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� Introduction

Comparing shapes of objects is a major task in Computer Vision�

Size Theory is a new mathematical tool for dealing with this task�

and it is now the subject of experimentation �cf�� e�g�� ���� ���� �	�� �
��

���� and ������ In this paper we shall give the main de
nitions and

results in this theory� and show its main properties by displaying

some examples� For the sake of conciseness we shall omit the proofs
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of our results� they can be found in ���� ���� ����� ���� and ��	�� An

extension of the theory appears in ���� and �����

The fundamental ideas in Size Theory are the concepts of nat�

ural size distance and size function� Both of them provide a way of

measuring the extent to which the shapes of two compact topolog�

ical spaces resemble each other� They are modular concepts� in the

sense that they depend on the arbitrary choice of particular func�

tions �called measuring functions� which can be set in order to obtain

invariance under those transformations that are required to preserve

shape in each speci
c context� Furthermore these concepts are in�

trinsically related� We underline that Size Theory can be applied for

studying all data that can be seen as a compact topological space�

not only images �even though such a theory was originally conceived

for use in Computer Vision��

After giving some mathematical results on natural size distances

and size functions we shall deal with the problem of computing the

latter� Next� as far as comparison of images is concerned� we shall

exhibit some examples showing the properties of invariance� noise�

resistance and occlusion�resistance of size functions �with respect to

the choice of suitable measuring functions�� Finally� we shall give an

algebraic representation of size functions in terms of formal series

and discuss its usefulness�
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� Natural Size Distances� Some De�nitions and

Results

In this section� we shall consider the set Size of all pairs �M� ��

�called size pairs� where M is a compact topological space and � is

a continuous function from M to the set IR of real numbers �called

measuring function�� In some cases� in order to obtain particular

results� we shall assume thatM is a su�ciently regular submanifold

of some Euclidean space�

Our goal is to de
ne a distance that allows us to measure the

extent to which the shapes of M and N are similar to each other�

We shall do so with respect to the continuous functions � and ��

which have been chosen arbitrarily�

De�nition �� Let �M� ��� �N � �� be two size pairs and letH �M�N �

be the set of homeomorphisms fromM onto N � Let us consider the

function � that takes each homeomorphism f � H �M�N � to the

real number ��f� � maxP�M j��P �� � �f�P ��j� We shall call � the

natural size measure in H �M�N � with respect to the measuring

functions � and ��

In plain words � measures how much f changes the values taken

by the measuring function�

Proposition �� The function � � Size�Size � IR�f��g� de�ned

by setting � ��M� ��� �N � ��� � inff�H�M�N ���f� if H �M�N � �� �

and �� otherwise� is a pseudometric on Size�
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De�nition �� The metric � induced by the pseudometric � will

be called the natural size distance in Size� 	� where 	 denotes the

equivalence relation de
ned by setting �M� �� 	 �N � �� if and only

if � ��M� ��� �N � ��� � �� The equivalence class of �M� �� will be

denoted by the symbol ��M� ����

More details on the passage from a pseudometric to a metric can

be found in ���� We have used the term �natural� because our manner

of de
ning a pseudometric between compact topological spaces is a

particular case of a more general method �cf� �����

Before proceeding we shall give a trivial example of natural size

distance�

Example �� In IR� consider the unit sphere S with equation x� �

y� � z� � � and the ellipsoid E with equation x� � 	y� � �z� � ��

On S and E consider respectively the measuring functions � and �

that take every point of S and E to the Gaussian curvature of the

given manifold at that point� We have that � ���S� ���� ��E � ���� �

�
� In fact ��S� � f�g while ��E� � fr � IR � 	�� 
 r 
 ��g� and

therefore for every f � H �S� E� we have ��f� � �
�

De�nition �� We shall call optimal in H �M�N � every homeomor�

phism f � H �M�N � such that � ���M� ���� ��N � ���� � ��f��

We point out that an optimal homeomorphism does not generally

exist� even in cases whenM andN are regular� compact and without

boundary manifolds and �� � are regular measuring functions �cf�

������ However� if we assume such hypotheses �in particular that M

	



and N are manifolds of class C� and �� � are measuring functions

of class C�� we have the following theorem�

Theorem �� Let us assume that an optimal homeomorphism exists

in H �M�N �� Then the natural size distance between ��M� ��� and

��N � ��� is the Euclidean distance between a critical value of � and

a critical value of ��

The above theorem no longer holds if we drop the hypothesis of

existence of an optimal homeomorphism �cf� ������ Such a theorem

makes the computation of natural size distances less di�cult�

A survey on natural size distances can be found in �����

� Size Functions� De�nitions and Properties

In general� natural size distances are di�cult to compute� as they in�

volve the study of all homeomorphisms between two compact topo�

logical spaces� On the other hand� they can compare compact topo�

logical spaces with respect to given measuring functions in a very

powerful manner� and quantify the di�erence� Thus we need a tool

to easily obtain information on natural size distances without com�

puting them directly� the concept of size function is such a tool� In

addition� size functions are useful for comparison of shapes even in�

dependently of natural size distances� In the following de
nitions�

we shall assume a size pair �M� �� is given�

De�nition �� For every y � IR we de
ne a relation ����y in M

by setting P ����y Q �P�Q � M� if and only if either P � Q or






there exists a continuous path � � ��� �� �M such that � ��� � P �

� ��� � Q and � �� �	�� 
 y for every 	 � ��� ��� In this second

case we shall say that P and Q are �� 
 y�� homotopic and call � a

�� 
 y��homotopy from P to Q�

Remark �� It is easy to show that ����y is an equivalence relation

on M for every y � IR�

De�nition �� For every x � IR we shall denote by Mh� 
 xi the

set fP � M � � �P � 
 xg�

De�nition �� Consider the function 
�M��� � IR � IR � IN � f�g

de
ned by setting 
�M��� �x� y� equal to the �
nite or in
nite� number

of equivalence classes in which Mh� 
 xi is divided by the equiva�

lence relation ����y� Such a function will be called the size function

associated with the size pair �M� ���

Remark �� When x 
 y size functions have a simple geometric in�

terpretation� in such a case 
�M��� �x� y� is equal to the number of

arcwise connected components ofMh� 
 yi containing at least one

point of Mh� 
 xi�

Now we shall give some simple examples of size functions�

Example �� In Fig� � we show the size function of an ellipse E with re�

spect to the measuring function that takes each point to its distance

from the barycentre of E � In every highlighted region the constant

value taken by the size function is given by the number displayed�
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This size function has been computed by means of a computer and

therefore some errors due to the necessary discretization appear in

the form of small triangles near the diagonal�

Remark �� We shall often display only the part of a size function

inside a square �xmin� xmax� � �ymin� ymax� with xmin � ymin

and xmax � ymax� When this is the case the values xmin� ymin�

xmax� ymax will be shown in each 
gure�

Fig� �� Size function of an ellipse with respect to the distance from the barycentre�

Example �� Consider the size pair
�
E�a�b�c�� �

�
where E�a�b�c� is the

ellipsoid with equation ax� � by� � cz� � � in IR� �a� b� c � �� and

� is the ��dimensional measuring function that takes each point of

E�a�b�c� to the Gaussian curvature of the ellipsoid at that point� In
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Fig� � we show the function 
�E�a�b�c���� � IR� IR� IN�f�g� in every

highlighted region the constant value taken by the size function is

given for the case a � b � c�

Fig� �� Size function of the ellipsoid with equation ax�
 by�
 cz� � � �c � b � a � ��
with respect to the Gaussian curvature�

Example �� Consider the size pair �M� �� where M is the curve

depicted in Fig� �� left� and � is the ��dimensional measuring function

that takes each point ofM to its distance from the barycentre ofM�

In Fig� �� right� we show the function 
�M��� � IR� IR� IN�f�g� in

every highlighted region the constant value taken by the size function

is given�

��� Main Properties of the Size Function ��M���

�� 
�M����x� y� is non�decreasing in x and non�increasing in y�

�� 
�M����x� y� is 
nite for x � y �under the hypothesis that M is

not only compact but also locally arcwise connected��
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Fig� �� Size function of the curve depicted on the left with respect to the distance from
the barycentre used as measuring function�

�� 
�M��� �x� y� � � for every x � minP�M � �P ��

	� 
�M��� �x� y� is equal to the number of the arcwise connected com�

ponents of M for every x� y � maxP�M � �P ��


� 
�M��� �x� y� � � for every x� y such that there exists a non�

isolated point Q � M for which x � � �Q� and y � � �Q��

We complete this summary of properties of size functions by

giving a useful theorem� which helps us in localizing the disconti�

nuity points of the size function 
�M��� in cases when M is a closed

�i�e� compact and without boundary� submanifold of some Euclidean

space�

Theorem �� Let us assume that M is C� and the measuring func	

tion � is C�� In such a case� if �x� y� is a discontinuity point for the

size function 
�M��� and x � y then either x or y or both are critical

values for ��
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This theorem can be checked with the size function of Example ��

where if �x� y� is a discontinuity point and x � y then either x is a

minimum value or y is a saddle value of the measuring function or

both� Analogously� in Examples � and 	 if �x� y� is a discontinuity

point and x � y then either x is a minimum value or y is a maximum

value of the measuring function or both�

For further details about size functions �both from the applica�

tional and theoretical point of view� we refer the reader to ���� �����

����� ���� and �����

��� Invariance Under Transformation Groups

The usefulness of size functions in comparing shapes is mostly given

by the fact that they inherit invariance� under certain classes of

transformations� from the measuring functions� In plain words� if

we need to consider two planar shapes equivalent when they are

isometric� it is su�cient to take a function invariant under isometry

as a measuring function� For example� we can use the distance from

the barycentre of the �object�� If we are interested in planar a�ne

invariance we can compute the measuring function at a point P by

taking� for instance� the ratio between the smallest area of an ellipse

containing the planar shape M and the smallest area of an ellipse

containing M and with centre at P � and so on for invariance under

other transformations� Obviously there is usually an in
nite number

of suitable choices�

It is important to point out that Size Theory is a modular theory�

we need only change the measuring function in order to obtain the
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invariance we require� In Fig� 	 we o�er an example of invariance of

size functions under isometry� obtained by using the distance from

the barycentre as a measuring function�

Fig� �� Two isometric images have the same size function with respect to the distance
from the barycentre�

��� Comparing Size Functions

There are many ways to compare two size functions 
�M��� and 
�N ���

corresponding to di�erent shapes� Perhaps the simplest one is to

compute the integral of j
�M��� � 
�N ���j on a given domain� i�e� to

consider the L��norm of the function 
�M��� � 
�N ���� but obviously

an Lp�norm with p �� � can also be used� Another way is to consider

the set D of the discontinuity points �including the diagonal y � x��

for each size function� Then we can de
ne a pseudodistance between
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�M��� and 
�N ��� as the Hausdor� distance between D
�

�M���

�
and

D
�

�N ���

�
�

It is clear that many choices are possible� The important thing to

note is that Size Theory changes the problem of comparing shapes

into the mathematical problem of comparing functions from the real

plane to the extended natural numbers� i�e� a much simpler task�

��� The Link between Size Functions and Natural Size

Distances

The key fact in Size Theory is that natural size distances and size

functions are strongly related� This allows us to obtain information

about the former �powerful but intrinsically di�cult to compute� by

studying the latter �easily computable�� This statement is a conse�

quence of the following two theorems�

Theorem �� If � ���M� ��� � ��N � ���� � 
 then for every x� y � IR

and every h � 
 the following statement holds�


�M��� �x� h� y � h� 
 
�N ��� �x� y� 
 
�M��� �x � h� y � h� �

Theorem �� Let us assume that there exist �x� �y� �x� �y � IR for which


�N ��� ��x� �y� � 
�M��� ��x� �y�� Then it holds that

� ���M� ��� � ��N � ���� � minf�x� �x� �y � �yg �

We point out that the latter theorem allows us to obtain a lower

bound for the natural size distance from knowledge of the size func�

tions at two points� Since the direct computation of

� ���M� ��� � ��N � ���� requires the study of all homeomorphisms from
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M to N � it is clear that this new method is very useful� Moreover�

as we shall see in the following section� size functions are not di�cult

to compute�

It is important to point out that Theorem 	 gives a lower bound�

not an upper bound for the natural size distance�

��� Noise	resistance

Size functions have a good resistance to noise� as has been veri
ed

by means of experimentation �cf�� e�g�� �
� and ������ The mathemat�

ical reason for this is the above Theorem �� which says that small

changes in shape by means of homeomorphisms give small changes

in size functions� Indeed� even when we perform a transformation

that changes the shape non�homeomorphically� we often observe that

some discontinuities of the size function are preserved �in the sense

that they are moved slightly�� Hence we can use Size Theory even

when the topological type of the shape is changed� In order to clarify

these facts we shall display two examples� which show the e�ect on

the size function of a perturbation of the shape� The 
rst pertur�

bation does not change the topology of the shape �see Fig� 
�� the

second one does �see Fig� ��� We can see that the �main� disconti�

nuities appearing in Fig� � are preserved in Fig� 
 and Fig� �� in the

sense that they appear just slightly shifted� hence such discontinu�

ities give noise�resistant information about the shape�
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Fig� �� Size function of a deformed ellipse with respect to the distance from the barycen�
tre�

Fig� �� An ellipse with some added noise and its size function with respect to the
distance from the barycentre�

�	



��� What About Occlusions


Here we want to highlight the capacity of Size Theory to successfully

address the problem of occlusion� The key fact has already been

pointed out in the previous section� when we perturb an image �now

by adding an occlusion� we often observe that some discontinuities

of the corresponding size function are preserved �in the sense that

they are moved slightly�� Hence we can also use size functions in

presence of occlusions� Obviously it is important to choose a suitable

measuring function� i�e� a function capable� in some sense� of not

seeing the occlusion� Here we can give a clarifying example� In Fig� �

�a� b� c� a wrench is displayed both without and with occlusions� Now�

for each image M let us consider the subset of IR� � IR� whose

elements are the pairs �P�Q� with P�Q � M� i�e� M�M� As a

measuring function onM�M we shall use the map that takes each

pair �P�Q� to the number �kP � Qk� In Fig� � the size functions

corresponding in this manner to the images shown in Fig� � are given

�the images really used in computation are the small ones��

We can see that the changes in the size functions depending on

the occlusions leave some discontinuities almost unmodi
ed �these

are highlighted in the 
gure by using bold lines�� such �discontinuity

structures� can be considered the �
ngerprint� of the wrench� The

size function of the nutcracker allows a comparison� Naturally� this

does not mean that every size function is resistant to every type of

occlusion� but it is clear that no theory can exhibit good behaviour

in presence of arbitrarily large occlusions�

�




The aim of this section is to point out that even though Size The�

ory uses a global approach to the problem of comparison of shapes�

it preserves local information by distributing it in the real plane�

thereby also allowing successful management of uncertainty due to

presence of occlusions in the image�

Fig� �� Some images displaying a wrench� a partially occluded wrench and a nutcracker�
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Fig� 	� Size functions corresponding to the images shown in Fig� 
 �see text��
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��� Computation of Size Functions

In this section we shall give a technique to compute the function


�M��� �x� y� �a di�erent method can be found in ����� From now on

we shall assume thatM is a compact and locally arcwise connected

subset of IRm and that the measuring function � is the restriction to

M of a continuous function �� � IRm � IR� In the following we shall

denote by ���� the modulus of continuity of the measuring function ��

�that is ���� � sup fj ���P �� ���Q�j � P�Q � IRm� kP �Qk � �g for

every � � ��� Our purpose is that of �approximating� the considered

setM and the corresponding function 
�M��� �x� y� with a 
nite set P

and a function 
approx respectively� The function 
approx will be related

to the function 
�M��� �x� y� but will be much simpler to compute�

From now on � will be a positive real number�

De�nition �� Let P � fP�� P�� � � � � Phg be a 
nite set of points of

IRm and let us denote by B� the set of the h� � open balls B�Pi� ��

of radius � with centre at the points of P� Let us assume that B�

veri
es the following properties�

�� M is contained in �h
i��B�Pi� ��

�� for every index i� � 
 i 
 h� B�Pi� ��
M is a non�empty arcwise

connected set�

We shall call B� a �	covering of M� The set P will be called the

set of the centres of B� � We shall denote by � the following relation

on the set P� Pi � Pj if �B�Pi� �� �B�Pj� ��� 
 M is an arcwise

connected set�

��



Remark �� Obviously � is a re�exive and symmetric relation�

In the rest of this section we shall assume that a ��covering B� of

M is given and denote by P the set fP�� P�� � � � � Phg of the centres

of B��

De�nition �� For every x�y � IR let us denote by Ph �� 
 xi the

set of the elements of P at which the function �� takes a value not

greater than x and by � ���y the equivalence relation on P de
ned as

follows� if Pa� Pb � P we write Pa � ���y Pb if either Pa � Pb or there

exists a 
nite sequence
�
Ps�i�

�
i�������r

of points in Ph �� 
 yi such that

Ps��� � Pa� Ps�r� � Pb and for every index i with � 
 i 
 r � � we

have Ps�i� � Ps�i	��� This equivalence relation will be called � �� 
 y��

equivalence with respect to B�� We shall denote by 
approx�x� y� the

number of equivalence classes in which Ph �� 
 xi is divided by � �� 


y��equivalence�

Now we can give two results that allow us to compute size func�

tions easily�

Theorem �� For every x� y � IR and every �� � ���� with

x � �� 
 y � �� we have 
approx�x � ��� y � ��� 
 
�M����x� y� 



approx�x � ��� y � ��� and 
�M����x� ��� y � ��� 
 
approx�x� y� 



�M����x� ��� y � ����

Corollary �� Let us assume that �x� �y� b� c � IR with b� c � � and

�� � ���� with �x � �� 
 �y � ��� If the function 
approx takes the

same value v at the points ��x � ��� �y � ��� and ��x � b � ��� �y � c �

��



��� then we have 
�M����x� y� � v for every �x� y� in the rectangle
n
�x� y� � IR� � �x� b 
 x 
 �x� �y 
 y 
 �y � c

o
�

Remark 
� Corollary � leads naturally to a procedure for comput�

ing 
�M���� We can arbitrarily choose a real number �� � ���� and

compute the function 
approx in the set S�� �
n
�x� y� � IR� � x � i���

y � j��� i� j � ZZ� j � ig � Every time that we 
nd the same value

v at two points �i��� j��� and ��i� p���� �j � q���� of S�� with p� q �

�� we can say that in the closed rectangle de
ned by the vertices

��i� ����� �j � ����� and ��i� p� ����� �j � q � ����� the value of


�M��� is v� Obviously� if the shape of M is complicated and the

size function 
�M��� has many discontinuity points in a small region�

in order to usefully apply our procedure we shall have to choose a

��covering constructed by using a very small � and a value �� not far

away from �����

It is interesting to point out that the approximation of M has

some in�uence on knowledge of the size function 
�M��� �recall that

every size function takes a discrete value at each point of the real

plane�� What happens is that our procedure yields regions in which


�M��� is perfectly computed �i�e� without errors� and regions in which

we have only lower and upper bounds for the size function� In other

words� approximation produces uncertainty as to the exact location

of the discontinuities of 
�M���� Such an uncertainty increases with

the parameter � and� when � becomes too large �i�e� the approxima�

tion ofM is bad�� uncertainty becomes in
nite and we cannot learn

anything about the size function�

��



Methods for making the computation of size functions faster can

be found in �����

��� Algebraic Representation of Size Functions

We have already pointed out in the sections on noise and occlusion

resistance� as well as in the section on comparing size functions� that

discontinuities of size functions play a considerable role in the recog�

nition process� Indeed� it turns out that discontinuity points convey

almost all the considerable information about the object under study

contained in a size function� The key idea is then that of capturing

the information concerning discontinuities of size functions in a more

portable object� This can be achieved because it can be proven �cf�

��	�� that ifM is a 
nite union of compact and locally arcwise con�

nected subsets of some Euclidean space� then the discontinuity points

of a size function belonging to the region S� � f�x� y� � IR� � x � yg

divide the part of the domain of a size function which lies above the

diagonal f�x� y� � IR� � x � yg into overlapping triangular regions

with a side on the diagonal� Some triangles may have in
nite area�

As an example� it can be seen that in the size function of Fig� �

there are three overlapping triangles� One is of in
nite area with an

unbounded side on the diagonal and another unbounded side on the

line x � a� Another triangle is of 
nite area and has one side on the

diagonal and the opposite vertex at the point �a� d�� and the last one

is again of 
nite area and has one side on the diagonal and opposite

vertex at the point �b� c��

��



In general� we shall identify each triangle of 
nite area by a point

and each triangle of in
nite area by a vertical line� More precisely�

we call cornerpoint any point p � �x� y�� with x � y� satisfying the

following property� if we denote by ���	 the number


�M����x� �� y � ��� 
�M����x� �� y � ���


�M����x� �� y � �� � 
�M����x� �� y � ���

then ��p�
def
� minf���	 � � � �� � � �� x � � � y � �g � � must hold�

We shall call ��p� the multiplicity of p�

In Fig� � the only cornerpoints for the size function are the points

with coordinates �a� d� and �b� c� and both have multiplicity equal

to �� These points can be used to identify the triangles of 
nite area

in which discontinuities of the size function divide the region above

the diagonal�

Analogously� we call cornerline any vertical line r � x � k �k � IR�

for which we have

��r�
def
� min

�
��k	��y

�M����k � �� y�� 
�M����k � �� y� � ��

We shall call ��r� the multiplicity of r�

In Fig� � the only cornerline for the size function is the line with

equation x � a and it has multiplicity equal to �� This line can be

used to identify the unbounded triangle above the diagonal� Let us

point out that it is easy to exhibit examples of size functions with

cornerpoints and cornerlines with multiplicities greater than ��

The importance of cornerpoints and cornerlines of size functions

lies in the fact that the value of a size function at almost every point

��



above the diagonal is equal to the sum of the multiplicities of cor�

nerpoints and cornerlines identifying triangles containing that point�

Therefore� a size function can be represented by the collection of all

its cornerlines and cornerpoints together with their multiplicities� In

other words� a size function can be given by a formal series of points

and lines of the plane�

This representation of size functions makes it possible to reduce

the complexity necessary to work with size functions� Moreover� it

allows all problems concerning size functions to be translated into

problems regarding formal series� i�e� into algebraic problems �cf��

e�g�� ��
���
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