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Some epistemological assumptions
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Assumption 1: Data are processed by observers

Data have no meaning without an observer to interpret them.

An observer is an agent that transforms data while preserving their
symmetries.
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Assumption 2: Observers are variables

Data interpretation strongly depends on the chosen observer.
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Assumption 3: Observers are important

We are rarely directly interested in the data, but rather in how
observers react to their presence.

Consequently, we should focus more on the properties of the observers
than on the properties of the data.
7 of 74



Assumption 4: There is no structure in the data

Generally speaking, data lack inherent structure. Instead, the
structure of data reflects the observer’s own structure.

The shape is not in the data but in the eyes of the observer.
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How can we translate these ideas into mathematics?
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Perception spaces and GENEOs
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What is a GENEO?

• A Group Equivariant Non-Expansive Operator (GENEO) is a
mathematical tool used to approximate observers that act on data.

• The theory of GENEOs is based on the idea that the geometric
characteristics of observers significantly influence the interpretation
of data.

• In this talk, we will explore the core properties of GENEOs,
examine their role in machine learning, and discuss their promising
applications in explainable artificial intelligence.
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Perception spaces

Recall that a pseudometric is a distance function d satisfying
nonnegativity, symmetry, and the triangle inequality, but not
necessarily the property d(x1,x2) = 0 =⇒ x1 = x2.

Definition

Let us consider:

1. A nonempty set Φ endowed with a pseudometric DΦ .

2. A group (G ,◦) acting on Φ on the left, denoted by ∗. We assume
the action is by isometries, i.e., for every ϕ1,ϕ2 ∈ Φ and every
g ∈ G , DΦ(g ∗ϕ1,g ∗ϕ2) = DΦ(ϕ1,ϕ2).

We call (Φ ,G ) a perception space.
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Perception spaces

The set Φ represents the data we may obtain from our measuring
tools (functions, graphs, point clouds, ...). The group G represents
the possible transformations of the data that the observer may be
interested in.

Some examples:
• Φ = the set of grey-level images viewed as functions from R2

to [0,1], endowed with the sup-norm distance;
G = the group of isometries of the real plane.

• Φ = the set of all subgraphs of a given graph Γ, endowed with
the distance diso(Γ1,Γ2) = 0 if Γ1 ≡ Γ2 and 1 otherwise;

G = the group of graph isomorphisms of Γ.
• Φ = the set of nonempty compact subsets of the real plane,

endowed with the Hausdorff distance;
G = the group of isometries of the real plane.
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A pseudometric on G , induced by DΦ

If a perception space (Φ,G ) is given, then G can be endowed with the
pseudometric DG defined by setting
DG (g1,g2) := supϕ∈Φ DΦ(g1 ∗ϕ,g2 ∗ϕ) for any g1,g2 ∈ G .

Proposition

Let (Φ,G ) be a perception space. The followings hold.

a) G is a topological group.

b) The action of G on Φ is continuous.
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GEOs and GENEOs

Definition

• Let (Φ ,G ), (Ψ ,K ) be two perception spaces. If a map F : Φ →Ψ

and a group homomorphism T : G → K are given, such that
F (g ∗ϕ) = T (g)∗F (ϕ) for every ϕ ∈ Φ , g ∈ G , we say that
(F ,T ) is an (extended) group equivariant operator (GEO).

• If F is non-expansive (i.e., DΨ (F (ϕ1),F (ϕ2))≤ DΦ(ϕ1,ϕ2) for
every ϕ1,ϕ2 ∈ Φ), we say that (F ,T ) is an (extended) group
equivariant non-expansive operator (GENEO).

Remark

Let (F ,T ) : (Φ,G )→ (Ψ,K ) be a GEO and assume that F is
surjective. If DΨ (F (ϕ1),F (ϕ2))≤ DΦ(ϕ1,ϕ2) for every ϕ1,ϕ2 ∈ Φ ,
then DK (T (g1),T (g2))≤ DG (g1,g2) for every g1,g2 ∈ G .
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GENEO Example: Image Blurring

I = the collection of all color images, viewed as Cc

(
R2, [0,1]3

)
,

endowed with the max-norm distance;
• F : I → I , F (ϕ) = ϕ ∗k, where k is rotationally symmetric and
∥k∥1 = 1;

• T = id : Isom(R2)→ Isom(R2).

Then (F ,T ) is a GENEO.

18 of 74



GENEO Example: Computing Convex Hulls

S = the collection of all finite nonempty subsets of the real plane;
P = the collection of all polyhedra in the real plane.
• F : S → P, F (S) = convex hull of S ;
• T = id : Isom(R2)→ Isom(R2).

Then (F ,T ) is a GENEO.
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GENEO Example: Computing Persistence Diagrams

DGM = the collection of all persistence diagrams of real-valued
continuous functions defined on a topological space X , where DGM is
endowed with the bottleneck distance;

• F : Cc (X ,R)→ DGM, F (ϕ) = Dgmk(ϕ);

• T : Homeo(X )→{idDGM} is the trivial homomorphism.

Then (F ,T ) is a GENEO.
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GENEO Example: Computing Persistence Diagrams

• Equivariance of (F ,T ) = invariance of persistence diagrams under
reparameterization of the domain.

• Non-expansiveness of (F ,T ) = stability of persistence diagrams.
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Why are GENEOs interesting?

• GENEOs rest on a rigorous topological/geometric framework
(in what follows we outline several results).

• GENEOs encode prior knowledge about the chosen observer.

• The non-expansiveness property of GENEOs imposes a strong
constraint that enables meaningful data simplification.

• GENEOs enable a compositional approach to deep learning.

• Analyzing the geometry of the observer space (as represented
by GENEOs) is often more informative than analyzing the
geometry of the data space.
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The main point in the approach based on GENEOs

In perspective, we are looking for a good compositional theory for
building efficient and transparent networks of GENEOs.
Some preliminary experiments suggest that replacing neurons with
GENEOs could make some applications in deep learning more
transparent and interpretable and speed up the learning process.
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Some research projects concerning GENEOs (I)
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Some research projects concerning GENEOs (II)

https://pandora-heu.eu/consortium/
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Some research projects concerning GENEOs (III)

The GENEOnet webservice represents the outcome of a partnership
with Italian Pharmaceutical Company Dompé Farmaceutici S.p.A.:
https://geneonet.exscalate.eu/
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Compactness of the space of GENEOs

From now on, let F all
T denote the set of all GENEOs (F ,T ) from a

perception space (Φ,G ) to a perception space (Ψ,K ), with fixed
homomorphism T . We equip F all

T with the following distance:

DGENEO((F ,T ),(F ′,T )) := sup
ϕ∈Φ

DΨ

(
F (ϕ),F ′(ϕ)

)
,

where DΨ is the metric chosen on Ψ.

Theorem

If (Φ,DΦ), (Ψ,DΨ) are compact, then the space (F all
T ,DGENEO) is

compact.
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Compactness of the space of GENEOs

The compactness of the space of GENEOs is also an important
property from an applied standpoint. It implies that the space
of GENEOs can be approximated arbitrarily well by a finite set
of GENEOs, and that every continuous loss function defined
on this space attains an absolute minimum (i.e., there exists
an optimal GENEO with respect to the loss function).
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Convexity of the space of GENEOs

Now assume that

• Φ,Ψ are normed real vector spaces, with distances DΦ, DΨ

induced by the norms ∥ · ∥Φ, ∥ · ∥Ψ (i.e., DΦ(ϕ,ϕ
′) = ∥ϕ −ϕ ′∥Φ

and DΨ(ψ,ψ ′) = ∥ψ −ψ ′∥Φ);
• the group actions are linear, i.e.,
g ∗ (aϕ +bϕ ′) = a(g ∗ϕ)+b(g ∗ϕ ′),
k ∗ (aψ +bψ ′) = a(k ∗ψ)+b(k ∗ψ ′),
for all a,b ∈ R, g ∈ G , k ∈ K , ϕ,ϕ ′ ∈ Φ, ψ,ψ ′ ∈Ψ.

Let (F1,T ),(F2,T ), . . . ,(Fn,T ) be GENEOs from (Φ,G ) to (Ψ,K ).
If (a1, . . . ,an) ∈ Rn and ∑

n
i=1 |ai | ≤ 1, define

FΣ(ϕ) :=
n

∑
i=1

aiFi (ϕ).
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Convexity of the space of GENEOs

Proposition

(FΣ,T ) is a GENEO from (Φ,G ) to (Ψ,K ).

Corollary

The space F all
T is convex.
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Two key observations (1)

• While the space of data is often non-convex (and hence averaging
data does not make sense), the assumption of convexity of Ψ
implies the convexity of the space of observers and allows us to
consider the “average of observers”.
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Two key observations (2)

• Our main goal is to develop a good geometric and compositional
theory to approximate an ideal observer. In our model, “to
approximate an observer” means to look for a GENEO F that
minimizes a suitable “cost function” c(F ). The cost function
quantifies the error that is committed by taking the GENEO F
instead of the ideal observer. Since the space of GENEOs is
compact and convex (under the assumption that the data spaces
are compact and convex), if the cost function c(F ) is strictly
convex we have that there is one and only one GENEO that best
approximates the ideal observer.
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The functional case of GENEOs

A particularly important case of GENEO is the one in which the
perception spaces involved consist of sets of data expressed as
functions with values in R or Rn.

In the remainder of this talk we shall restrict our attention to
the case of data expressed as real-valued functions.

In every perception space (Φ,G ) under consideration, Φ will be a set
of R-valued functions defined on a domain X (denoted by Dom(Φ)
and endowed with the metric DΦ(ϕ,ϕ

′) = ∥ϕ −ϕ ′∥∞).

The group G will be a group of permutations of X such that, if ϕ ∈Φ
and g ∈ G , then ϕ ◦g−1 ∈Φ as well, and the left action of G on Φ will
be given by g ∗ϕ = ϕ ◦g−1. We observe that this action is isometric.
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Elementary methods to build GENEOs

In order to use our model profitably, we need constructive methods to
produce GENEOs in the presence of pre-established data and
equivariance groups.

Without going into technical details, we simply observe that, under
reasonable assumptions,

• the composition of GENEOs is still a GENEO;

• the maximum and the minimum of GENEOs are still GENEOs;

• the translation of a GENEO is still a GENEO;

• the convex combination of GENEOs is still a GENEO.

(But there is much more than that. . . )
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Generalized permutant measures

Let us consider the set Φ = RX ∼= Rn of all functions from a finite set
X = {x1, . . . ,xn} to R, and a subgroup G of the group Aut(X ) of all
bijections from X to X . Similarly, let us consider the set
Ψ =RY ∼=Rm of all functions from a finite set Y = {y1, . . . ,ym} to R,
and a subgroup K of the group Aut(Y ) of all bijections from Y to Y .
Fix a homomorphism T : G → K .

Definition

A finite signed measure µ on the power set of XY is called a
(generalized) T -permutant measure if each subset H of XY is
measurable and µ({h}) = µ(

{
ghT (g−1)

}
) for every g ∈ G and every

h ∈ XY .
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An example of permutant measure

Let us consider the set X of the vertices of a cube in R3, and the
group G of the orientation-preserving isometries of R3 that take X to
X . Set Y = X , K = G and T = idG . Let π1,π2,π3 be the three
planes that contain the center of mass of X and are parallel to a face
of the cube. Let hi : X → X be the orthogonal symmetry with respect
to πi , for i ∈ {1,2,3}. We can now define a permutant measure µ on
the power set of XY = XX by setting µ({h1}) = µ({h2}) = µ({h3})
= c , where c is a positive real number, and µ({h}) = 0 for any
h ∈ XY with h /∈ {h1,h2,h3}.
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Representation Theorem for linear GENEOs

The following theorem explains the importance of the concept of a
permutant measure.

Theorem (Representation Theorem for linear GENEOs)

If T (G )⊆ K acts transitively on the finite set Y and F is a map from
RX to RY , then the pair (F ,T ) is a linear GENEO from (RX ,G ) to
(RY ,K ) if and only if there exists a generalized T-permutant measure
µ such that

F (ϕ) = ∑
h∈XY

ϕ ◦hµ(h)

for every ϕ ∈ RX , and

∑
h∈XY

|µ(h)| ≤ 1.
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Representation Theorem for linear GENEOs

For more details, please see:

• G. Bocchi, S. Botteghi, M. Brasini, P. Frosini, N. Quercioli, On the
finite representation of linear group equivariant operators via
permutant measures, Annals of Mathematics and Artificial
Intelligence, vol. 91 (2023), n. 4, 465 487.

• F. Conti, P. Frosini, N. Quercioli, An algebraic representation
theorem for linear GENEOs in Geometric Machine Learning,
arxiv.org/abs/2601.03910 (2026).
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GENEOs and TDA

We have already highlighted that the computation of persistence
diagrams can be formalized as a GENEO.

However, there are also other interesting connections between the
concept of GENEO and Topological Data Analysis.

In what follows, we will illustrate some of them.
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GENEOs restrict the invariance of TDA

The use of GENEOs allows us to restrict the invariance of TDA to
subgroups of the group HomeoΦ(X ) of all Φ-preserving
homeomorphisms of X . To show this, let us assume that a set F of
GENEOs from a perception space (Φ,G ) to a perception space
(Ψ,K ) is given, with respect to a fixed homomorphism T : G → K .
Let X denote the domain of the functions in Φ. Then, for every
degree k , we can define a new pseudometric DF ,Φ

match on Φ by

DF ,Φ
match(ϕ1,ϕ2) = sup

F∈F
dmatch

(
Dgmk(F (ϕ1)),Dgmk(F (ϕ2))

)
.

If ϕ ∈ Φ, then DF ,Φ
match(ϕ ◦g ,ϕ) = 0 for every g ∈ G , but, in general,

not for every g ∈ HomeoΦ(X ).

Since GENEOs are non-expansive, the pseudometric DF ,Φ
match is stable:

DF ,Φ
match(ϕ1,ϕ2)≤ ∥ϕ1−ϕ2∥∞.
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GENEOs restrict the invariance of TDA

If Φ is compact, the pseudometric DF ,Φ
match can be approximated

arbitrarily well by a finite subset of operators.

Proposition

Assume that Φ is compact. Let F be a nonempty set of GENEOs
(F ,T ) : (Φ,G )→ (Ψ,K ), where the homomorphism T : G → K is
fixed. For every ε > 0, there exists a finite subset F ∗ ⊂ F such that∣∣DF ∗,Φ

match (ϕ1,ϕ2)−DF ,Φ
match(ϕ1,ϕ2)

∣∣≤ ε

for every ϕ1,ϕ2 ∈ Φ.

The previous statement follows from the compactness theorem for the
space of GENEOs.
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GENEOs and biparameter persistent homology

Assume that ϕϕϕ = (ϕ1,ϕ2) and ψψψ = (ψ1,ψ2) belong to C 0(X ,R2).
For each (a,b) ∈]0,1[×R, let us define the map
Fa,b : C

0(X ,R2)→ C 0(X ,R) by setting

Fa,b(ϕϕϕ) = max

{
min{a,1−a}

a
(ϕ1−b),

min{a,1−a}
1−a

(ϕ2+b)

}
.

Interestingly, Fa,b is a GENEO.

For each degree k, we can consider the distance

Dmatch,k(ϕϕϕ,ψψψ) := sup
(a,b)∈]0,1[×R

dmatch(Dgmk(Fa,b(ϕϕϕ)),Dgmk(Fa,b(ψψψ))) .

It is called the two-dimensional matching distance.
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GENEOs and biparameter persistent homology

It is worth noting that, through the use of GENEOs, one can obtain
many different distances for biparametric persistence. For example, if
we are interested in distances based on one-parameter families of
GENEOs, we can define pseudometrics in biparametric TDA using

F̄t(ϕϕϕ) := (1− t)ϕ1+ tϕ2, t ∈ [0,1],
or

F̂t(ϕϕϕ) := (1− t)max(ϕ1,ϕ2)+ tmin(ϕ1,ϕ2), t ∈ [0,1],
or

F̃t(ϕϕϕ) :=
(
1
2 |ϕ1|t + 1

2 |ϕ2|t
)1
t , t ≥ 1.
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GENEOs and XAI

We can apply GENEOs to explainable AI.
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Collaborators in this research

• Filippo Bonchi (University of Pisa)

• Jacopo Joy Colombini (Scuola Normale Superiore, Pisa)

• Francesco Giannini (University of Pisa)

• Fosca Giannotti (Scuola Normale Superiore, Pisa)

• Roberto Pellungrini (Scuola Normale Superiore, Pisa)
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Basic idea

How can we mathematically and generally formalize the concept of an
explanation provided by an agent, viewed as an operator?

Informal idea: We say that the action of an agent A is explained by
another agent B from the perspective of an agent C if:

1. C perceives A and B as similar to each other;

2. C perceives B as less complex than A.

For example, we can consider two neural networks represented by two
GEOs, A and B. Note that a GEO C can take GEOs A and B as
inputs.
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An extended pseudometric for ALL GEOs

To proceed in this way, we need

• a pseudometric between GEOs that remains well-defined even
when the GEOs operate on different domains and produce outputs
in distinct codomains;

• a measure of complexity for GEOs.
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An extended pseudometric for ALL GEOs

Informally speaking, two GEOs are considered similar if there exist two
horizontal GENEOs that make this diagram “nearly commutative”,
with the same holding true in the opposite directions (⇄):

A cost function can quantify the non-commutativity of each diagram.
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An example

Suppose we have two neural networks for edge detection in images,
represented as GEOs.

The two neural networks are considered close if there exist two pairs of
horizontal GENEOs that make these diagrams “nearly commutative”.
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An extended pseudometric for ALL GEOs

To formalize our new pseudometric dE between GEOs, we consider
the category Sall whose objects are all perception spaces, and whose
morphisms (F ,T ) : (Φ ,G )→ (Φ ′,G ′) are GENEOs.
The morphisms in Sall are called translation GENEOs. These
morphisms describe the possible “logical correspondences” between
data represented by different perception spaces.

For example, a translation GENEO might transform high-resolution
images into low-resolution images.
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Definition of the explainability distance dE

We omit the technical details of the definition of the distance dE
between GEOs, and simply observe that the non-expansiveness of
translation GENEOs is a key ingredient in its definition.

When the distance between two GEOs is small, it indicates that they
act approximately in the same way on the data they process.
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Complexity of GEOs

Let us assume a set Γ = {(Fi ,Ti ) : (Φi ,Gi )→ (Ψi ,Ki )} of GEOs is
given. We will say that Γ is our internal library. For each GEO
(Fi ,Ti ) ∈ Γ we arbitrarily choose a value ci representing the
complexity comp((Fi ,Ti )) of (Fi ,Ti ).

The set Γ represents the elementary GEOs that we can use to build
other more complex GEOs.

Let us now consider the closure of Γ, i.e., the minimal set Γ̄ such that

• Γ̄⊇ Γ;

• Γ̄ is closed under composition (i.e., if (F ,T ),(F ′,T ′) ∈ Γ̄ are
composable, then (F ′,T ′)◦ (F ,T ) ∈ Γ̄);

• Γ̄ is closed under direct product (i.e., if the GEOs
(F ,T ),(F ′,T ′) ∈ Γ̄, then (F ,T )⊗ (F ′,T ′) ∈ Γ̄).
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Complexity of GEOs

Each composition and direct product is associated with a complexity.

The complexity of each GEO (F ,T ) ∈ Γ̄ is obtained by minimizing the
sum of the complexities of the GEOs (Fi ,Ti ) that we use and the
complexities of the compositions and direct products that we apply to
build (F ,T ).

Other forms of composition of GEOs can be added to the model.
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A mathematical concept of explanation

Now we can formalize our mathematical concept of explanation.
Specifically, we can define it as follows, after choosing the values ε

and k : “The action of an agent represented by a GEO (Fα ,Tα) is

explained at a level ε by the action of another agent of

complexity less than k represented by a GEO (Fβ ,Tβ ) ∈ Γ̄ when

dE ((Fα ,Tα),(Fβ ,Tβ ))≤ ε.”
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Explainable signal reconstruction

Reconstruction of sparse urban wireless signals via GENEOs
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Collaborators in this research

• Lorenzo Mario Amorosa (University of Bologna & WiLab-CNIT)

• Francesco Conti (Université Côte d’Azur)

• Yiqun Ge (Huawei Technologies Canada)

• Tayebeh Lotfi Mahyari (Huawei Technologies Canada)

• Nicola Quercioli (CINECA)

• Flavio Zabini (University of Bologna & WiLab-CNIT)
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Explainable signal reconstruction

We propose a GENEO-based approach for reconstructing radio
signals in urban wireless networks from extremely sparse samples.

We describe the signal to be reconstructed as a function
ϕ : R2 → [0,1]. The function ϕ represents the intensity of the signal
over a 2D grid, and is often referred to as ground truth or GT. We
also consider the function ψ : R2 → [0,1] taking each point p to the
reliability ψ(p) of the value ϕ(p) measured at the point
p = (x ,y) ∈ R2.

We aim at reconstructing ϕ by starting from a very poor sampling of
ϕ (tipically 2% or 3% of the GT), by using suitable families of
GENEOs.
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Explainable signal reconstruction

In our numerical experiments, we focus on reconstructing the signal
over a two-dimensional area. We generated signal measurements with
the Sionna RT ray-tracing simulator, using its built-in outdoor urban
scenarios for Munich and Paris. Each scenario is discretized into a
L×L grid of 1m2 pixels {pj}L

2

j=1.

61 of 74



Explainable signal reconstruction

Comparison of reconstruction methods on the Munich scenario, with
only M = 3% of signals known, whose Q = 15% of them is featuring
errors. (a) ground truth, (b) GENEO, (c) 1-KNN, and (d) U-Net.
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Explainable signal reconstruction

Comparison of reconstruction methods on the Paris scenario, with
only M = 3% of signals known, whose Q = 15% of them is featuring
errors. (a) ground truth, (b) GENEO, (c) 1-KNN, and (d) U-Net.
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Explainable signal reconstruction

MSE achieved by GENEO, U-Net, and 1-KNN for normalized signal
reconstruction in Munich scenario, where M ∈ {1,2,3} and Q = 15.
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Explainable signal reconstruction

MSE achieved by GENEO, U-Net, and 1-KNN for normalized signal
reconstruction in Munich scenario, where M ∈ {1,2,3} and Q = 30.
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Explainable signal reconstruction

1-Wasserstein achieved by GENEO, U-Net, and 1-KNN for normalized
signal reconstruction in Munich scenario, where M ∈ {1,2,3} and
Q = 15.
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Explainable signal reconstruction

1-Wasserstein achieved by GENEO, U-Net, and 1-KNN for normalized
signal reconstruction in Munich scenario, where M ∈ {1,2,3} and
Q = 30.
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Explainable signal reconstruction

MSE achieved by GENEO, U-Net, and 1-KNN for normalized signal
reconstruction in Paris scenario, where M ∈ {1,2,3} and Q = 15.
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Explainable signal reconstruction

MSE achieved by GENEO, U-Net, and 1-KNN for normalized signal
reconstruction in Paris scenario, where M ∈ {1,2,3} and Q = 30.
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Explainable signal reconstruction

1-Wasserstein achieved by GENEO, U-Net, and 1-KNN for normalized
signal reconstruction in Paris scenario, where M ∈ {1,2,3} and
Q = 15.
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Explainable signal reconstruction

1-Wasserstein achieved by GENEO, U-Net, and 1-KNN for normalized
signal reconstruction in Paris scenario, where M ∈ {1,2,3} and
Q = 30.
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Explainable signal reconstruction

MSE Performance: For Q = 15, GENEO (green) achieves the lowest
reconstruction error in terms of MSE across all sampling ratios M.
Under heavier corruption (Q=30), GENEO’s advantage persists: it
consistently outperforms 1-KNN and U-Net, with the largest margin
at M=1.

1-Wasserstein Performance: For Q = 15, GENEO again yields
substantially lower topological error, improving over 1-KNN and
U-Net across all M. For Q=30, GENEO maintains its lead in
topological fidelity, while both baselines exhibit worse performance in
terms of signal reconstruction.
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TAKE-AWAY MESSAGE

To sum up, GENEOs are novel mathematical tools initially developed
in TDA and useful for approximating equivariant neural networks
using a compositional approach. GENEOs are generally interpretable,
making them potentially beneficial for explainable artificial
intelligence (XAI).

73 of 74



74 of 74


	Some epistemological assumptions
	What is a GENEO?
	Some basics on the theory of GENEOs
	Building GENEOs
	GENEOs and Topological Data Analysis
	GENEOs and Explainable Artificial Intelligence (XAI)

