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Abstract. In this paper we consider a mathematical tool for shape description
called size function. We prove that every size function can be represented as a
set of points and lines in the real plane, with multiplicities. This allows for an
algebraic approach to size functions and the construction of new pseudo-dis-
tances between size functions for comparing shapes.
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1 Introduction

One of the key problems in computer vision is recognizing and classifying ob-
jects using digital images. In this context shape description is usually important
for recognition. It is well known that the human percept of the shape of an
object remains constant despite changes in the object’s appearance in images.
This fact leads to the search of shape descriptors allowing to determine when
shapes are perceived as the same. The possible approaches to this problem may
be the most different, from statistics as in [22] to integral transforms such as in
[21]. Much effort is put in the search of representations invariant for geometric
transformations such as rigid, scale or projective transformations. However, in
order to deal not only with rigid objects but also with natural and deformable
ones, it seems convenient to combine geometric and topological aspects of
shape. Indeed topological invariants such as the Euler number (see, e.g., [4])
and the winding numbers (see, e.g., [24]) have proven to be important features
in many image analysis applications.
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Size functions are one of the possible approaches to the problem of de-
scribing shapes from the geometric-topological viewpoint. The emphasis on
the topological aspect is common to other methods such as [1], [23], [25] and
[26]. However size functions integrate topological information with the result
of some kind of measurements on the image.

More precisely, measures are performed through any real valued function
¢, therefore calledneasuring function, defined on the topological spacg
under study (usually a subset of some Euclidean space). The choice of the suit-
able measuring function depends on the specific application problem we are
interested in.

The size functiort ) : R? — IN U {400} describes the shape of
with respect tap: £, (x, y) is the number of equivalence classes into which
the subsetP € .# : ¢(P) < x} € ./ is divided by the equivalence relation
of (¢ < y)-homotopy, where two pointB, Q € .# are{yp < y)-homotopic if
they either coincide or they can be connected by a continuous path on which
the measuring functiop takes a value never greater than

Of course different measuring functions generate quite different size func-
tions. By changing measuring functions the corresponding size functions fur-
nish different descriptions of the given shape.

A fundamental property of size functions is that they inherit the invariance
properties, if any, of the chosen measuring functions. Thusitis sufficient to take
measuring functions with the desired invariance to obtain invariant size func-
tions. These properties may include for instance Euclidean, affine or projective
invariance. As we have already pointed outthisis very useful in computer vision,
where one is often interested in properties up to certain groups of transforma-
tions. Invariance of size functionsis studied thoroughly in [15] and [29].

Moreover, size functions have proven to be resistant to noise and occlusions
andto be easily computable ([18]). For methods to compute size functions we re-
ferthereaderto[3, 11, 12, 20]. More details can be obtained in[27]and [30].

No assumptions are made on the nature/y®&o in principle any set that can
be modeled as a topological space can be represented by size functions. This
means that size functions potentially have a broad range of applications, from
binary to grey level or colour images but also sound waves and multidimen-
sional medical plots. Up to now size functions have been successfully tested
on a number of tasks, both with binary and grey level images: recognition of
non-rigid planar shapes such as monograms ([8]), signatures ([6]), hand drawn
sketches ([2]), leaves of different species of plants ([33]), hand-gestures
([28, 31]), leukocytes ([9]); viewpoint invariant recognition of rigid shapes such
as manufactured objects; aspect-based recognition of 3-D rigid objects such as
toy cars ([32]).

Beside applications of size functions to computer vision, this theory appears
to be interesting also from the strictly mathematical viewpoint as a geometrical
and topological tool to compare manifolds (see [10, 14, 19]).
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The aim of this paper is to show that size functions can be regarded as for-
mal series; expressing size functions as formal series allows for their efficient
manipulation. More precisely we prove that the set of size functions is in bijec-
tion with a particular set of formal series of points and lines in the real plane.
This leads to a new approach to size function theory, by translating problems
about size functions into an algebraic context.

This result has not only a theoretical interest. Indeed in practice an immedi-
ate consequence of representing size functions as formal series is that it allows
to reduce the computational burden and for this reason it has already been used
in [2] and [8]. But what is more interesting is that it allows for the induction
of new pseudo-distances on the set of all size functions in order to quantify the
similarity of two shapes. In other words we can produce new and more efficient
methods to compare size functions and hence shapes. The usefulness of some
of these metrics derived from the formal series representation has already been
assessed experimentally (see, e.g., [5]).

In Sect. 2 basic definitions and a few results about discontinuities of size
functions are given. In Sect. 3 we give some lemmas and propositions heeded
to prove our main theorem. This result is given in the same section, showing
the bijective correspondence between size functions and a class of formal se-
ries. Finally in Sect. 4 we briefly suggest how this result can be applied to the
definition of new pseudo-distances between size functions.

2 Some Preliminary Results on Size Functions
2.1 Basic Definitions and Results About Sze Functions

Let.# denote a finite union of compact arcwise connected and locally arcwise
connected subsets of a Euclidean space. We shall call any.gaip), where

¢ . /4 — R is a continuous function, size pair. Such a functior is said to

be ameasuring function. Throughout the rest of the paper assume a size pair
(A, @) is given.

Definition 1 For every real number y, we shall say that two points P, Q € .#
are (¢ < y) -homotopic if and only if either P = Q or a continuous path
y [0, 1] - . existsin .# joining P and Q such that ¢ (y (¢)) < y for every
t € [0,1]. If P and Q are (¢ < y)-homotopic we shall write P =,, Q and
call y a(p < y) -homotopy from P to Q.

It is easy to see that the relation @ < y)-homotopy is an equivalence
relation on.# and all its subsets for evesye R.

Definition 2 For every x € R let ./ (¢ < x) denotetheset {P € .# : ¢(P)
< x}. Consider the function €4, : R? — IN U {400} defined by setting
Lou.p(x, y) equal to the number of equivalence classesinto which .# (¢ < x)
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isdivided by the equivalencerelation of (¢ < y)-homotopy. Weshall call ¢ 4 )
the size function associated with the pair (.Z, ¢).

An example of size function is given in Fig. 1. The shageto be studied is
depicted to the left. It is the edge of a hand-written “g”. A reference frame has
been fixed in the plane and the chosen measuring function is the abscissa of
the pointp(x, y) = x. On the right of Fig. 1 we show the corresponding size
function. More precisely, we represent only the domain of the size function.
The number displayed in each region of the domain denotes the value taken by
the size function in that region. For example, on the region of the size function
domain withc < x < y < d, this size function takes value equal to 4. This can

be easily checked by looking at the figure to the left. Here the/#gt < x)

with ¢ < x < d is made of 4 arcwise connected components that cannot be
joined by paths whose points have abscissa lessytham.

The definition of size function may recall other techniques. For instance,
in [23] Kupeev and Wolfson propose a method of estimating shape similarity
based on scanning a 2D closed contour along a directidtso, there may
be some resemblance with the topological sweep studied by Edelsbrunner and
Guibas in [7], thus leading to topics of computational geometry. In both cases,
however, the differences are greater than the similarities.

Let us now consider the example in Fig. 2. The.géts depicted on the left
and the chosen measuring function is the distance of each point from the bary-
centreB: ¢(P) = d(P, B) for everyP in .4 . The corresponding size function
is shown on the right. Let us observe that in this case the measuring function is
invariant for rotations and translations.@f. The corresponding size function

Oabgc% d 20(_))(> : Lllc

o
[~
=1
=1
£

Fig. 1. A subset of the plane (the edge of a “g"”) and its size function calculated with respect to
the measuring function abscissa of the pajrit:, y) = x. The number displayed in each region
of the domain of the size function denotes the value taken by the size function in that region
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inherit this invariance: it is easy to see that by rotating or translathgne
obtains the same size function.

The next example shows the behaviour of size functions in presence of
noise. In Fig. 3 we show an ellipse and its size function with respect to the mea-
suring function distance from the barycentre. In Fig. 4 we show the same ellipse
perturbed with noise and its size function with respect to the same measuring
function. In the size function the noise is revealed by small triangles near the
diagonal.

We shall now provide some propositions to point out some simple properties
of size functions (see [13, 16]):

Proposition 1 £, (x, y) is non-decreasing in the variable x and non-in-
creasing inthevariable y.

|

|

Ell b B4

Fig. 2. Size function of the curve depicted on the left with respect to the distance from the
barycentre used as measuring function

ymin= 0

ymax= 100

Fig. 3. Size function of an ellipse with respect to the distance from the barycentre
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Emin= 0 ymin= 0

wmax= 100 ymax=_ 100

Fig. 4. Size function of a deformed ellipse with respect to the distance from the barycentre

Proposition 2 £, (x,y) < +ooforx < y.

In [16] this result is given for subsets of the plane but the same proof holds
also for greater dimensions.

Proposition 3 £, (x, y) = 0for x < minpc 4 @(P).

Proposition 4 £ 4., (x,y) = +oc for any x, y such that there exists a non-
isolated point Q € .# withy < ¢(Q) < x.

Proposition 5 For every y > maXpe. s ¢(P), £(.u,0) (x, y) isSequal to the num-
ber of arcwise connected components .4~ of .# such that x > minpc - @(P).

Proposition 3 and Proposition 4 show that, in general, outside the region
{(x,y) € R?: x < y,x > minpc, ¢(P)} the size functior? , ., does not
convey considerable information about the size pair under study.

Notations: wheny € R is fixed, we shall use the symbg| ; (-, y) to
denote the function that takes each real numtterthe valuel 4 ) (x, y). An
analogous convention will hold for the symkl, . (x, -).

The symbol cardX) will denote the cardinality of the séf.

The expressiorv|: x = k] will denote the liner of equationx = k.

2.2 Some Remarks About Discontinuities of Sze Functions

Since size functions are natural-valued, their discontinuities are always integer
jumps. It is interesting to observe that the discontinuities of size functions be-
have in a regular way: fat < y, discontinuities in the variable propagate
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downwards to the diagona&l = {(x, y) € R? : x = y} and discontinuities in
the variabley propagate towards the right up to the diagonalFurthermore
jumps of size functions in the andy directions are monotonic: horizontal
jumps and vertical jumps cannot increaseyadx increase, respectively. In
order to prove these facts (Corollary 1 and Remark 1) we need the following:

Lemmal Let x1, x2, y1, y2 bereal numberssuch that x; < xp < y1 < yo. It
holds that

Cono)(X2, Y1) — Liwr,o) (X1, Y1) = Ln,p) (X2, y2) — Lnr,p) (X1, Y2).

Proof . Sincex; < x, we can consider the injective map
iAo < x1) /gwfyl —> M (9 < x2) /;W§)’l

induced by the inclusion o/ (¢ < x;) into .# (¢ < x,). Therefore
Longy (X2, ¥1) — Lw,p) (X1, Y1)
= card /(¢ < x2) [Zy<y,) — cardl (p < x1) [Z4<y,)
= card./(p < x3) [Zp<y,) — card f (Mg < x1) [Zp<yy))
= card /(¢ < x2) [Zp<y, = [(M {9 < x1) [Zp<))

that is, the number of equivalence classes in the quotient set
{P e M X1 < (p(P) < xg} /;(,05)71

(we are using the hypothesis < x, < y; for the finiteness of ;) (x2, y1)

Analogously,

Cong) (X2, ¥2) — Ling)(x1, y2) = card{P € M : x1 < p(P) < x3} [Zye,y, -

Hence the claim immediately follows from the inequality< y, and the
definition of (¢ < y)-homotopy. O

Remark 1. The inequality in Lemma 1 simply means that in the half-plane

x < y horizontal jumps of a size function are non-increasing in the varigble

(see Fig. 5). From the same lemma one of course gets the analogous statement
that vertical jumps are non-increasing in the variablgy rewriting the above
inequality as

Congy (X1, ¥2) — Loy (X1, Y1) = Ling) (X2, ¥2) — Lw,py (X2, y1)-

Now we can prove the previously mentioned result about the propagation
of discontinuities towards the diagonal
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e

¢ +00

Fig. 5. Horizontal jumps are non-increasing in the variaplel ;) (b) — L v p(a) = 1 <
Lewg(c) — Lowy(d) = 2; vertical jumps are non-increasing in the variablet(, ,, (b) —
Linp(©) ==1=<Liyp(@) —Loyy(d) =0

Coroallary 1 The following statements hold:

(i) Ifx € Risadiscontinuity pointfor £, 4 (-, y) andx <y < ythenxisa
discontinuity point also for £, (-, ¥);

(i) Ify € Risadiscontinuity point for £, , (x,)andx <x < ythenyisa
discontinuity point also for £ ) (x, -).

Proof. (i) Contrary to our claim assume that for somewith x < y < y
Leu (-, y)is continuous at. Then lim_ s+ £z ) (x, ¥) — L n.p (X, y) =0.
Hence Lemma 1 together with the fact that size functions are non-decreasing in
x (Proposition 1) imply im_ &+ £.x,4)(x, ¥) —€u.0) (X, ¥) = 0. Analogously,
limy_ i €enp(X,¥) —Loup(x, y) = 0. Hencex would be a continuity point
for £.x.0) (-, ¥), thus contradicting our hypothesis.

The proof for (ii) is similar. O

We shall see later (Corollary 6) that every discontinuity point for a size
function is necessarily a discontinuity point in ther y direction. So far we
can only prove a weaker result:

Lemma 2 Any open arcwise connected neighborhood of a discontinuity point
for a size function contains at least one discontinuity point in the variable x
or y.

Proof. Let p € R? be a discontinuity point fof4.4. Then, in any open
arcwise connected neighborhodd € IR? of p, a pointg exists such that
Lowo(P) # Leng(g). We can connecp andg by a path entirely contained
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in U made of segments parallel to theindy axes.¢( ., cannot be constant
along this path. Hence the claim. O

Moreover, some constraints on the presence of discontinuities in size func-
tions exist.

Proposition 6 For every point p = (¥, y) € R?withx < y ane > 0 exists
such that the open set

Wep) ={(x,y) eR*:[F —x| <€ |y -yl <€x#%,y# )
does not contain any discontinuity point for £ ).

Proof. Suppose, contrary to our assertion, that for eweeyN ™ a discontinu-
ity point p, = (x,, y») in Wy,,(p) exists. By applying the previous Lemma 2,
possibly by extracting a subsequence frgm),cn+, We can assume that each
P, is a discontinuity point in either the or y direction. In the following, we
shall assume that eagf) is a discontinuity point in the variable The case in
which eachp, is a discontinuity point in the variablehas a similar proof.

Let us fix a natural numbe¥ that is sufficiently large so that+ 1/N <
y—1/N,i.e.theset$V,,(p) withn > N lie entirely above the diagonal. Let
us consider the functiofy (-, y—1/N) : (x—=1/N,x+1/N) C R — N.
From Corollary 1 we know that discontinuities inspread downwards. Thus
the function? 4 (-, y —1/N) should have an infinite number of integer jumps.
Now, since size functions are non-decreasing in the variahais fact would
imply that ¢, 4 (x +1/N,y — 1/N) = +o0, thus contradicting Proposi-
tion 2. O

Similarly, by recalling that fory > maxpc_, ¢(P) each path in# is a
(¢ < y)-homotopy, the following result can be proven:

Proposition 7 For every vertical line[7 : x = X] ane > 0 exists such that the
open set

Vo) = {(x,y) e R T — x| <€,y > 1/e,x #X)
does not contain any discontinuity point for £ .

The previous results show that discontinuities divide the part of the domain
of a size function lying above the diagonalinto overlapping triangular re-
gions (possibly of infinite area) leaning against the diagonal. For example, in
the size function represented in Fig. 6 there are two triangles of infinite area
above the diagonak bounded by the diagonal itself and, respectively, by the
vertical linesr; andr,. Moreover, there are four overlapping triangles with one
side on the diagonal and the opposite vertex respectivaly,ai,, p4 and ps.

As we shall clarify later, the triangle with vertex a4 can be seen as a result of
the overlapping of those with verticesgatand p,. The fact that this function is
really the size function of a suitable size pair will be shown in the next section.
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Fig. 6. How discontinuities of a size function divide its domain into overlapping triangular
regions with one side on the diagonsl

These facts suggest a way to encode the information contained in size func-
tions into a more compact and manageable structure.

Remark 2. Let us finally point out that the behaviour of discontinuities in the
variablex differs from that in the variable in the following sense. The def-
inition of size function implies that, fof < y, the equality¢, . (x,y) =
lim,_z+ €.x.o(x,y) always holds, i.ef, ) (-, y) is right-continuous.

On the other hand it has been proven in [14] that at a discontinuity point
in the variabley, sayp = (x, y), it may happen that , , (p) # lim,_ 5+
Lowe) (X, y), 1.4y e (X, ) may not be right-continuous.

3 Size Functionsand Formal Series
3.1 Preparing the Proof of Theorem 1. Some Definitions and Results

Our aim is to capture information (about the shape under study) contained in
a size function, i.e. its values and discontinuities, in algebraic language. The
formal object we shall obtain will enable easier computations and reduced in-
formation storage. In order to do this we shall represent a size function by giving
the list of triangular regions in which its domain is divided by discontinuities.
Furthermore, we shall assign a multiplicity to each triangle so that the sum of
the multiplicities of triangles containing a given point gives the value of the
size function at that point.

Let us now formalize this idea.

We shall denote the sétx, y) € R? : x < y} by % and the set of vertical
lines of IR?, i.e. lines of equatiow = k with k € R, by Z.
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Moreover, we shall cal? the set%y U . We recall the following
definitions:

Definition 3 Any functionm : 2 — Z issaid to be a formal seriesin 2. The
set supp(m) = {X € 2 : m(X) # 0} iscalled the support of m.

The set of formal series i’ is a commutative group with respect to the
usual sum of functions. Thus it makes sense to denote each such formal series
m by the symbol ", _, m(X)X.

Definition 4 For every point p = (x, y) € R? and real positive numbers o, 8
with (x + o, y — B) € S let us define the number i, 5(p) as

Lengx+a,y—=B) —Lengyx +a,y+B)
~Alnpyx—a,y—B)+Llenpx —a,y+p).

The number w(p) = min{uqp(p) o, B > 0,x +a < y — B} will be called
multiplicity of p for £.4,,). Moreover, we shall call cornerpoint for £, ) any
point p € %o such that the number 1(p) isstrictly positive.

Remark 3. Obviously, for eachy, 8 > O withx + o < y — B, e p(p) is an
integer number and from Lemma 1 we see that it is non-negative. Henoe
is well defined and non-negative for everye .

Proposition 6 implies that for sufficiently smalland g each term in the
sum definingu, g (p) is constant. Furthermore, by using Lemma 1 twice, we
can easily prove that, s(p) is non-decreasing ix and g. It follows that
w(p) = limg g0+ e p(p), thus giving an alternative definition of(p).

In the size function represented in Fig. 6 the only cornerpointgare,,

p4 and ps with multiplicities w(p1) = w(ps) = u(ps) = 1 andu(p) = 3.
The pointps is not a cornerpoint since(psz) = 0.

The key role of cornerpoints is demonstrated by the following proposition,
which shows that each of them creates discontinuity points spreading down-
wards and towards the right up to the diagonal

Proposition 8 If p = (x, y) is a cornerpoint for £, ,, then the following
statements hold:

(i) Ifx <x < ytheny isadiscontinuity point for £, ,)(x, -);
(i) Ifx <y < ythenx isadiscontinuity point for £, 4 (-, y).

Proof. Sincep = (x, y) is a cornerpoint fof 4 .,
LenpyX+a,y—B)—LinpE +oa,y+B)
~LnpyE—a,y =B+ Ly —a,y+p)>0

for every positivex andg for whichx + o <y — B.
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By recalling Proposition 1 we obtain th@t, ., (x —o, y—B) > £y, (X —
a,y+p)andl  y(x +a,y+ B) = Loy (x —a,y+ B). It follows that

bnpE+a,y—=PB) =Ly +a,y+B)>0 (1)
and

bengE+a,y—B) =Ly —a,y—p)>0 (2)

for every positivax andg, such thatt + o < x — 8.

Let us now prove assertion (i). Sineds arbitrary and inequality (1) holds,
we obtain lim_,q+ Z(y/[,q,)()f +¢e,y—B) —lim_o- Liwg(x +€,y+ B) >
0. Let us now recall that , ,(x,y — B) = liMco+ b, py(X + €, — B)
and{ . (x,y + B) = limcor L u,p (X + €,y + B) (Remark 2). Therefore
LengyX,y —B) —Lewy(x,y + B) > 0. Sincep can be chosen to be arbi-
trarily small it follows thaty is a discontinuity point fo€, . (x, -). Now it is
sufficient to apply Corollary 1 to conclude.

Let us now consider assertion (ii). By inequality (2) and by takirtp be
arbitrarily small we can show thatis a discontinuity pointfof ; ., (-, y — B).
By makingg smaller and smaller and by recalling Corollary 1 we complete the
proof. O

The previous proposition implies that every cornerpoint is a discontinuity
point in they direction.

The converse of Proposition 8 fails to be true, as can be checked by looking
at the pointps in Fig. 6. Indeed, in the size function represented in Fig. 6 the
only cornerpoints ar@1, p»2, p4 and ps.

Corallary 2 % does not contain accumulation points for the set of corner-
points. In particular, cornerpoints are isolated points.

Proof . Ifthis claimwere nottrue, by Proposition 8 we would get a contradiction
of Proposition 6. O

Furthermore, by Propositions 3, 5 and their definition, cornerpoints lie in
the region{(x,y) € R® : x < y,x > MiN,e, ¢(p),y < Ma%e 4 0(P)}.
Hence, in case a size function has an infinite number of cornerpoints, they must
accumulate onto the diagonal An example of size function with cornerpoints
accumulating onto the diagonal is given in Fig. 7.

Foreveryp > Olets, = {(x,y) € R? : x < y — p}. In view of the above
discussion we have:

Corollary 3 Szefunctions have at most a finite number of cornerpointsin.#,
foranyp > 0.

The main purpose of this paper is to use cornerpoints to identify triangular
regions of finite area which, as we have seen in Sect. 2, are a major feature of
size functions.
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Fig. 7. A topological space (on the left) whose size function, with respect to the measuring
functiong(x, y) = y, has cornerpoints accumulating onto the diaganal

Following this idea, let us now represent triangles of infinite area that can
be cut out by discontinuities of a size function.

Definition 5 For every vertical line[r : x = k] € # we shall call multiplicity
of r for £( 4,4 the number

ur) = min Loy atk+a,y) —Longk —a,y).
a>0k+a<y
When w.(r) is strictly positive, the line r will be said to be a cornerline for the
size function.

Observe that the notion of cornerline is a natural extension of the notion of
cornerpoint for “points at infinity”, wheré, ,, can be assumed to be vanish-
ing. In the size function of Fig. 6 the only cornerlines are given-pgndr;
with the multiplicities (r1) = 1 andu(r) = 2.

Remark 4. Obviously, from Proposition 1 we know that(r) is well defined
and non-negative for everye £.

Moreover, Proposition 1 and Lemma 1 show that the valye,, (k+«, y) —
Lo,k —a,y) is non-decreasing i@ and non-increasing in, respectively.

From all this it follows thaju(r) = limc_o+ € x,p)(k+€, 1/€) =L 1,4y (k —
€, 1/¢), thus giving an alternative definition of(r).

On the other hand, by recalling Proposition 5 and sinéeontains only
a finite number of arcwise connected components, it follows that for a small
enoughe the number . (k+¢€,1/€) — L x4 (k—€, 1/€) counts the arcwise
connected components of on whichg takesk as minimum value. All this
proves the following proposition, yielding yet another definitiorugf).
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Proposition 9 Let ¢(k) be the number of arcwise connected components of .#
on which ¢ takes k as a global minimum. Consider the vertical line[r : x =
k]. Then u(r) = c(k). Therefore, r is a cornerline for £, ) if and only if
k = minpc - @ (P) for at least one arcwise connected component A~ of .4 .

The previous proposition together with the definition of size function easily
imply the following result:

Corollary 4 If [r : x = k] isacornerlinefor ¢, , andy > k thenk isa
discontinuity point for £ (-, ).

In other words, any point on a cornerline is a discontinuity point in the
variablex for £.4.4).

Proposition 9 also implies that the number of cornerlines for a size function
L.u.,y) 1S Never greater than the number of arcwise connected components of
. From our assumption a/ we conclude:

Corollary 5 Sze functions have a finite number of cornerlines.

Cornerpoints and cornerlines are naturally related to bounded and unbound-
ed triangles, as the following definition reveals:

Definition 6 If p = (x, y) is a cornerpoint for £, ., we shall call the set
{(x,y) € R? : ¥ < x < y < y} the main triangle of 5 . Analogougly, if
[r:x = k] isacornerlinefor ¢, ., we shall call the set {(x, y) € R? : k <
x < y} the main (unbounded) triangle of .

The multiplicity of a cornerpoint or a cornerline will also be called the
multiplicity n(7) of the related main triangle .

Moreover, for each point p € %, we shall denote by T (p) the set of all
main triangles containing p.

Note that each main triangle contains only a proper subset of its boundary,
namely the left vertical segment.

Now we give a lemma which will be useful for further results in this paper.
In plain words it states that for each discontinuity point in the variablee
find either a cornerpoint above it or a cornerline through it; similarly, on the
left of each discontinuity point in the variabjethere is always a cornerpoint.

Lemma 3 (i) If x isadiscontinuity pointfor £, (-, y) withx < y theneither
there isa cornerpoint for £, on the closed half-line {(x, y) R?:y <y}
or linex = x isacornerling, or both cases occur.

(i) If y isa discontinuity point for £, (x, -) withx < y then thereisa
cornerpoint for £ 4 ., on the closed half-line {(x, y) R? : x < x}.
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Proof. (i) Ifthelinex = x isnotacornerline then lim, o+ £( 4 ) (x+€, 1/€)—
Lewp)(x —€,1/e) =0 (see Remark 4) and hence liny: €4, (X +€,y) —
Lo, (x—€, y) = 0foreveryy large enough. Since lim, o+ £(.4,p) (X +€, y) —
Loug(X —e,y) > 0, avaluey > y must exist such that lim, o+ £z, (x +
€, 3+mM—Leup(X—e, y+n) =0andlim_ o+ £y, (X+€, Y=1)—L(y,p)(X—
€,y —n) > 0 for everyn > 0. Sinceu, g(p) is constant for small enough
andp and for fixedp (see Remark 3), it follows that ligg_, o+ e, (X, §) > 0,
so that(x, y) is a cornerpoint. This proves (i).

(if) Proposition 3 implies that linL o+ €.,y (x, Yy —€) =L n,)(x, Y +€) =
0 foreveryx < minpc 4 ¢(P), While lime_ o+ £z, (X, Yy —€) — Loy (X, Y+
€) > 0.Henceavalug < x mustexistsuchthatlim,o+ £(s,¢) (X —1, y—€)—
Len.p)(X—n, y+€) = 0andlim_ o+ £y o) (X+1, y—€)—L(y,p) (X410, Y+€) >
0 for everyn > 0. As above, it follows that limg_.o+ ra p(x, §) > 0, and so
(x, y) is a cornerpoint. This proves (ii). O

The value taken by a size function at a point is related to multiplicities of
main triangles as the following results show:

Lemma 4 Assume that two points p and p in R? are given, satisfying the fol-
lowing conditions. p = (%, ¥), p = (X, y) withX < ¥ < yand p isacontinuity
point in the variable y for the size function ¢ 4 ,,,. Moreover, assume that the
closed segment connecting p to p meets one and only one discontinuity point
g inthevariable x for ¢, ), and that g # p.

Then T'(p) is properly contained in 7' (p) and the number £, ,)(p) —
L.u .0 (p) equalsthe sumof the multiplicitiesof maintrianglesin 7 (p) — T (p).

Proof. Let[r : x = k] be the vertical line through. Finiteness and monoto-
nicity of size functions easily imply that in the closed half-lifie, y) € R?:

x =k, y > y} there must exist only finitely many discontinuity points in the
variabley for ¢ 4., sayq' = (k, y') with i varying in a finite set of indexes
J.Lets = {1,2,...,h}in the case that it is non-empty. We point out that
g # q' for everyi € 4. In fact, asp is a continuity point in the variable

for x4, by Corollary 1 (ii) the same must hold for all points in the closed
segmenp p.

Sincegq is the only discontinuity point in the variableon the closed seg-
mentp p, by Corollary 1(i) there cannot exist discontinuity points in the variable
x in the strip |, x] x [y, +00) except on the line. From Proposition 8 and
Corollary 4 it follows that the stripi], x] x [y, +00) can contain neither cor-
nerpoints nor cornerlines except on the linédence Lemma 3(ii) and the fact
that every cornerpoint is a discontinuity point in thelirection show that if
y is a discontinuity point fo€, . (x, -), and(x, y) € [x, X] x [y, +00) then
y = ' for a suitable index € .#. All this implies that¢ ., is constant in the
rectangles¥, k) x (y', y*1)y and k, x] x (y/, y*Yyfori =1,...,h — 1, as
well as in the rectanglesi[k) x (7, y!) and [, ] x (¥, y!), and in the two
strips [f, k) x (y", 400) and [, ] x (y", +00) (see Fig. 8).
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Thus, if # # ¢ for eachq we can take four p0|nt$x v, (&, yz)
(x, yl) (x, )’2) such thatt < y; < y' < yza Lewp (X, yl) —Liung (X, }’1) -
L)@ ¥D) + L@ ¥) = j1(g") (possiblyju(g’) = 0) and, for every
i=1...,h—=1,y, = y1 +1 Moreover sincep and j are continuity points
in the variabley for £, in cases # @ we can also assumg = y (see
Fig. 9).

Therefore, fors #£ @,

Cowpy (D) = Lewpy(P) = (@Y + Cowp) (T, ¥3) — Lonp)(E, ¥3)

== Z 1G") + Lng)(F, ¥8) = Ling) (X, ¥5).

9 -{kyY)

¢ ={ky?)

9~ (k")

[t ==K]

Fig. 8. Proof of Lemma 4: in the displayed rectangles and strips the size fun€tigp, is
constant

Gy Eyd - - (R¥)-(2x)
4 ={ky)
Gy)-Gyd - © (%) (%2
q'=(ky")
P-(53) - () T-F)  P-(e) -Gy
[r: x=K]

Fig. 9. How to choose the pointst, i), (£, y5), (X, ¥)), (¥, y5) as described in the proof of
Lemma 4
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Now let us observe thatt s, (X, y2) — €eu.)(X, ¥3) = wu(r) (possibly
w(r) = 0). Thus

Ly (P) = Lng(P) = n) + Y uigh. (3)

Now Proposition 8(i) implies that all cornerpoints lying on the closed half-
line{(x,y) € R?:x =k, y > y} belongto{g’ : i € .7}. Hence the right-hand
side in (3) reduces to the sum of the multiplicities of cornerpoints on the half-
line {(x, y) € R?: x =k, y > j} plus the multiplicity ofr in the case that is
a cornerline. This number is easily seen to equal the sum of the multiplicities
of main triangles in the sét(p) — T(p).

If .7 = 0 we simply obtairt( ;) (p) — (w4 (p) = u(r) > 0, andr is a
cornerline. Also in this casg 4, (p) — Z(t,{/,w)(ﬁ) equalsZrEQT(ﬁ)fT(ﬁ)) u(t). _

In both casey # ¢ and.# = ¢ there is at least one main triangle contain-
ing p and not containings. Moreover,T(p) C T (p) becaus& < x. Hence,
in any casdl' (p) is properly contained iff (p). This completes the proof.]

Now we can give the key tool in the proof of our main theorem:

Proposition 10 Assume p = (x, y) € %o and no point (x, y) withx < x isa
cornerpoint for £( 4 . Then

LowpP)= D w)

TeT(p)
if T(p) # 9, £.uy(p) = 0otherwise.

Proof. Lets(p) = ZreT(p-) w(t) (i.e. the sum of multiplicities of all the main
triangles inT (p)) if T(p) # @, s(p) = 0 otherwise.

We must prove that , , (p) = s(p). Sincex < y, we point out that there
isap > 0 such thatp € .¥;. Moreover, Lemma 3(ii) and our assumptions
imply that¢ 4, is continuous in the variableat p.

We shall proceed by induction on the cardinalityp) of T'(p). We first
observe that(p) is finite, sincep € .¥’; and because of Corollaries 3 and 5.

Let us assume that(p) = 0. By Propositim 3 a pointg € .¥; exists
with the same ordinate gs such that , . (¢q) = 0. Because of Lemma 3(i)
and our assumptions, conditiefip) = 0 implies that the closed segment be-
tweeng and p never meets any discontinuity point.infor the size function,
and henc€, . (p) = 0. Moreover,T (p) = ¥, so thats(p) = 0. Therefore
Lonp(p) =s(p).

Now, assume the claim true whe@p) < n (n > 0). If 1(p) = n, then
there is a poinpp = (X, y), wherex < X, such that the closed segment con-
nectingp to p meets only one discontinuity poigt= p in the variablex for
the size function. According to Lemma 4, this means thal < #(p) and that
Len) (D) —Liw.oy(p) = s(p) — s(p) (we recall thatt , . is continuous in
the variabley at p).
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On the other hand the induction hypothesis implies that, (p) = s(p).
This concludes the proof. O

In plain words Proposition 10 says that the value taken by a size function
at a point for which no cornerpoint has the same ordinate and smaller abscissa
is equal to the sum of multiplicities of all the main triangles containing such a
point.

Corollary 6 Each discontinuity point p = (x,y) € S for £, isin fact
such that either x isa discontinuity point for £, . (-, y) or y isadiscontinuity
point for £ 4.4 (x, -), or both hold.

Proof . If pis neither a discontinuity pointin thedirection nor a discontinuity
point in thex direction for the size function, then Proposition 8 shows that there
is no main triangle for which p belongs to the boundary ef Hence an open
arcwise connected neighborhoodofompletely contained iN, <75 T exists,

and this intersection is finite because of Corollaries 3 and 5. By Proposition 10,
L.u.4) IS constant on such a neighborhood, contradicting the assumptiop that
is a discontinuity point fo€ ). O

This result improves Lemma 2 (for the case: ).

3.2 The Main Theorem

Now we are ready to state the main theorem of this paper.

First of all, for eachp > 0 we define an equivalence relatigf on the set
of all size functions by setting,, ., =, £.u,¢, if and only if £, ,,) and
Lcu».4, COINCide almost everywhere iff,. In other words, the subset of ,
in which the two functions differ has vanishing measure.

Hereafter, for every real numbgr> 0, we shall denote by, the quotient
of the set of all size functions by the equivalence relagign

Q,, with p > 0, will denote the set of all natural-valued formal serieis
<, U, having a finite support and verifying the following property: there is a
line [r : x = k] in supp(o) such that the half-plangx, y) € R? : x > k} con-
tains all the other points and lines in spp. In other words2,, is the set of all
finite collections of points and vertical lines ofRwith positive multiplicities),
with “a vertical line as the element farthest to the left”.

Qo will denote the set of all natural-valued formal seriesn ¥y U %
(possibly with cardsuppo)) = +00), having the following properties:

(i) for every positive real number the restriction ob € Qoto.¥, U Zis a
series belonging t®2,;

(i) sup{y : (x,y) € LoNsuppo)} < +oo (i.e., the supremunyy,, of the
ordinates of the points ia is finite).

It is very natural now to define a map, : <, — Q, for every real
numberp > 0.
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Let us first examine the cage> 0. For every size function definea,, (¢)
as the formal serie}_y ., (X)X, whereC (¢) denotes the set of all corner-
points in, and all cornerlines fof. From Corollaries 3 and 5 we easily obtain
that supjie, (€)) is finite. From Remarks 3 and 4 we see that¢) is a natural-
valued formal series i , U Z. Proposition 9 implies that, (¢) has the vertical
linex = minpc 4 ¢(P) as the farthest to the left element. Theretoyé) is ac-
tually in ©2,. Moreover, if¢; and¢, belong to the same equivalence clas¢ip
then they must have the same cornerpoints and cornerlits€s with the same
multiplicities, so thatr,(£1) = «,(£2). If this were not the case, Proposition 10
would allow us to find a continuity point for both¢; andé,, at which point the
two size functions differ. Hence they would also differ in an open neighborhood
of pin.¥,, against the definition of the equivalence relati®n All this proves
that the functionx,, induces a well-defined map, : ¢, — Q,.

Forp = 0 we setuo({(.4,4)) €qual to the formal series extending all the
formal seriesy, (¢ +,4)) for p > 0 so that (i) holds. SinceZ is compact, also
property (ii) holds forxg(€(+.,) and it actually belongs t€,. As before the
mapag induces a magg : Lo —> Qo.

Theorem 1 For every real number p > Othemapa, : &, — Q, isa
bijection.

Proof. Let us first consider the case > 0. Proposition 10 implies that if
a,(l1) = a,(L2) thenty; =, £>. Hence we easily obtain thay, is injective.

We shall now prove thak, is also surjective by showing that for every
formal series = v, , m(X)X InQ,, asize pail.#, p) exists such that
a,([lcup)) =0.

We shall actually show how such a size pair can be constructed. It may be
helpful if the reader refers to the example shown in Fig. 10.

We shall choose# as a subset of the real plane and the measuring function
@ as the function that takes each pointgfto its ordinateip(x, y) = y.

We construct/ as follows: for every vertical line[: x = k]with m(r) # 0
let us taken (r) closed segments parallel to theaxis in IRZ whose lower end-
points all have the same ordinate equakidMe ask that these segments be
pairwise disjoined and that the upper endpoint of each segment have its ordi-
nate equal to the greatest valiéor which either a point with ordinate or a
line [r : x = b] exists in supyo).

Now, consider one of the segments that take the maximum length and call it
u (obviously, the ordinates of its endpoints will be= min{x : [r : x = x] €
R, m(r) # 0} andb).

For everyp = (x,, y,) € %, such thain(p) # 0 we glue tax, at a height
equal toy,, a number of closed segments equal to the value @f), so that
their lower extremity has an ordinate equakjoand they never intersect other
segments except (possibly) at their upper extremity. Sinee 2, we have
to join a finite number of segments tQ and hence the se#/ we obtain is
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———e e

[EN]
et e e e S

Fig. 10. How to construct a topological spac& such that (¢4 4, y)=y)) = r1+ 2r2+ p1+
3p2 + pa + ps with [r1 :x = 1] and |,: x = 2] cornerlines, ang, = (3,5), p» = (4, 6),
pa = (5, 6), ps = (5, 7) cornerpoints. The corresponding size function is given in Fig. 6

compact. Moreover, it is easily seen that each componem ¢f arcwise and
locally arcwise connected.

The size pail.Z, ¢) thus constructed gives rise to a size function which is
taken byx, into the desired formal seriesand this shows the surjectivity of
o, anda,.

Thus for everyp > 0 we have shown that, is a bijection.

Let us now consider the cage= 0. It is easy to see thal is injective.

The surjectivity ofag is proven by a construction similar to the one used for
the casep > 0. The only difference is that the upper endpoints of our vertical
segments have ordinate sug (x, y) € o N supfo)}(< +oo) instead ofb

(which may be not defined). A compact set can be obtained also in the case that
we join an infinite number of segmentsitolt is enough to take such segments
with lengths converging to 0 (as shown, for example, in Fig. 7). In this way we
also prove that each component#fis arcwise and locally arcwise connected.
Hence als@ : £y — Qo is a bijection and the claim is proven. O

Remark 5. Proposition 10 easily implies thét 4, 4.y =, £(x,.¢, If and only
if such functions coincide it¥,, outside a countable (finite, far > 0) union
of closed horizontal segmenis each connecting a poimpt; of the half-plane
x < yto the diagonalA.

4 Construction of Pseudo-metrics

Among the advantages of representing size functions as formal series, one is
certainly that we are able to define new pseudo-distances between size func-
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tions. A thorough study of such distances would be far from the aim of this
paper so now we merely give hints of how some new pseudo-distances can be
constructed (more details can be found in [17], for experimental results see
also [5]). The key idea here is, given two size functiépandé,, to somehow
match the cornerpoints and cornerlineg pfespectively with the cornerpoints

and cornerlines of, and to quantify their differences depending on such a
correspondence.

One way to accomplish this is the following. Let us fix a number 0 and
consider two size functiong and¢,. The mapx, of Theorem 1 takes these
two size functions into two natural-valued formal serwgesando, with finite
support in¥, U £. It follows that any distance or pseudo-distance betwegen
andos induces a pseudo-distance betwéeand{,.

Suppose thaty = ) ., , m(X)X andoz = Yy, n(Y)Y, Wherel;
and/, denote two finite subsets of , while J; andJ, denote two finite subsets
of #. Recall thatn andn take values into IN. Thus it makes sense to consider
as many copies of each point Bf(resp.l2) as its multiplicity is, so as to form
a new set of distinct pointé (resp.l,). Repeat the same for the linesipand
J» to obtain the setg; and.J. Let F be the set of all injective functiong from
asubseD  of I1 into I; and letG be the set of all bijective functionsfrom J;
to Jo. We allow for the possibility thab ; is empty. Thereforef also contains
the function which takes the empty set to itself.

For each pait f, g) € F x G we can now compute the valuéf, g) as fol-
lows: we start withv(f, g) = 0 and then, for each € D;, we increase( f, g)
by the Euclidean distance pffrom £ (p). Analogously, for each € J, we add
the Euclidean distance betweemndg(r) to v(f, g). Finally, for each point
pel— D¢, we increasev( f, g) by the Euclidean distance of from the
diagonalA = {(x, y) € R?: x = y} and for each poing € I, — f(Dy) we
increasev( f, g) by the Euclidean distance gffrom the diagonah.

/

Fig. 11. How to compute the distance between two formal series
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Thus we can define the following distance betweeandos:

+00 fG=0

dist, (01, 02) := { Min s ¢erxc v(f, g) otherwise

In plain words, what we actually do to calculate such a distance is to measure
the reciprocal distances of pairs of points and pairs of lines of the two formal
series under study, allowing us to “destroy” some points by sending them onto
the diagonalA. Then we choose the matching which minimizes the sum of
these distances. Thus we obtain a distance between formal series which takes
into account multiplicities and is small when formal series are similar.

In Fig. 11 we show how it works on two formal series- a + b + ¢ and
r'+a’+c’ obtained as images of two size functions by the mapf Theorem 1,
for a suitablep. The set of discontinuity points of the two size functions are
represented by continuous and dotted lines respectively. The arrows show the
action of the considered magsandg. HereD = {a, c}, L— Dy = {b} and
J1 = {r}. The total amount of the displayed “movements” equals the distance
between the two formal series (and corresponding size functions).
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