffeomorphism between the size pairs (N , ω), (M, ω) would
exist, against what we said in Example 3.4.

Remark 5.6. Lemma 5.2 may be considered analogous to Lemma 3.2 proved in [4] for
curves, but the techniques used in the proof are deeply different, since here we have
to manage harmonic maps in place of linear maps in dimension 1. As a consequence,
because of the hypotheses required in Jost and Schoen’s Theorem, problems about
the position of images of critical points arise after the harmonicization process,
since, contrary to what happens in the case of curves, we don’t know this position.
As a result, in both the 1-dimensional and the 2-dimensional case we can prove that
if we consider the heights of m consecutive nodes in a train of a minimal sequence, at
least one of them is a critical value, but we have to set m = 2 for curves and m = 3
for surfaces, depending on the different techniques and dimensional constraints
involved in our proofs. This difference explains why the thesis of Theorem 3.4 in [4]
(for curves) is stronger than the thesis of Theorem 5.7 in this paper, concerning
surfaces.
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Figure 9. A diffeomorphism h : N ∗ →M∗ exists, preserving the
height of the boundary points (in bold).

5.1. Weakening the hypotheses about the regularity of surfaces and mea-
suring functions. Until now we have considered smooth closed surfaces and Morse
measuring functions. By repeating the same proofs that we have used in [2] to
weaken our hypotheses about regularity (see Section 6 in that paper), we can get
our main result via an approximation procedure:

Theorem 5.7. Assume that M and N are two homeomorphic closed surfaces of
class C1 and that ϕ : M→ R and ψ : N → R are two functions of class C1. Then,
if d denotes the natural pseudodistance between the size pairs (M, ϕ) and (N , ψ),
at least one of the following properties holds:

(i) d equals the distance between a critical value of ϕ and a critical value of ψ;
(ii) d equals half the distance between two critical values of ϕ.
(iii) d equals half the distance between two critical values of ψ.
(iv) d equals one third of the distance between a critical value of ϕ and a critical

value of ψ.

6. Conclusions and further research

In this paper we have proved that for closed surfaces the relation between natural
pseudodistance and the critical values of the measuring functions is stronger than
the one we proved in [2] for general dimension. In fact, Theorem 5.7 shows that the
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Figure 10. The metrics µM∗ and µN∗ are the ones induced by
the displayed embeddings of M∗ and N ∗ into R3.

natural pseudodistance between two homeomorphic C1 closed surfaces associated
with C1 measuring functions is always either the distance or half the distance or one
third of the distance between two suitable critical values of the measuring functions.

Unfortunately, our techniques cannot be used for larger dimensions, since the
statement of Jost and Schoen’s Theorem fails in dimension strictly greater than 2
(cf. [12], Section 5.8, and [5], Section 12). Moreover, the application of this theo-
rem requires the approximability of homeomorphisms by means of diffeomorphisms.
This procedure is not available for dimensions strictly larger than 3 (cf., e.g., [16]).
As a consequence we don’t know if results analogous to Theorem 5.7 hold for dimen-
sions strictly larger than 2. In other words, we wonder if two n-manifolds associated
with regular measuring functions ϕ, ψ exist such that their pseudodistance neither
equals D nor D/2 nor D/3, for D varying in the set of all distances between the
critical values of ϕ and ψ.

In our further research we intend to study this problem and the availability of
new techniques for studying the general n-dimensional case.

However, it is interesting to note that we do not know examples where the
analytic folding number equals 3, also in the bidimensional case. On the other
hand we are not able to make our result better and to prove that the analytic
folding number never equals 3, also in the case of surfaces (see Remark 5.6).
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The difficulty in finding examples where the analytic folding number equals 3 de-
serves some further remarks. One technique that can be used for computing natural
size pseudodistances is based on size functions (cf. [3]). The computation of size
functions is usually easy and gives us a lower bound s for natural size pseudodis-
tances. Obviously, when we are able to show a sequence (fi) of homeomorphisms
for which limi Θ(fi) = s we can claim that the natural size pseudodistance equals
s. The key point is that the best lower bound s we can obtain is either the distance
or half the distance between two suitable critical values of the measuring functions
(cf. Theorem 2 in [3]). Therefore, in case an example where the analytic folding
number equals 3 really does exist, we are not able to find and recognize it using the
previously described technique. Apparently, new techniques should be developed.

As regards the use of harmonic maps in our study, this corresponds to the prop-
erty that the deformation due to tension fields decreases both the energy and the
maximum change of the measuring functions, provided that we are far from their
critical points. The use of different kinds of deformations (e.g. curvature evolution
of level lines of the measuring functions) might be investigated. The main problem
seems to be the possible birth of degeneracies.

Furthermore, it might be interesting to examine the possibility of moving from
the study of trains of limit d-jumps to the study of relations obtained as limits of
d-approximating sequences of homeomorphisms, with respect to the Hausdorff (or
another more suitable) topology.

In conclusion, various interesting questions remain open and deserve further
study and research.
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