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Let us start with a puzzle

How can we balance six peripheral poles on a central one without
using glue or any tricks?
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Let us start with a puzzle

No tricks or unlikely solutions allowed!
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Let us start with a puzzle

The solution may not be trivial, but some ideas might help us find it:
• Balance is often linked to symmetry. Perhaps we should consider
symmetrical arrangements.

• Since we can’t use glue, we might prioritize positions where the
poles intersect, as the intersections create friction and, in turn,
stability.

• We should aim for structures with a low center of gravity. To
achieve this, it’s better to think of designs where the poles face
downward.
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Let us start with a puzzle

The configuration space of this type is much smaller than the space
of all possible positions. By exploring this space and creating different
configurations, we can eventually find one that works.
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What do we learn from the solution to this puzzle?

The puzzle we just examined teaches us that it is important to select
the space of ideas in which it is appropriate to operate. In practice,
this means learning to focus only on the information relevant to our
problem, without even considering the rest.

How can we mathematically formalize the concept
of an observer focusing on relevant information?

I will demonstrate a way to do this, which comes from Topological
Data Analysis. It is based on the theory of Group Equivariant
Non-Expansive Operators (GENEOs).

To begin, we will lay the groundwork by discussing the fundamental
axioms of this theory.
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Assumption 1: Data are often represented by functions

Many types of data can be represented as functions:

Images, electrocardiograms, computerized tomography scans, and
more.

Additionally:
• A point cloud C in Rn (where C is equivalent to the function
dC : Rn → R that expresses the distance from C ).

• A graph Γ (where Γ is equivalent to its adjacency matrix, which
can be interpreted as a function).
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Assumption 2: Data are processed by observers

Data have no meaning without an observer to interpret them.

An observer is an agent that transforms data while preserving their
symmetries.
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Assumption 3: Observers are variables

Data interpretation strongly depends on the chosen observer.
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Assumption 4: Observers are important

We are rarely directly interested in the data, but rather in how
observers react to their presence.

Consequently, we should focus more on the properties of the observers
than on the properties of the data.
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Assumption 5: There is no structure in the data

Generally speaking, data lack inherent structure. Instead, the
structure of data reflects the observer’s own structure.

The shape is not in the data but in the eyes of the observer.
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Let’s start by defining perception pairs

Let us consider

1. A collection Φ of functions from a set X to R;
2. A group G of bijections g : X → X such that ϕ ∈ Φ =⇒ ϕ ◦g ∈ Φ

for every ϕ ∈ Φ .

We say that (Φ ,G ) is a perception pair.

The choice of a perception pair states which data can be
considered as legitimate measurements (the functions in Φ)
and which group represents the admissible symmetries between
data (the group G ).
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Admissible and not admissible data
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What metric can we consider on Φ , X and G?

We endow Φ with the sup-norm metric:

DΦ(ϕ1,ϕ2) = supx∈X |ϕ1(x)−ϕ2(x)|.
NB: What other metric could we put on Φ , given that X is not
endowed with any measure or structure?

Then, we endow X with the pseudo-metric

DX (x1,x2) = supϕ∈Φ |ϕ(x1)−ϕ(x2)|.

We recall that a pseudo-metric is just a metric d without the property
d(x1,x2) = 0 =⇒ x1 = x2.

Finally, we put on G the pseudo-metric

DG (g1,g2) := supϕ∈Φ DΦ(ϕ ◦g1,ϕ ◦g2).
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Some mathematical properties

• Every function ϕ ∈ Φ is non-expansive and hence continuous.

• 1. If Φ is compact and X is complete, then X is compact.
2. If Φ is compact and G is complete, then G is compact.
3. If Φ is totally bounded, we can always assume that Φ , X , and G are

compact.

• G is a topological group for the topology induced by DG , and the
action of G on Φ by composition on the right is continuous.

• Any Φ-preserving bijection is an isometry.

A mathematical theory has been developed on this topic.
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GEOs and GENEOs

Let us assume that two perception pairs (Φ ,G ), (Ψ ,K ) are given.

Each pair (F : Φ →Ψ ,T : G → K ) s. t. T is a homomorphism and

F (ϕ ◦g) = F (ϕ)◦T (g)

for every ϕ ∈ Φ ,g ∈ G is called a Group Equivariant Operator (GEO).

If F is also non-expansive (i.e., DΨ (F (ϕ1),F (ϕ2))≤ DΦ (ϕ1,ϕ2) for

every ϕ1,ϕ2 ∈ Φ), then (F ,T ) is called a Group Equivariant
Non-Expansive Operator (GENEO).

GEOs and GENEOs represent observers in our setting.

20 of 55



An example of GENEO

When we blur an image by applying a convolution with a rotationally
symmetric kernel whose mass is less than 1 in L1, we are applying a
GENEO (here, we are considering the group of isometries).
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Another example of GENEO

When we compute the convex hull of a cloud of points, we are
applying a GENEO (here, we are considering the group of isometries).
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Good news for applications

A metric can be naturally defined on the space of GENEOs between
two fixed perception pairs (Φ ,G ) and (Ψ ,K ), given a fixed
homomorphism T between the transformation groups G and K .

The following result holds.

Theorem

• If the input and output spaces of admissible data are compact, then
the space of GENEOs is also compact. (NOT TRUE FOR GEOS!)

• If the output space of admissible data is convex, then the space of
GENEOs is also convex.
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Good news for applications

As a consequence,

• If the input and output spaces of admissible data can be
approximated with arbitrarily small error, then the space
of observers has the same property.

• If the output space of admissible data is convex, then the
space of observers is also convex.
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Three key observations (1)

• While the input space Φ of data is often non-convex (and hence
averaging data does not make sense), the assumption of convexity
of the output space Ψ implies the convexity of the space of
observers and allows us to consider the “average of observers”.
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Three key observations (2)

Our main goal is to develop a robust geometric and compositional
theory for approximating an ideal observer through GENEOs.
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Three key observations (3)

GENEOs are functions and can be taken as inputs of higher-level
GENEOs. Data obtained through measuring instruments can be seen
as GENEOs of level 0. Therefore, hierarchies of GENEOs can be
considered.
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Construction of GENEOs

How can we build GENEOs?

The space of GENEOs is closed under composition, computation of
minimum and maximum, translation, direct product, and convex
combination. (However there is much more than this...)

GENEOs are like LEGO bricks that can be combined together to form
more complex GENEOs.
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The main point in the approach based on GENEOs

In perspective, we are looking for a good compositional theory for
building efficient and transparent networks of GENEOs.
Some preliminary experiments suggest that replacing neurons with
GENEOs could make deep learning more transparent and
interpretable and speed up the learning process.
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What happens when we apply GENEOs to our data?

An example of use: comparison between real dice and fake dice.

(Experiment and computations by Giovanni Bocchi)
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What happens to data when we apply GENEOs?

We produced 10000 dice (a training set of size 7000 and a test set of
size 3000), then we applied PCA to the test set and to the test set
transformed by a suitable GENEO, optimized on the training set:

For each die the first two principal components are plotted. Blue
points are associated with real dice, while orange ones with fake
dice. The GENEO we use was built by a convex combination of 3
GENEOs defined by permutant measures.
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GENEOs and Machine Learning

More details about the theory of GENEOs are available in this paper:

vol. 1(9) (2019), 423–433.

https://rdcu.be/bP6HV
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GENEOs and Machine Learning

For more details about the use of GENEOs in Machine Learning, you
can have a look at this paper:

https://ems.press/journals/mag/articles/10389352
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Current research projects (I)
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Current research projects (II)

https://pandora-heu.eu/consortium/
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Current research projects (III)

The GENEOnet webservice represents the outcome of our partnership
with Italian Pharmaceutical Company Dompé Farmaceutici S.p.A.:
https://geneonet.exscalate.eu/
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Finding pockets in proteins by applying GENEOs

https://arxiv.org/ftp/arxiv/papers/2202/2202.00451.pdf

Updated results of this research have been presented at xAI-2024
(The 2nd World Conference on eXplainable Artificial Intelligence).
Giovanni Bocchi has produced the data shown in these slides.
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Finding pockets in proteins by applying GENEOs

GENEOs can be used for the detection of druggable protein pockets.
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Results

Please note that GENEOnet uses 17 parameters, while a CNN
such as DeepPocket requires 665122 parameters.
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Basic idea

How can we mathematically and generally formalize the concept of an
explanation provided by an agent, viewed as a functional operator?

Informal idea: We could say that the action of an agent A is explained
by another agent B from the perspective of an agent C if:

1. C perceives A and B as similar to each other;

2. C perceives B as less complex than A.

Note that if A and B are represented as GEOs, they are functions and
can therefore be treated as inputs to a higher-level GEO C .

E.g., let’s consider two neural networks represented as two GEOs.
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An extended pseudo-metric for ALL GEOs

The first step in formalizing this idea is to introduce a metric between
GEOs that remains well-defined even when the GEOs operate on
different domains and produce outputs in distinct codomains. This is
a non-trivial challenge.

In other words, what does it mean for two GEOs to behave
approximately the same way?
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An extended pseudo-metric for ALL GEOs

Informally speaking, two GEOs are considered similar if we can find
two horizontal GENEOs that make this diagram nearly commutative:

43 of 55



An example

In the next slides we will formalize this idea.
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An extended pseudo-metric for ALL GEOs

Let Sall be the category whose objects are all perception pairs, and
whose morphisms (F ,T ) : (Φ,G )→ (Φ′,G ′) are GENEOs.
The morphisms in Sall are called simplification GENEOs. These
morphisms describe the possible “logical correspondence” between
data represented by different perception pairs.

For example, a simplification GENEO might transform high-resolution
images into low-resolution images.
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An extended pseudo-metric for ALL GEOs

Let us choose a set G of GEOs (we do not require that they have the
same input or output perception pairs). Therefore,

G = {(Fα ,Tα) : (Φα ,Gα)→ (Ψα ,Kα)}α∈A.

We do not require that the elements of {(Φα ,Gα)}α∈A are distinct.
The same applies to {(Ψα ,Kα)}α∈A.

Let S be a small subcategory of the category Sall .

G will be the set of GEOs/observers where we will define our
pseudo-metric, while S will represent the collection of simpli-
fication GENEOs considered admissible.
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An extended pseudo-metric for ALL GEOs

For any pair of GEOs(
(Fα ,Tα) : (Φα ,Gα)→ (Ψα ,Kα),(Fβ ,Tβ ) : (Φβ ,Gβ )→ (Ψβ ,Kβ )

)
in G , let us choose a set of quadruples of GENEOs

Q(α,β )⊆
{(

(Li
α,β ,Pα,β ),(M

i
α,β ,Qα,β ),(L

i
β ,α ,Pβ ,α),(M

i
β ,α ,Qβ ,α)

)}
i∈I

in S×S×S×S, such that Q(β ,γ)◦Q(α,β ) = Q(α,γ) for any α

and β , and [SEE NEXT SLIDE]
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An extended pseudo-metric for ALL GEOs

[CONTINUE FROM THE PREVIOUS SLIDE]

• (Li
α,β ,Pα,β ) is a GENEO from (Φα ,Gα) to (Φβ ,Gβ )

• (M i
α,β ,Qα,β ) is a GENEO from (Ψα ,Kα) to (Ψβ ,Kβ )

• (Li
β ,α ,Pβ ,α) is a GENEO from (Φβ ,Gβ ) to (Φα ,Gα)

• (M i
β ,α ,Qβ ,α) is a GENEO from (Ψβ ,Kβ ) to (Ψα ,Kα)

• ⋃
i L

i
α,β (Φα) = Φβ ,

⋃
i M

i
α,β (Ψα) = Ψβ ,

⋃
i L

i
β ,α(Φβ ) = Φα ,⋃

i M
i
β ,α(Ψβ ) = Ψα (data completeness assumption)

for any i ∈ I .
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An extended pseudo-metric for ALL GEOs

This is summarized in the figure below:
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An extended pseudo-metric for ALL GEOs

To measure the non-commutativity of our diagrams, we need to
define the following cost functions:

cost
(
Li

α,β ,M
i
α,β

)
= sup

ϕ∈Φα

DΦα

(
M i

α,β ◦Fα(ϕ),Fβ ◦Li
α,β (ϕ)

)
cost

(
Pα,β ,Qα,β

)
= sup

g∈Gα

DKβ

(
Qα,β ◦Tα(g),Tβ ◦Pα,β (g)

)
cost

(
Li

β ,α ,M
i
β ,α

)
= sup

ϕ∈Φβ

DΦβ

(
M i

β ,α ◦Fβ (ϕ),Fα ◦Li
β ,α(ϕ)

)
cost

(
Pβ ,α ,Qβ ,α

)
= sup

g∈Gβ

DKα

(
Qβ ,α ◦Tβ (g),Tα ◦Pβ ,α(g)

)
The non-expansiveness of GENEOs and the assumption of data com-
pleteness imply that Pα,β , Qα,β , Pβ ,α , Qβ ,α are non-expansive.
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An extended pseudo-metric for ALL GEOs

Now, we can define our pseudo-distance between GEOs.

Definition

If (Fα ,Tα),(Fβ ,Tβ ) ∈ G , then we can consider the value
d((Fα ,Tα),(Fβ ,Tβ )) defined as follows

inf
i∈I

max
{

cost
(
Li

α,β ,M
i
α,β

)
,cost

(
Pα,β ,Qα,β

)
,

cost
(
Li

β ,α ,M
i
β ,α

)
,cost

(
Pβ ,α ,Qβ ,α

)}
if Q(α,β ) ̸= /0, and ∞ otherwise.

This value measures the non-commutativity of our diagrams.
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An extended pseudo-metric for ALL GEOs

Proposition

d is an extended pseudo-distance.

This statement does not hold for expansive operators.

The non-expansiveness of GENEOs is a key component of our theory.

In simple terms, the value d((Fα ,Tα),(Fβ ,Tβ )) measures the cost of
simplifying the data and the transformation groups.

When d((Fα ,Tα),(Fβ ,Tβ )) is small, it indicates that
the GEOs (Fα ,Tα) and (Fβ ,Tβ ) act approximately in
the same way on the data they process.
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A mathematical concept of explanation

In summary, the pseudo-metric d enables us to introduce a precise
mathematical concept of explanation. Specifically, we can define it as
follows: The action of an agent represented by a GEO (Fα ,Tα) is
explained at a level ε by the action of another agent represented by a
GEO (Fβ ,Tβ ) when d((Fα ,Tα),(Fβ ,Tβ ))≤ ε.

A general mathematical model of explainability grounded in a precise
operator theory could be beneficial for XAI.
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Summary

To sum up, GENEOs are

• novel mathematical tools designed to approximate observers

• particularly useful when some knowledge about the behavior of
observers is available

• generally interpretable

• potentially useful for explainable artificial intelligence (XAI).
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