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Abstract. In this paper we consider a mathematical tool for shape description
called size function. We prove that every size function can be represented as a
set of points and lines in the real plane, with multiplicities. This allows for an
algebraic approach to size functions and the construction of new pseudo-dis-
tances between size functions for comparing shapes.
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1 Introduction

One of the key problems in computer vision is recognizing and classifying ob-
jects using digital images. In this context shape description is usually important
for recognition. It is well known that the human percept of the shape of an
object remains constant despite changes in the object’s appearance in images.
This fact leads to the search of shape descriptors allowing to determine when
shapes are perceived as the same. The possible approaches to this problem may
be the most different, from statistics as in [22] to integral transforms such as in
[21]. Much effort is put in the search of representations invariant for geometric
transformations such as rigid, scale or projective transformations. However, in
order to deal not only with rigid objects but also with natural and deformable
ones, it seems convenient to combine geometric and topological aspects of
shape. Indeed topological invariants such as the Euler number (see, e.g., [4])
and the winding numbers (see, e.g., [24]) have proven to be important features
in many image analysis applications.
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Size functions are one of the possible approaches to the problem of de-
scribing shapes from the geometric-topological viewpoint. The emphasis on
the topological aspect is common to other methods such as [1], [23], [25] and
[26]. However size functions integrate topological information with the result
of some kind of measurements on the image.

More precisely, measures are performed through any real valued function
ϕ, therefore calledmeasuring function, defined on the topological spaceM
under study (usually a subset of some Euclidean space). The choice of the suit-
able measuring function depends on the specific application problem we are
interested in.

The size function�(M,ϕ) : IR2 −→ IN ∪ {+∞} describes the shape ofM
with respect toϕ: �(M,ϕ)(x, y) is the number of equivalence classes into which
the subset{P ∈ M : ϕ(P ) ≤ x} ⊆ M is divided by the equivalence relation
of 〈ϕ ≤ y〉-homotopy, where two pointsP,Q ∈ M are〈ϕ ≤ y〉-homotopic if
they either coincide or they can be connected by a continuous path on which
the measuring functionϕ takes a value never greater thany.

Of course different measuring functions generate quite different size func-
tions. By changing measuring functions the corresponding size functions fur-
nish different descriptions of the given shape.

A fundamental property of size functions is that they inherit the invariance
properties, if any, of the chosen measuring functions. Thus it is sufficient to take
measuring functions with the desired invariance to obtain invariant size func-
tions. These properties may include for instance Euclidean, affine or projective
invariance. As we have already pointed out this is very useful in computer vision,
where one is often interested in properties up to certain groups of transforma-
tions. Invariance of size functions is studied thoroughly in [15] and [29].

Moreover, size functions have proven to be resistant to noise and occlusions
and to be easily computable ([18]). For methods to compute size functions we re-
fer the reader to [3, 11, 12, 20]. More details can be obtained in [27] and [30].

No assumptions are made on the nature ofM, so in principle any set that can
be modeled as a topological space can be represented by size functions. This
means that size functions potentially have a broad range of applications, from
binary to grey level or colour images but also sound waves and multidimen-
sional medical plots. Up to now size functions have been successfully tested
on a number of tasks, both with binary and grey level images: recognition of
non-rigid planar shapes such as monograms ([8]), signatures ([6]), hand drawn
sketches ([2]), leaves of different species of plants ([33]), hand-gestures
([28, 31]), leukocytes ([9]); viewpoint invariant recognition of rigid shapes such
as manufactured objects; aspect-based recognition of 3-D rigid objects such as
toy cars ([32]).

Beside applications of size functions to computer vision, this theory appears
to be interesting also from the strictly mathematical viewpoint as a geometrical
and topological tool to compare manifolds (see [10, 14, 19]).
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The aim of this paper is to show that size functions can be regarded as for-
mal series; expressing size functions as formal series allows for their efficient
manipulation. More precisely we prove that the set of size functions is in bijec-
tion with a particular set of formal series of points and lines in the real plane.
This leads to a new approach to size function theory, by translating problems
about size functions into an algebraic context.

This result has not only a theoretical interest. Indeed in practice an immedi-
ate consequence of representing size functions as formal series is that it allows
to reduce the computational burden and for this reason it has already been used
in [2] and [8]. But what is more interesting is that it allows for the induction
of new pseudo-distances on the set of all size functions in order to quantify the
similarity of two shapes. In other words we can produce new and more efficient
methods to compare size functions and hence shapes. The usefulness of some
of these metrics derived from the formal series representation has already been
assessed experimentally (see, e.g., [5]).

In Sect. 2 basic definitions and a few results about discontinuities of size
functions are given. In Sect. 3 we give some lemmas and propositions needed
to prove our main theorem. This result is given in the same section, showing
the bijective correspondence between size functions and a class of formal se-
ries. Finally in Sect. 4 we briefly suggest how this result can be applied to the
definition of new pseudo-distances between size functions.

2 Some Preliminary Results on Size Functions

2.1 Basic Definitions and Results About Size Functions

LetM denote a finite union of compact arcwise connected and locally arcwise
connected subsets of a Euclidean space. We shall call any pair(M, ϕ), where
ϕ : M → IR is a continuous function, asize pair. Such a functionϕ is said to
be ameasuring function. Throughout the rest of the paper assume a size pair
(M, ϕ) is given.

Definition 1 For every real number y, we shall say that two points P,Q ∈ M
are 〈ϕ ≤ y〉 -homotopic if and only if either P = Q or a continuous path
γ : [0,1] → M exists in M joining P and Q such that ϕ(γ (t)) ≤ y for every
t ∈ [0,1]. If P and Q are 〈ϕ ≤ y〉-homotopic we shall write P ∼=ϕ≤y Q and
call γ a 〈ϕ ≤ y〉 -homotopy from P to Q.

It is easy to see that the relation of〈ϕ ≤ y〉-homotopy is an equivalence
relation onM and all its subsets for everyy ∈ IR.

Definition 2 For every x ∈ IR let M〈ϕ ≤ x〉 denote the set {P ∈ M : ϕ(P )

≤ x}. Consider the function �(M,ϕ) : IR2 → IN ∪ {+∞} defined by setting
�(M,ϕ)(x, y) equal to the number of equivalence classes into which M〈ϕ ≤ x〉
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is divided by the equivalence relation of 〈ϕ ≤ y〉-homotopy. We shall call �(M,ϕ)

the size function associated with the pair (M, ϕ).

An example of size function is given in Fig. 1. The shapeM to be studied is
depicted to the left. It is the edge of a hand-written “g”. A reference frame has
been fixed in the plane and the chosen measuring function is the abscissa of
the pointϕ(x, y) = x. On the right of Fig. 1 we show the corresponding size
function. More precisely, we represent only the domain of the size function.
The number displayed in each region of the domain denotes the value taken by
the size function in that region. For example, on the region of the size function
domain withc ≤ x < y < d, this size function takes value equal to 4. This can
be easily checked by looking at the figure to the left. Here the setM〈ϕ ≤ x〉
with c ≤ x < d is made of 4 arcwise connected components that cannot be
joined by paths whose points have abscissa less thany < d.

The definition of size function may recall other techniques. For instance,
in [23] Kupeev and Wolfson propose a method of estimating shape similarity
based on scanning a 2D closed contour along a directionl. Also, there may
be some resemblance with the topological sweep studied by Edelsbrunner and
Guibas in [7], thus leading to topics of computational geometry. In both cases,
however, the differences are greater than the similarities.

Let us now consider the example in Fig. 2. The setM is depicted on the left
and the chosen measuring function is the distance of each point from the bary-
centreB: ϕ(P ) = d(P,B) for everyP in M. The corresponding size function
is shown on the right. Let us observe that in this case the measuring function is
invariant for rotations and translations ofM. The corresponding size function

0

y

200 X

Fig. 1. A subset of the plane (the edge of a “g”) and its size function calculated with respect to
the measuring function abscissa of the point:ϕ(x, y) = x. The number displayed in each region
of the domain of the size function denotes the value taken by the size function in that region
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inherit this invariance: it is easy to see that by rotating or translatingM one
obtains the same size function.

The next example shows the behaviour of size functions in presence of
noise. In Fig. 3 we show an ellipse and its size function with respect to the mea-
suring function distance from the barycentre. In Fig. 4 we show the same ellipse
perturbed with noise and its size function with respect to the same measuring
function. In the size function the noise is revealed by small triangles near the
diagonal.

We shall now provide some propositions to point out some simple properties
of size functions (see [13, 16]):

Proposition 1 �(M,ϕ)(x, y) is non-decreasing in the variable x and non-in-
creasing in the variable y.

Fig. 2. Size function of the curve depicted on the left with respect to the distance from the
barycentre used as measuring function

Fig. 3. Size function of an ellipse with respect to the distance from the barycentre
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Fig. 4. Size function of a deformed ellipse with respect to the distance from the barycentre

Proposition 2 �(M,ϕ)(x, y) < +∞ for x < y.

In [16] this result is given for subsets of the plane but the same proof holds
also for greater dimensions.

Proposition 3 �(M,ϕ)(x, y) = 0 for x < minP∈M ϕ(P ).

Proposition 4 �(M,ϕ)(x, y) = +∞ for any x, y such that there exists a non-
isolated point Q ∈ M with y < ϕ(Q) < x.

Proposition 5 For every y ≥ maxP∈M ϕ(P ), �(M,ϕ)(x, y) is equal to the num-
ber of arcwise connected components N of M such that x ≥ minP∈N ϕ(P ).

Proposition 3 and Proposition 4 show that, in general, outside the region
{(x, y) ∈ IR2 : x < y, x ≥ minP∈M ϕ(P )} the size function�(M,ϕ) does not
convey considerable information about the size pair under study.

Notations: when ȳ ∈ IR is fixed, we shall use the symbol�(M,ϕ)(·, ȳ) to
denote the function that takes each real numberx to the value�(M,ϕ)(x, ȳ). An
analogous convention will hold for the symbol�(M,ϕ)(x̄, ·).

The symbol card(X) will denote the cardinality of the setX.
The expression [r : x = k] will denote the liner of equationx = k.

2.2 Some Remarks About Discontinuities of Size Functions

Since size functions are natural-valued, their discontinuities are always integer
jumps. It is interesting to observe that the discontinuities of size functions be-
have in a regular way: forx < y, discontinuities in the variablex propagate
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downwards to the diagonal� = {(x, y) ∈ IR2 : x = y} and discontinuities in
the variabley propagate towards the right up to the diagonal�. Furthermore
jumps of size functions in thex andy directions are monotonic: horizontal
jumps and vertical jumps cannot increase asy andx increase, respectively. In
order to prove these facts (Corollary 1 and Remark 1) we need the following:

Lemma 1 Let x1, x2, y1, y2 be real numbers such that x1 ≤ x2 < y1 ≤ y2. It
holds that

�(M,ϕ)(x2, y1) − �(M,ϕ)(x1, y1) ≥ �(M,ϕ)(x2, y2) − �(M,ϕ)(x1, y2).

Proof . Sincex1 ≤ x2 we can consider the injective map

f : M〈ϕ ≤ x1〉
/∼=ϕ≤y1 −→M〈ϕ ≤ x2〉

/∼=ϕ≤y1

induced by the inclusion ofM〈ϕ ≤ x1〉 intoM〈ϕ ≤ x2〉. Therefore

�(M,ϕ)(x2, y1) − �(M,ϕ)(x1, y1)

= card(M〈ϕ ≤ x2〉
/∼=ϕ≤y1 ) − card(M〈ϕ ≤ x1〉

/∼=ϕ≤y1 )

= card(M〈ϕ ≤ x2〉
/∼=ϕ≤y1 ) − card(f (M〈ϕ ≤ x1〉

/∼=ϕ≤y1 ))

= card(M〈ϕ ≤ x2〉
/∼=ϕ≤y1 − f (M〈ϕ ≤ x1〉

/∼=ϕ≤y1 ))

that is, the number of equivalence classes in the quotient set

{P ∈ M : x1 < ϕ(P ) ≤ x2}
/∼=ϕ≤y1

(we are using the hypothesisx1 ≤ x2 < y1 for the finiteness of�(M,ϕ)(x2, y1)

and�(M,ϕ)(x1, y1)).
Analogously,

�(M,ϕ)(x2, y2) − �(M,ϕ)(x1, y2) = card{P ∈ M : x1 < ϕ(P ) ≤ x2}
/∼=ϕ≤y2 .

Hence the claim immediately follows from the inequalityy1 ≤ y2 and the
definition of 〈ϕ ≤ y〉-homotopy. �

Remark 1. The inequality in Lemma 1 simply means that in the half-plane
x < y horizontal jumps of a size function are non-increasing in the variabley

(see Fig. 5). From the same lemma one of course gets the analogous statement
that vertical jumps are non-increasing in the variablex by rewriting the above
inequality as

�(M,ϕ)(x1, y2) − �(M,ϕ)(x1, y1) ≥ �(M,ϕ)(x2, y2) − �(M,ϕ)(x2, y1).

Now we can prove the previously mentioned result about the propagation
of discontinuities towards the diagonal�.
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Fig. 5. Horizontal jumps are non-increasing in the variabley: �(M,ϕ)(b) − �(M,ϕ)(a) = 1 ≤
�(M,ϕ)(c) − �(M,ϕ)(d) = 2; vertical jumps are non-increasing in the variablex: �(M,ϕ)(b) −
�(M,ϕ)(c) = −1 ≤ �(M,ϕ)(a) − �(M,ϕ)(d) = 0

Corollary 1 The following statements hold:

(i) If x̄ ∈ IR is a discontinuity point for �(M,ϕ)(·, ȳ) and x̄ < y < ȳ then x̄ is a
discontinuity point also for �(M,ϕ)(·, y);

(ii) If ȳ ∈ IR is a discontinuity point for �(M,ϕ)(x̄, ·) and x̄ < x < ȳ then ȳ is a
discontinuity point also for �(M,ϕ)(x, ·).

Proof . (i) Contrary to our claim assume that for somey with x̄ < y < ȳ

�(M,ϕ)(·, y) is continuous at̄x. Then limx→x̄+ �(M,ϕ)(x, y) − �(M,ϕ)(x̄, y) = 0.
Hence Lemma 1 together with the fact that size functions are non-decreasing in
x (Proposition 1) imply limx→x̄+ �(M,ϕ)(x, ȳ)−�(M,ϕ)(x̄, ȳ) = 0. Analogously,
limx→x̄− �(M,ϕ)(x̄, ȳ)− �(M,ϕ)(x, ȳ) = 0. Hencex̄ would be a continuity point
for �(M,ϕ)(·, ȳ), thus contradicting our hypothesis.

The proof for (ii) is similar. �

We shall see later (Corollary 6) that every discontinuity point for a size
function is necessarily a discontinuity point in thex or y direction. So far we
can only prove a weaker result:

Lemma 2 Any open arcwise connected neighborhood of a discontinuity point
for a size function contains at least one discontinuity point in the variable x

or y.

Proof . Let p ∈ IR2 be a discontinuity point for�(M,ϕ). Then, in any open
arcwise connected neighborhoodU ⊆ IR2 of p, a pointq exists such that
�(M,ϕ)(p) �= �(M,ϕ)(q). We can connectp andq by a path entirely contained
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in U made of segments parallel to thex andy axes.�(M,ϕ) cannot be constant
along this path. Hence the claim. �

Moreover, some constraints on the presence of discontinuities in size func-
tions exist.

Proposition 6 For every point p̄ = (x̄, ȳ) ∈ IR2 with x̄ < ȳ an ε > 0 exists
such that the open set

Wε(p̄) = {(x, y) ∈ IR2 : |x̄ − x| < ε, |ȳ − y| < ε, x �= x̄, y �= ȳ}
does not contain any discontinuity point for �(M,ϕ).

Proof . Suppose, contrary to our assertion, that for everyn ∈ IN+ a discontinu-
ity point pn = (xn, yn) in W1/n(p̄) exists. By applying the previous Lemma 2,
possibly by extracting a subsequence from(pn)n∈IN+ , we can assume that each
pn is a discontinuity point in either thex or y direction. In the following, we
shall assume that eachpn is a discontinuity point in the variablex. The case in
which eachpn is a discontinuity point in the variabley has a similar proof.

Let us fix a natural numberN that is sufficiently large so that̄x + 1/N <

ȳ−1/N , i.e. the setsW1/n(p̄)with n ≥ N lie entirely above the diagonal�. Let
us consider the function�(M,ϕ)(·, ȳ−1/N) : (x̄−1/N, x̄+1/N) ⊂ IR −→ IN.
From Corollary 1 we know that discontinuities inx spread downwards. Thus
the function�(M,ϕ)(·, ȳ−1/N) should have an infinite number of integer jumps.
Now, since size functions are non-decreasing in the variablex, this fact would
imply that �(M,ϕ)(x̄ + 1/N, ȳ − 1/N) = +∞, thus contradicting Proposi-
tion 2. �

Similarly, by recalling that fory ≥ maxP∈M ϕ(P ) each path inM is a
〈ϕ ≤ y〉-homotopy, the following result can be proven:

Proposition 7 For every vertical line [r̄ : x = x̄] an ε > 0 exists such that the
open set

Vε(r̄) = {(x, y) ∈ IR2 : |x̄ − x| < ε, y > 1/ε, x �= x̄}
does not contain any discontinuity point for �(M,ϕ).

The previous results show that discontinuities divide the part of the domain
of a size function lying above the diagonal� into overlapping triangular re-
gions (possibly of infinite area) leaning against the diagonal. For example, in
the size function represented in Fig. 6 there are two triangles of infinite area
above the diagonal� bounded by the diagonal itself and, respectively, by the
vertical linesr1 andr2. Moreover, there are four overlapping triangles with one
side on the diagonal and the opposite vertex respectively atp1, p2, p4 andp5.
As we shall clarify later, the triangle with vertex atp3 can be seen as a result of
the overlapping of those with vertices atp1 andp2. The fact that this function is
really the size function of a suitable size pair will be shown in the next section.
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Fig. 6. How discontinuities of a size function divide its domain into overlapping triangular
regions with one side on the diagonal�

These facts suggest a way to encode the information contained in size func-
tions into a more compact and manageable structure.

Remark 2. Let us finally point out that the behaviour of discontinuities in the
variablex differs from that in the variabley in the following sense. The def-
inition of size function implies that, for̄x < ȳ, the equality�(M,ϕ)(x̄, ȳ) =
limx→x̄+ �(M,ϕ)(x, ȳ) always holds, i.e.�(M,ϕ)(·, ȳ) is right-continuous.

On the other hand it has been proven in [14] that at a discontinuity point
in the variabley, sayp̃ = (x̃, ỹ), it may happen that�(M,ϕ)(p̃) �= limy→ỹ+

�(M,ϕ)(x̃, y), i.e.�(M,ϕ)(x̃, ·) may not be right-continuous.

3 Size Functions and Formal Series

3.1 Preparing the Proof of Theorem 1: Some Definitions and Results

Our aim is to capture information (about the shape under study) contained in
a size function, i.e. its values and discontinuities, in algebraic language. The
formal object we shall obtain will enable easier computations and reduced in-
formation storage. In order to do this we shall represent a size function by giving
the list of triangular regions in which its domain is divided by discontinuities.
Furthermore, we shall assign a multiplicity to each triangle so that the sum of
the multiplicities of triangles containing a given point gives the value of the
size function at that point.

Let us now formalize this idea.
We shall denote the set{(x, y) ∈ IR2 : x < y} byS0 and the set of vertical

lines of IR2, i.e. lines of equationx = k with k ∈ IR, byR.
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Moreover, we shall callX the setS0 ∪ R. We recall the following
definitions:

Definition 3 Any function m : X → ZZ is said to be a formal series in X. The
set supp(m) = {X ∈ X : m(X) �= 0} is called the support of m.

The set of formal series inX is a commutative group with respect to the
usual sum of functions. Thus it makes sense to denote each such formal series
m by the symbol

∑
X∈X m(X)X.

Definition 4 For every point p = (x, y) ∈ IR2 and real positive numbers α, β
with (x + α, y − β) ∈ S0 let us define the number µα,β(p) as

�(M,ϕ)(x + α, y − β) − �(M,ϕ)(x + α, y + β)

−�(M,ϕ)(x − α, y − β) + �(M,ϕ)(x − α, y + β).

The number µ(p) := min{µα,β(p) : α, β > 0, x + α < y − β} will be called
multiplicity of p for �(M,ϕ). Moreover, we shall call cornerpoint for �(M,ϕ) any
point p ∈ S0 such that the number µ(p) is strictly positive.

Remark 3. Obviously, for eachα, β > 0 with x + α < y − β, µα,β(p) is an
integer number and from Lemma 1 we see that it is non-negative. Henceµ(p)

is well defined and non-negative for everyp ∈ S0.
Proposition 6 implies that for sufficiently smallα andβ each term in the

sum definingµα,β(p) is constant. Furthermore, by using Lemma 1 twice, we
can easily prove thatµα,β(p) is non-decreasing inα andβ. It follows that
µ(p) = limα,β→0+ µα,β(p), thus giving an alternative definition ofµ(p).

In the size function represented in Fig. 6 the only cornerpoints arep1, p2,
p4 andp5 with multiplicities µ(p1) = µ(p4) = µ(p5) = 1 andµ(p2) = 3.
The pointp3 is not a cornerpoint sinceµ(p3) = 0.

The key role of cornerpoints is demonstrated by the following proposition,
which shows that each of them creates discontinuity points spreading down-
wards and towards the right up to the diagonal�.

Proposition 8 If p̄ = (x̄, ȳ) is a cornerpoint for �(M,ϕ) then the following
statements hold:

(i) If x̄ ≤ x < ȳ then ȳ is a discontinuity point for �(M,ϕ)(x, ·);
(ii) If x̄ < y < ȳ then x̄ is a discontinuity point for �(M,ϕ)(·, y).
Proof . Sincep̄ = (x̄, ȳ) is a cornerpoint for�(M,ϕ),

�(M,ϕ)(x̄ + α, ȳ − β) − �(M,ϕ)(x̄ + α, ȳ + β)

−�(M,ϕ)(x̄ − α, ȳ − β) + �(M,ϕ)(x̄ − α, ȳ + β) > 0

for every positiveα andβ for which x̄ + α < ȳ − β.
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By recalling Proposition 1 we obtain that�(M,ϕ)(x̄−α, ȳ−β) ≥ �(M,ϕ)(x̄−
α, ȳ + β) and�(M,ϕ)(x̄ + α, ȳ + β) ≥ �(M,ϕ)(x̄ − α, ȳ + β). It follows that

�(M,ϕ)(x̄ + α, ȳ − β) − �(M,ϕ)(x̄ + α, ȳ + β) > 0 (1)

and

�(M,ϕ)(x̄ + α, ȳ − β) − �(M,ϕ)(x̄ − α, ȳ − β) > 0 (2)

for every positiveα andβ, such that̄x + α < x̄ − β.
Let us now prove assertion (i). Sinceα is arbitrary and inequality (1) holds,

we obtain limε→0+ �(M,ϕ)(x̄ + ε, ȳ − β) − limε→0+ �(M,ϕ)(x̄ + ε, ȳ + β) >

0. Let us now recall that�(M,ϕ)(x̄, ȳ − β) = limε→0+ �(M,ϕ)(x̄ + ε, ȳ − β)

and�(M,ϕ)(x̄, ȳ + β) = limε→0+ �(M,ϕ)(x̄ + ε, ȳ + β) (Remark 2). Therefore
�(M,ϕ)(x̄, ȳ − β) − �(M,ϕ)(x̄, ȳ + β) > 0. Sinceβ can be chosen to be arbi-
trarily small it follows thatȳ is a discontinuity point for�(M,ϕ)(x̄, ·). Now it is
sufficient to apply Corollary 1 to conclude.

Let us now consider assertion (ii). By inequality (2) and by takingα to be
arbitrarily small we can show thatx̄ is a discontinuity point for�(M,ϕ)(·, ȳ−β).
By makingβ smaller and smaller and by recalling Corollary 1 we complete the
proof. �

The previous proposition implies that every cornerpoint is a discontinuity
point in they direction.

The converse of Proposition 8 fails to be true, as can be checked by looking
at the pointp3 in Fig. 6. Indeed, in the size function represented in Fig. 6 the
only cornerpoints arep1, p2, p4 andp5.

Corollary 2 S0 does not contain accumulation points for the set of corner-
points. In particular, cornerpoints are isolated points.

Proof . If this claim were not true, by Proposition 8 we would get a contradiction
of Proposition 6. �

Furthermore, by Propositions 3, 5 and their definition, cornerpoints lie in
the region{(x, y) ∈ IR2 : x < y, x ≥ minp∈M ϕ(p), y ≤ maxp∈M ϕ(p)}.
Hence, in case a size function has an infinite number of cornerpoints, they must
accumulate onto the diagonal�. An example of size function with cornerpoints
accumulating onto the diagonal is given in Fig. 7.

For everyρ > 0 letSρ = {(x, y) ∈ IR2 : x < y −ρ}. In view of the above
discussion we have:

Corollary 3 Size functions have at most a finite number of cornerpoints in Sρ

for any ρ > 0 .

The main purpose of this paper is to use cornerpoints to identify triangular
regions of finite area which, as we have seen in Sect. 2, are a major feature of
size functions.
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Fig. 7. A topological space (on the left) whose size function, with respect to the measuring
functionϕ(x, y) = y, has cornerpoints accumulating onto the diagonal�

Following this idea, let us now represent triangles of infinite area that can
be cut out by discontinuities of a size function.

Definition 5 For every vertical line [r : x = k] ∈ R we shall call multiplicity
of r for �(M,ϕ) the number

µ(r) := min
α>0,k+α<y

�(M,ϕ)(k + α, y) − �(M,ϕ)(k − α, y).

When µ(r) is strictly positive, the line r will be said to be a cornerline for the
size function.

Observe that the notion of cornerline is a natural extension of the notion of
cornerpoint for “points at infinity”, where�(M,ϕ) can be assumed to be vanish-
ing. In the size function of Fig. 6 the only cornerlines are given byr1 andr2

with the multiplicitiesµ(r1) = 1 andµ(r2) = 2.

Remark 4. Obviously, from Proposition 1 we know thatµ(r) is well defined
and non-negative for everyr ∈ R.

Moreover, Proposition 1 and Lemma 1 show that the value�(M,ϕ)(k+α, y)−
�(M,ϕ)(k − α, y) is non-decreasing inα and non-increasing iny, respectively.

From all this it follows thatµ(r) = limε→0+ �(M,ϕ)(k+ε,1/ε)−�(M,ϕ)(k−
ε,1/ε), thus giving an alternative definition ofµ(r).

On the other hand, by recalling Proposition 5 and sinceM contains only
a finite number of arcwise connected components, it follows that for a small
enoughε the number�(M,ϕ)(k+ε,1/ε)−�(M,ϕ)(k−ε,1/ε) counts the arcwise
connected components ofM on whichϕ takesk as minimum value. All this
proves the following proposition, yielding yet another definition ofµ(r).
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Proposition 9 Let c(k) be the number of arcwise connected components of M
on which ϕ takes k as a global minimum. Consider the vertical line [r : x =
k]. Then µ(r) = c(k). Therefore, r is a cornerline for �(M,ϕ) if and only if
k = minP∈N ϕ(P ) for at least one arcwise connected component N of M.

The previous proposition together with the definition of size function easily
imply the following result:

Corollary 4 If [r : x = k] is a cornerline for �(M,ϕ) and y > k then k is a
discontinuity point for �(M,ϕ)(·, y).

In other words, any point on a cornerline is a discontinuity point in the
variablex for �(M,ϕ).

Proposition 9 also implies that the number of cornerlines for a size function
�(M,ϕ) is never greater than the number of arcwise connected components of
M. From our assumption onM we conclude:

Corollary 5 Size functions have a finite number of cornerlines.

Cornerpoints and cornerlines are naturally related to bounded and unbound-
ed triangles, as the following definition reveals:

Definition 6 If p̄ = (x̄, ȳ) is a cornerpoint for �(M,ϕ) we shall call the set
{(x, y) ∈ IR2 : x̄ ≤ x < y < ȳ} the main triangle of p̄ . Analogously, if
[r : x = k] is a cornerline for �(M,ϕ) we shall call the set {(x, y) ∈ IR2 : k ≤
x < y} the main (unbounded) triangle of r.

The multiplicity of a cornerpoint or a cornerline will also be called the
multiplicity µ(τ) of the related main triangle τ .

Moreover, for each point p ∈ S0, we shall denote by T (p) the set of all
main triangles containing p.

Note that each main triangle contains only a proper subset of its boundary,
namely the left vertical segment.

Now we give a lemma which will be useful for further results in this paper.
In plain words it states that for each discontinuity point in the variablex we
find either a cornerpoint above it or a cornerline through it; similarly, on the
left of each discontinuity point in the variabley there is always a cornerpoint.

Lemma 3 (i) If x̄ is a discontinuity point for �(M,ϕ)(·, ȳ) with x̄ < ȳ then either
there is a cornerpoint for �(M,ϕ) on the closed half-line {(x̄, y) ∈ IR2 : ȳ ≤ y}
or line x = x̄ is a cornerline, or both cases occur.

(ii) If ȳ is a discontinuity point for �(M,ϕ)(x̄, ·) with x̄ < ȳ then there is a
cornerpoint for �(M,ϕ) on the closed half-line {(x, ȳ) ∈ IR2 : x ≤ x̄}.
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Proof . (i) If the linex = x̄ is not a cornerline then limε→0+ �(M,ϕ)(x̄+ε,1/ε)−
�(M,ϕ)(x̄ − ε,1/ε) = 0 (see Remark 4) and hence limε→0+ �(M,ϕ)(x̄ + ε, y) −
�(M,ϕ)(x̄−ε, y) = 0 for everyy large enough. Since limε→0+ �(M,ϕ)(x̄+ε, ȳ)−
�(M,ϕ)(x̄ − ε, ȳ) > 0, a valueŷ ≥ ȳ must exist such that limε→0+ �(M,ϕ)(x̄ +
ε, ŷ+η)−�(M,ϕ)(x̄−ε, ŷ+η) = 0 and limε→0+ �(M,ϕ)(x̄+ε, ŷ−η)−�(M,ϕ)(x̄−
ε, ŷ − η) > 0 for everyη > 0. Sinceµα,β(p) is constant for small enoughα
andβ and for fixedp (see Remark 3), it follows that limα,β→0+ µα,β(x̄, ŷ) > 0,
so that(x̄, ŷ) is a cornerpoint. This proves (i).

(ii) Proposition 3 implies that limε→0+ �(M,ϕ)(x, ȳ−ε)−�(M,ϕ)(x, ȳ+ε) =
0 for everyx < minP∈M ϕ(P ), while limε→0+ �(M,ϕ)(x̄, ȳ−ε)−�(M,ϕ)(x̄, ȳ+
ε) > 0. Hence a valuêx ≤ x̄ must exist such that limε→0+ �(M,ϕ)(x̂−η, ȳ−ε)−
�(M,ϕ)(x̂−η, ȳ+ε) = 0 and limε→0+ �(M,ϕ)(x̂+η, ȳ−ε)−�(M,ϕ)(x̂+η, ȳ+ε) >

0 for everyη > 0. As above, it follows that limα,β→0+ µα,β(x̄, ŷ) > 0, and so
(x̂, ȳ) is a cornerpoint. This proves (ii). �

The value taken by a size function at a point is related to multiplicities of
main triangles as the following results show:

Lemma 4 Assume that two points p̄ and p̃ in IR2 are given, satisfying the fol-
lowing conditions: p̄ = (x̄, ȳ), p̃ = (x̃, ȳ)with x̃ < x̄ < ȳ and p̄ is a continuity
point in the variable y for the size function �(M,ϕ). Moreover, assume that the
closed segment connecting p̃ to p̄ meets one and only one discontinuity point
q̄ in the variable x for �(M,ϕ), and that q̄ �= p̃.

Then T (p̃) is properly contained in T (p̄) and the number �(M,ϕ)(p̄) −
�(M,ϕ)(p̃) equals the sum of the multiplicities of main triangles in T (p̄)−T (p̃).

Proof . Let [r : x = k] be the vertical line through̄q. Finiteness and monoto-
nicity of size functions easily imply that in the closed half-line{(x, y) ∈ IR2 :
x = k, y ≥ ȳ} there must exist only finitely many discontinuity points in the
variabley for �(M,ϕ), sayqi = (k, yi) with i varying in a finite set of indexes
I. Let I = {1,2, . . . , h} in the case that it is non-empty. We point out that
q̄ �= qi for every i ∈ I. In fact, asp̄ is a continuity point in the variabley
for �(M,ϕ), by Corollary 1 (ii) the same must hold for all points in the closed
segmentp̃p̄.

Sinceq̄ is the only discontinuity point in the variablex on the closed seg-
mentp̃p̄, by Corollary 1(i) there cannot exist discontinuity points in the variable
x in the strip [̃x, x̄] × [ȳ,+∞) except on the liner. From Proposition 8 and
Corollary 4 it follows that the strip [̃x, x̄] × [ȳ,+∞) can contain neither cor-
nerpoints nor cornerlines except on the liner. Hence Lemma 3(ii) and the fact
that every cornerpoint is a discontinuity point in they direction show that if
y is a discontinuity point for�(M,ϕ)(x, ·), and(x, y) ∈ [x̃, x̄] × [ȳ,+∞) then
y = yi for a suitable indexi ∈ I. All this implies that�(M,ϕ) is constant in the
rectangles [̃x, k) × (yi, yi+1) and [k, x̄] × (yi, yi+1) for i = 1, . . . , h − 1, as
well as in the rectangles [x̃, k) × (ȳ, y1) and [k, x̄] × (ȳ, y1), and in the two
strips [x̃, k) × (yh,+∞) and [k, x̄] × (yh,+∞) (see Fig. 8).
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Thus, if I �= ∅ for eachqi we can take four points(x̃, yi
1), (x̃, yi

2),
(x̄, yi

1), (x̄, y
i
2), such that̄x < yi

1 < yi < yi
2, �(M,ϕ)(x̄, y

i
1) − �(M,ϕ)(x̃, y

i
1) −

�(M,ϕ)(x̄, y
i
2) + �(M,ϕ)(x̃, y

i
2) = µ(qi) (possiblyµ(qi) = 0) and, for every

i = 1, . . . , h − 1, yi
2 = yi+1

1 . Moreover sincep̄ and p̃ are continuity points
in the variabley for �(M,ϕ), in caseI �= ∅ we can also assumey1

1 = ȳ (see
Fig. 9).

Therefore, forI �= ∅,

�(M,ϕ)(p̄) − �(M,ϕ)(p̃) = µ(q1) + �(M,ϕ)(x̄, y
1
2) − �(M,ϕ)(x̃, y

1
2)

= · · · =
∑

i=1,...,h

µ(qi) + �(M,ϕ)(x̄, y
h
2) − �(M,ϕ)(x̃, y

h
2).

Fig. 8. Proof of Lemma 4: in the displayed rectangles and strips the size function�(M,ϕ) is
constant

Fig. 9. How to choose the points(x̃, yi
1), (x̃, y

i
2), (x̄, y

i
1), (x̄, y

i
2) as described in the proof of

Lemma 4
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Now let us observe that�(M,ϕ)(x̄, y
h
2) − �(M,ϕ)(x̃, y

h
2) = µ(r) (possibly

µ(r) = 0). Thus

�(M,ϕ)(p̄) − �(M,ϕ)(p̃) = µ(r) +
∑

i=1,...,h

µ(qi). (3)

Now Proposition 8(i) implies that all cornerpoints lying on the closed half-
line {(x, y) ∈ IR2 : x = k, y ≥ ȳ} belong to{qi : i ∈ I}. Hence the right-hand
side in (3) reduces to the sum of the multiplicities of cornerpoints on the half-
line {(x, y) ∈ IR2 : x = k, y ≥ ȳ} plus the multiplicity ofr in the case thatr is
a cornerline. This number is easily seen to equal the sum of the multiplicities
of main triangles in the setT (p̄) − T (p̃).

If I = ∅ we simply obtain�(M,ϕ)(p̄) − �(M,ϕ)(p̃) = µ(r) > 0, andr is a
cornerline. Also in this case�(M,ϕ)(p̄)−�(M,ϕ)(p̃) equals

∑
τ∈(T (p̄)−T (p̃)) µ(τ).

In both casesI �= ∅ andI = ∅ there is at least one main triangle contain-
ing p̄ and not containing̃p. Moreover,T (p̃) ⊆ T (p̄) becausẽx < x̄. Hence,
in any caseT (p̃) is properly contained inT (p̄). This completes the proof.�

Now we can give the key tool in the proof of our main theorem:

Proposition 10 Assume p̄ = (x̄, ȳ) ∈ S0 and no point (x̃, ȳ) with x̃ ≤ x̄ is a
cornerpoint for �(M,ϕ). Then

�(M,ϕ)(p̄) =
∑

τ∈T (p̄)

µ(τ)

if T (p̄) �= ∅, �(M,ϕ)(p̄) = 0 otherwise.

Proof . Let s(p̄) = ∑
τ∈T (p̄) µ(τ) (i.e. the sum of multiplicities of all the main

triangles inT (p̄)) if T (p̄) �= ∅, s(p̄) = 0 otherwise.
We must prove that�(M,ϕ)(p̄) = s(p̄). Sincex̄ < ȳ, we point out that there

is a ρ̄ > 0 such thatp̄ ∈ Sρ̄ . Moreover, Lemma 3(ii) and our assumptions
imply that�(M,ϕ) is continuous in the variabley at p̄.

We shall proceed by induction on the cardinalityt (p̄) of T (p̄). We first
observe thatt (p̄) is finite, sincep̄ ∈ Sρ̄ and because of Corollaries 3 and 5.

Let us assume thatt (p̄) = 0. By Proposition 3 a pointq ∈ Sρ̄ exists
with the same ordinate as̄p, such that�(M,ϕ)(q) = 0. Because of Lemma 3(i)
and our assumptions, conditiont (p̄) = 0 implies that the closed segment be-
tweenq andp̄ never meets any discontinuity point inx for the size function,
and hence�(M,ϕ)(p̄) = 0. Moreover,T (p̄) = ∅, so thats(p̄) = 0. Therefore
�(M,ϕ)(p̄) = s(p̄).

Now, assume the claim true whent (p̄) < n (n > 0). If t (p̄) = n, then
there is a pointp̃ = (x̃, ȳ), wherex̃ < x̄, such that the closed segment con-
nectingp̃ to p̄ meets only one discontinuity pointq̄ �= p̃ in the variablex for
the size function. According to Lemma 4, this means thatt (p̃) < t(p̄) and that
�(M,ϕ)(p̄) − �(M,ϕ)(p̃) = s(p̄) − s(p̃) (we recall that�(M,ϕ) is continuous in
the variabley at p̄).



344 P. Frosini, C. Landi

On the other hand the induction hypothesis implies that�(M,ϕ)(p̃) = s(p̃).
This concludes the proof. �

In plain words Proposition 10 says that the value taken by a size function
at a point for which no cornerpoint has the same ordinate and smaller abscissa
is equal to the sum of multiplicities of all the main triangles containing such a
point.

Corollary 6 Each discontinuity point p̄ = (x̄, ȳ) ∈ S0 for �(M,ϕ) is in fact
such that either x̄ is a discontinuity point for �(M,ϕ)(·, ȳ) or ȳ is a discontinuity
point for �(M,ϕ)(x̄, ·), or both hold.

Proof . If p̄ is neither a discontinuity point in they direction nor a discontinuity
point in thex direction for the size function, then Proposition 8 shows that there
is no main triangleτ for which p̄ belongs to the boundary ofτ . Hence an open
arcwise connected neighborhood ofp̄ completely contained in∩τ∈T (p̄)τ exists,
and this intersection is finite because of Corollaries 3 and 5. By Proposition 10,
�(M,ϕ) is constant on such a neighborhood, contradicting the assumption thatp̄

is a discontinuity point for�(M,ϕ). �

This result improves Lemma 2 (for the casex̄ < ȳ).

3.2 The Main Theorem

Now we are ready to state the main theorem of this paper.
First of all, for eachρ ≥ 0 we define an equivalence relation∼=ρ on the set

of all size functions by setting�(M1,ϕ1)
∼=ρ �(M2,ϕ2) if and only if �(M1,ϕ1) and

�(M2,ϕ2) coincide almost everywhere inSρ . In other words, the subset ofSρ

in which the two functions differ has vanishing measure.
Hereafter, for every real numberρ ≥ 0, we shall denote byLρ the quotient

of the set of all size functions by the equivalence relation∼=ρ .
.ρ , with ρ > 0, will denote the set of all natural-valued formal seriesσ in

Sρ ∪R, having a finite support and verifying the following property: there is a
line [r : x = k] in supp(σ ) such that the half-plane{(x, y) ∈ IR2 : x ≥ k} con-
tains all the other points and lines in supp(σ ). In other words.ρ is the set of all
finite collections of points and vertical lines of IR2 (with positive multiplicities),
with “a vertical line as the element farthest to the left”.

.0 will denote the set of all natural-valued formal seriesσ in S0 ∪ R
(possibly with card(supp(σ )) = +∞), having the following properties:

(i) for every positive real numberρ the restriction ofσ ∈ .0 to Sρ ∪ R is a
series belonging to.ρ ;

(ii) sup{y : (x, y) ∈ S0 ∩ supp(σ )} < +∞ (i.e., the supremumysup of the
ordinates of the points inσ is finite).

It is very natural now to define a map̃αρ : Lρ −→ .ρ for every real
numberρ ≥ 0.
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Let us first examine the caseρ > 0. For every size function� defineαρ(�)

as the formal series
∑

X∈C(�) µ(X)X, whereC(�) denotes the set of all corner-
points inSρ and all cornerlines for�. From Corollaries 3 and 5 we easily obtain
that supp(αρ(�)) is finite. From Remarks 3 and 4 we see thatαρ(�) is a natural-
valued formal series inSρ ∪R. Proposition 9 implies thatαρ(�) has the vertical
linex = minP∈M ϕ(P ) as the farthest to the left element. Thereforeαρ(�) is ac-
tually in.ρ . Moreover, if�1 and�2 belong to the same equivalence class inLρ

then they must have the same cornerpoints and cornerlines inSρ with the same
multiplicities, so thatαρ(�1) = αρ(�2). If this were not the case, Proposition 10
would allow us to find a continuity pointp for both�1 and�2, at which point the
two size functions differ. Hence they would also differ in an open neighborhood
of p inSρ , against the definition of the equivalence relation∼=ρ . All this proves
that the functionαρ induces a well-defined map̃αρ : Lρ −→ .ρ .

For ρ = 0 we setα0(�(M,ϕ)) equal to the formal series extending all the
formal seriesαρ(�(M,ϕ)) for ρ > 0 so that (i) holds. SinceM is compact, also
property (ii) holds forα0(�(M,ϕ)) and it actually belongs to.0. As before the
mapα0 induces a map̃α0 : L0 −→ .0.

Theorem 1 For every real number ρ ≥ 0 the map α̃ρ : Lρ −→ .ρ is a
bijection.

Proof . Let us first consider the caseρ > 0. Proposition 10 implies that if
αρ(�1) = αρ(�2) then�1

∼=ρ �2. Hence we easily obtain thatα̃ρ is injective.
We shall now prove that̃αρ is also surjective by showing that for every

formal seriesσ = ∑
X∈Sρ∪R m(X)X in .ρ , a size pair(M, ϕ) exists such that

α̃ρ([�(M,ϕ)]) = σ .
We shall actually show how such a size pair can be constructed. It may be

helpful if the reader refers to the example shown in Fig. 10.
We shall chooseM as a subset of the real plane and the measuring function

ϕ as the function that takes each point ofM to its ordinate:ϕ(x, y) = y.
We constructM as follows: for every vertical line [r : x = k] with m(r) �= 0

let us takem(r) closed segments parallel to they-axis in IR2 whose lower end-
points all have the same ordinate equal tok. We ask that these segments be
pairwise disjoined and that the upper endpoint of each segment have its ordi-
nate equal to the greatest valueb for which either a point with ordinateb or a
line [r : x = b] exists in supp(σ ).

Now, consider one of the segments that take the maximum length and call it
u (obviously, the ordinates of its endpoints will bea = min{x̄ : [r : x = x̄] ∈
R,m(r) �= 0} andb).

For everyp = (xp, yp) ∈ Sρ such thatm(p) �= 0 we glue tou, at a height
equal toyp, a number of closed segments equal to the value ofm(p), so that
their lower extremity has an ordinate equal toxp and they never intersect other
segments except (possibly) at their upper extremity. Sinceσ ∈ .ρ , we have
to join a finite number of segments tou, and hence the setM we obtain is
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Fig. 10. How to construct a topological spaceM such thatα(�(M,ϕ(x,y)=y)) = r1 + 2r2 + p1 +
3p2 + p4 + p5 with [r1 :x = 1] and [r2: x = 2] cornerlines, andp1 = (3,5), p2 = (4,6),
p4 = (5,6), p5 = (5,7) cornerpoints. The corresponding size function is given in Fig. 6

compact. Moreover, it is easily seen that each component ofM is arcwise and
locally arcwise connected.

The size pair(M, ϕ) thus constructed gives rise to a size function which is
taken byαρ into the desired formal seriesσ and this shows the surjectivity of
αρ andα̃ρ .

Thus for everyρ > 0 we have shown that̃αρ is a bijection.
Let us now consider the caseρ = 0. It is easy to see that̃α0 is injective.

The surjectivity ofα̃0 is proven by a construction similar to the one used for
the caseρ > 0. The only difference is that the upper endpoints of our vertical
segments have ordinate sup{y : (x, y) ∈ S0 ∩ supp(σ )}(< +∞) instead ofb
(which may be not defined). A compact set can be obtained also in the case that
we join an infinite number of segments tou. It is enough to take such segments
with lengths converging to 0 (as shown, for example, in Fig. 7). In this way we
also prove that each component ofM is arcwise and locally arcwise connected.
Hence alsõα0 : L0 → .0 is a bijection and the claim is proven. �

Remark 5. Proposition 10 easily implies that�(M1,ϕ1)
∼=ρ �(M2,ϕ2) if and only

if such functions coincide inSρ , outside a countable (finite, forρ > 0) union
of closed horizontal segmentssi , each connecting a pointpi of the half-plane
x < y to the diagonal�.

4 Construction of Pseudo-metrics

Among the advantages of representing size functions as formal series, one is
certainly that we are able to define new pseudo-distances between size func-
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tions. A thorough study of such distances would be far from the aim of this
paper so now we merely give hints of how some new pseudo-distances can be
constructed (more details can be found in [17], for experimental results see
also [5]). The key idea here is, given two size functions�1 and�2, to somehow
match the cornerpoints and cornerlines of�1 respectively with the cornerpoints
and cornerlines of�2 and to quantify their differences depending on such a
correspondence.

One way to accomplish this is the following. Let us fix a numberρ > 0 and
consider two size functions�1 and�2. The mapαρ of Theorem 1 takes these
two size functions into two natural-valued formal seriesσ1 andσ2 with finite
support inSρ ∪R. It follows that any distance or pseudo-distance betweenσ1

andσ2 induces a pseudo-distance between�1 and�2.
Suppose thatσ1 = ∑

X∈I1∪J1
m(X)X andσ2 = ∑

Y∈I2∪J2
n(Y )Y , whereI1

andI2 denote two finite subsets ofSρ whileJ1 andJ2 denote two finite subsets
of R. Recall thatm andn take values into IN. Thus it makes sense to consider
as many copies of each point ofI1 (resp.I2) as its multiplicity is, so as to form
a new set of distinct points̃I1 (resp.Ĩ2). Repeat the same for the lines inJ1 and
J2 to obtain the sets̃J1 andJ̃2. LetF be the set of all injective functionsf from
a subsetDf of Ĩ1 into Ĩ2 and letG be the set of all bijective functionsg from J̃1

to J̃2. We allow for the possibility thatDf is empty. Therefore,F also contains
the function which takes the empty set to itself.

For each pair(f, g) ∈ F ×G we can now compute the valuev(f, g) as fol-
lows: we start withv(f, g) = 0 and then, for eachp ∈ Df , we increasev(f, g)
by the Euclidean distance ofp fromf (p). Analogously, for eachr ∈ J̃1 we add
the Euclidean distance betweenr andg(r) to v(f, g). Finally, for each point
p ∈ Ĩ1 − Df , we increasev(f, g) by the Euclidean distance ofp from the
diagonal� = {(x, y) ∈ IR2 : x = y} and for each pointq ∈ Ĩ2 − f (Df ) we
increasev(f, g) by the Euclidean distance ofq from the diagonal�.

Fig. 11. How to compute the distance between two formal series
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Thus we can define the following distance betweenσ1 andσ2:

distρ(σ1, σ2) :=
{ +∞ if G = ∅

min(f,g)∈F×G v(f, g) otherwise.

In plain words, what we actually do to calculate such a distance is to measure
the reciprocal distances of pairs of points and pairs of lines of the two formal
series under study, allowing us to “destroy” some points by sending them onto
the diagonal�. Then we choose the matching which minimizes the sum of
these distances. Thus we obtain a distance between formal series which takes
into account multiplicities and is small when formal series are similar.

In Fig. 11 we show how it works on two formal seriesr + a + b + c and
r ′+a′+c′ obtained as images of two size functions by the mapαρ of Theorem 1,
for a suitableρ. The set of discontinuity points of the two size functions are
represented by continuous and dotted lines respectively. The arrows show the
action of the considered mapsf andg. HereDf = {a, c}, Ĩ1 − Df = {b} and
J̃1 = {r}. The total amount of the displayed “movements” equals the distance
between the two formal series (and corresponding size functions).
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