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Some epistemological assumptions
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Assumption 1: Data are processed by observers

Data have no meaning without an observer to interpret them.

An observer is an agent that transforms data while preserving their
symmetries.
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Assumption 2: Observers are variables

Data interpretation strongly depends on the chosen observer.
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Assumption 3: Observers are important

We are rarely directly interested in the data, but rather in how
observers react to their presence.

Consequently, we should focus more on the properties of the observers
than on the properties of the data.
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Assumption 4: There is no structure in the data

Generally speaking, data lack inherent structure. Instead, the
structure of data reflects the observer’s own structure.

The shape is not in the data but in the eyes of the observer.
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How can we translate these ideas into mathematics?
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Perception spaces and GENEOs
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What is a GENEO?

• A Group Equivariant Non-Expansive Operator (GENEO) is a
mathematical tool used to approximate observers that act on data.

• The theory of GENEOs is based on the idea that the geometric
characteristics of observers significantly influence the interpretation
of data.

• In these lectures, we will explore the core properties of GENEOs,
examine their role in machine learning, and discuss their promising
applications in explainable artificial intelligence.
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Let us begin by recalling the concept of a group action

A group G = (G ,◦, idG ) consists of a set G , an associative operation
◦ : G ×G → G having a unit element idG ∈ G such that, for all g ∈ G ,
there exists g−1 ∈ G satisfying g ◦g−1 = g−1 ◦g = idG .

A group homomorphism T : (G ,◦G , idG )→ (K ,◦K , idK ) is a function
T : G → K such that, for all g1,g2 ∈ G ,
T (g2 ◦G g1) = T (g2)◦K T (g1).

Given a group (G ,◦, idG ) and a set X , a group left action is a
function ∗ : G ×X → X such that, for all x ∈ X and g1,g2 ∈ G ,

idG ∗ x = x and (g2 ◦g1)∗ x = g2 ∗ (g1 ∗ x).
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An example of a group action

Let R be the group of rigid motions (isometries) of the Euclidean
plane R2. The group operation is composition ◦:
• Composition is associative: f3 ◦ (f2 ◦ f1) = (f3 ◦ f2)◦ f1.

• The identity rigid motion id is the unit: id◦ f = f ◦ id = f .

• Every f ∈ R has an inverse f −1 ∈ R with f ◦ f −1 = f −1 ◦ f = id.

The group R acts on R2 on the left by evaluation:

f ∗P := f (P), f ∈ R, P ∈ R2.

This is a well-defined left action since

id∗P = P and (f2 ◦ f1)∗P = (f2 ◦ f1)(P) = f2
(
f1(P)

)
= f2 ∗ (f1 ∗P).
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Perception spaces

Recall that a pseudo-metric is a distance function d satisfying
nonnegativity, symmetry, and the triangle inequality, but not
necessarily the property d(x1,x2) = 0 =⇒ x1 = x2.

Definition

Let us consider:

1. A nonempty set Φ endowed with a pseudo-metric DΦ .

2. A group (G ,◦) acting on Φ on the left, denoted by ∗. We assume
the action is by isometries, i.e., for every ϕ1,ϕ2 ∈Φ and every
g ∈ G ,

DΦ (g ∗ϕ1,g ∗ϕ2) = DΦ (ϕ1,ϕ2).

We call (Φ ,G ) an (extended) perception space.

Moreover, the action induces a pseudo-metric DG on G defined by

DG (g1,g2) := sup
ϕ∈Φ

DΦ (g1 ∗ϕ, g2 ∗ϕ), g1,g2 ∈ G .
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Perception spaces

The set Φ represents the data we may obtain from our measuring
tools (functions, graphs, point clouds, ...). The group G represents
the possible transformations of the data that the observer may be
interested in.

For example, Φ can be a set of grey-level images represented as
functions from R2 to [0,1], while G can be the group of isometries of
the real plane.

Another simple example is given by the set of electrocardiograms,
represented as functions of the time variable, while G can be the
group of time translations.
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GEOs and GENEOs

Definition

• Let (Φ ,G ), (Ψ ,K ) be two perception spaces. If a map F : Φ →Ψ

and a group homomorphism T : G → K are given, such that
F (g ∗ϕ) = T (g)∗F (ϕ) for every ϕ ∈Φ , g ∈ G , we say that
(F ,T ) is an (extended) group equivariant operator (GEO).

• If (F ,T ) is non-expansive (i.e., DΨ (F (ϕ1),F (ϕ2))≤DΦ (ϕ1,ϕ2) for
every ϕ1,ϕ2 ∈Φ and DK (T (g1),T (g2))≤ DG (g1,g2) for every
g1,g2 ∈ G ), we say that (F ,T ) is an (extended) group equivariant
non-expansive operator (GENEO).

Proposition

If (F ,T ) : (Φ,G )→ (Ψ,K ) is a GEO, with F non-expansive and
surjective, then T is non-expansive.
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An example of GENEO

When we blur an image by applying a convolution with a rotationally
symmetric kernel whose mass is less than 1 in L1, we are applying a
GENEO (T is the identity taking the group of isometries to itself).
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Another example of GENEO

When we compute the convex hull of a cloud of points, we are
applying a GENEO (here, T is the identity taking the group of
isometries to itself).
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Another example (for those familiar with TDA)

The operator taking filtering functions to persistence diagrams is
another example of GENEO.

Equivariance ⇒ invariance of persistence diagrams

under reparameterization of the domain.

Nonexpansiveness ⇒ stability of persistence diagrams.
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Why are GENEOs interesting?

• GENEOs rest on a rigorous topological/geometric framework (in
what follows we outline several results).

• GENEOs encode prior knowledge about the chosen observer.

• The non-expansiveness property of GENEOs imposes a strong
constraint that enables meaningful data simplification.

• GENEOs enable a compositional approach to deep learning.

• Analyzing the geometry of the observer space (as represented by
GENEOs) is often more informative than analyzing the geometry
of the data space.
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The main point in the approach based on GENEOs

In perspective, we are looking for a good compositional theory for
building efficient and transparent networks of GENEOs.
Some preliminary experiments suggest that replacing neurons with
GENEOs could make some applications in deep learning more
transparent and interpretable and speed up the learning process.
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Some research projects concerning GENEOs (I)
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Some research projects concerning GENEOs (II)

https://pandora-heu.eu/consortium/
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Some research projects concerning GENEOs (III)

The GENEOnet webservice represents the outcome of our partnership
with Italian Pharmaceutical Company Dompé Farmaceutici S.p.A.:
https://geneonet.exscalate.eu/

=⇒ Attend Giovanni Bocchi’s lecture on Wednesday!
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Some basic theoretical results

The rest of this morning lecture will be devoted to illustrating,
without proofs, some theoretical results about GENEOs.

QUESTION: Why spend time on the mathematical details of
GENEOs?

ANSWER: For the same reason that, e.g., in linear algebra
one introduces notions such as linear dependence, generating
sets, and bases: to equip oneself with general tools that enable
the efficient, controlled, and uniform application of common
methods to a wide range of problems and applications.
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A pseudo-metric on G

We recall that G is endowed with the pseudo-metric DG defined by
setting DG (g1,g2) := supϕ∈Φ DΦ (g1 ∗ϕ,g2 ∗ϕ) for any g1,g2 ∈ G .

Proposition

Let (Φ,G ) be a perception space. The followings hold.

(a) G is a topological group.

(b) The action of G on Φ is continuous.

Theorem

If Φ is compact and G is complete, then G is compact.

Recall that a pseudometric space is said to be compact if every
sequence in the space has a convergent subsequence.
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Compactness of the space of GENEOs

From now on, let F all
T denote the set of all GENEOs (F ,T ) from a

perception space (Φ,G ) to a perception space (Ψ,K ), with fixed
homomorphism T . We equip F all

T with the following distance:

DGENEO((F ,T ),(F ′,T )) := sup
ϕ∈Φ

DΨ

(
F (ϕ),F ′(ϕ)

)
,

where DΨ is the metric chosen on Ψ.

Theorem

If (Φ,DΦ), (Ψ,DΨ) are compact, then the space (F all
T ,DGENEO) is

compact.
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Compactness of the space of GENEOs

The compactness of the space of GENEOs is also an important
property from an applied standpoint. It implies that the space
of GENEOs can be approximated arbitrarily well by a finite set
of GENEOs, and that every continuous loss function defined
on this space attains an absolute minimum (i.e., there exists
an optimal GENEO with respect to the loss function).
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Convexity of the space of GENEOs

Now assume that

• Φ,Ψ are normed real vector spaces, with distances DΦ, DΨ induced
by the norms ∥ · ∥Φ, ∥ · ∥Ψ (i.e., DΦ(ϕ,ϕ ′) = ∥ϕ−ϕ ′∥Φ and
DΨ(ψ,ψ ′) = ∥ψ−ψ ′∥Φ);

• the group actions are linear, i.e.,
g ∗ (aϕ +bϕ ′) = a(g ∗ϕ) +b(g ∗ϕ ′),
k ∗ (aψ +bψ ′) = a(k ∗ψ) +b(k ∗ψ ′), for all a,b ∈ R, g ∈ G ,
k ∈ K , ϕ,ϕ ′ ∈ Φ, ψ,ψ ′ ∈Ψ.

Let (F1,T ),(F2,T ), . . . ,(Fn,T ) be GENEOs from (Φ,G ) to (Ψ,K ).
If (a1, . . . ,an) ∈ Rn and ∑

n
i=1 |ai | ≤ 1, define

FΣ(ϕ) :=
n

∑
i=1

aiFi (ϕ).
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Convexity of the space of GENEOs

Proposition

(FΣ,T ) is a GENEO from (Φ,G ) to (Ψ,K ).

Corollary

The space F all
T is convex.
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Two key observations (1)

• While the space of data is often non-convex (and hence averaging
data does not make sense), the assumption of convexity of Ψ
implies the convexity of the space of observers and allows us to
consider the “average of observers”.
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Two key observations (2)

• Our main goal is to develop a good geometric and compositional
theory to approximate an ideal observer. In our model, “to
approximate an observer” means to look for a GENEO F that
minimizes a suitable “cost function” c(F ). The cost function
quantifies the error that is committed by taking the GENEO F
instead of the ideal observer. Since the space of GENEOs is
compact and convex (under the assumption that the data spaces
are compact and convex), if the cost function c(F ) is strictly
convex we have that there is one and only one GENEO that best
approximates the ideal observer.
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The functional case of GENEOs

A particularly important case of GENEO is the one in which the
perception spaces involved consist of sets of data expressed as
functions with values in R or Rn.

In the remainder of this lecture we shall restrict our attention
to the case of data expressed as real-valued functions.

In every perception space (Φ,G ) under consideration, Φ will be a set
of R-valued functions defined on a domain X (denoted by Dom(Φ)
and endowed with the metric DΦ(ϕ,ϕ ′) = ∥ϕ−ϕ ′∥∞).

The group G will be a group of permutations of X such that, if ϕ ∈Φ
and g ∈ G , then ϕ ◦g−1 ∈ Φ as well, and the left action of G on Φ
will be given by g ∗ϕ = ϕ ◦g−1.
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The functional case of GENEOs

This is indeed a left action of G on Φ:

(g2 ◦g1)∗ϕ = ϕ ◦ (g2 ◦g1)−1

= ϕ ◦ (g−11 ◦g
−1
2 )

= (ϕ ◦g−11 )◦g−12

= g2 ∗ (ϕ ◦g−11 )

= g2 ∗ (g1 ∗ϕ).

Furthermore, this action is linear:

g ∗ (aϕ1 +bϕ2) = (aϕ1 +bϕ2)◦g−1

= a(ϕ1 ◦g−1) +b(ϕ2 ◦g−1)

= a(g ∗ϕ1) +b(g ∗ϕ2).

36 of 103



Some epistemological assumptions

What is a GENEO?

Some basics on the theory of GENEOs

Building linear and nonlinear GENEOs

GENEOs and XAI

37 of 103



Elementary methods to build GENEOs

Proposition (Composition)

If (F1,T1) ∈ GENEO((Φ,G ),(Ψ ,H)), and
(F2,T2) ∈ GENEO((Ψ,H),(χ,K )), then
(F2 ◦F1,T2 ◦T1) ∈ GENEO((Φ,G ),(χ,K )).

Proposition (Image by a 1-Lipschitz function)

If (F1,T ), . . . ,(Fn,T ) ∈ GENEO((Φ,G ),(Ψ ,H)), L is a 1-Lipschitz
map from Rn to R, and L∗(F1, . . . ,Fn)(Φ)⊆Ψ (where L∗ is the map
induced by L), then (L∗(F1, . . . ,Fn),T ) ∈ GENEO((Φ,G ),(Ψ ,H)).

The next three statements follow from the last proposition.
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Elementary methods to build GENEOs

Proposition (LATTICE OF GENEOS)

If (F1,T ), . . . ,(Fn,T ) ∈ GENEO((Φ,G ),(Ψ ,H)), and
max(F1, . . . ,Fn)(Φ),min(F1, . . . ,Fn)(Φ)⊆Ψ, then
(max(F1, . . . ,Fn),T ),(min(F1, . . . ,Fn),T ) ∈ GENEO((Φ,G ),(Ψ ,H)).

Proposition (Translation)

If (F ,T ) ∈ GENEO((Φ,G ),(Ψ ,H)), and Fb(Φ)⊆Ψ for
Fb(ϕ) := F (ϕ)−b, then (Fb,T ) ∈ GENEO((Φ,G ),(Ψ ,H)).

Proposition (Convex combination)

If (F1,T ), . . . ,(Fn,T ) ∈ GENEO((Φ,G ),(Ψ ,H)), (a1, . . . ,an) ∈ Rn

with ∑
n
i=1 |ai | ≤ 1, and FΣ(Φ)⊆Ψ for FΣ(ϕ) := ∑

n
i=1 aiFi (ϕ), then

(FΣ,T ) ∈ GENEO((Φ,G ),(Ψ ,H)).
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Permutant measures

Let us consider the set Φ = RX ∼= Rn of all functions from a finite set
X = {x1, . . . ,xn} to R, and a subgroup G of the group Bij(X ) of all
bijections from X to X .

Definition

A finite (signed) measure µ on Bij(X ) is called a permutant measure
with respect to G if every subset H of Bij(X ) is measurable and µ is
invariant under the conjugation action of G (i.e., µ(H) = µ(gHg−1)
for every g ∈ G ).
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An example of permutant measure

Let us consider the set X of the vertices of a cube in R3, and the
group G of the orientation-preserving isometries of R3 that take X to
X . Let π1,π2,π3 be the three planes that contain the center of mass
of X and are parallel to a face of the cube. Let hi : X → X be the
orthogonal symmetry with respect to πi , for i ∈ {1,2,3}.
We can now define a permutant measure µ on the group Bij(X ) by
setting µ(h1) = µ(h2) = µ(h3) = c , where c is a positive real number,
and µ(h) = 0 for any h ∈ Bij(X ) with h /∈ {h1,h2,h3}.
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Representation Theorem for linear GENEOs

The following theorem explains the importance of the concept of a
permutant measure.

Theorem (Representation Theorem for linear GENEOs)

Let us assume that the group G ⊆ Bij(X ) transitively acts on the
finite set X and that F is a map from RX to RX . The map F is a
linear GENEO from RX to RX with respect to the identical
homomorphism idG : g 7→ g if and only if a permutant measure µ

with respect to G exists, such that F (ϕ) = ∑h∈Bij(X ) ϕh−1 µ(h) for

every ϕ ∈ RX , and ∑h∈Bij(X ) |µ(h)| ≤ 1.
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Building GENEOs by permutant measures

It is interesting to observe that the set PM(G ) of permutant measures
with respect to G forms a lattice. Indeed, if µ1,µ2 ∈ PM(G ), then the
measures µ ′,µ ′′ on Bij(X ), defined respectively by
µ ′(h) := min{µ1(h),µ2(h)} and µ ′′(h) := max{µ1(h),µ2(h)}, still
belong to PM(G ). Moreover, if µ ∈ PM(G ), then |µ| ∈ PM(G ).

Furthermore, PM(G ) is closed under linear combinations. Therefore,
PM(G ) naturally carries the structure of a real vector space.

We emphasize that as the group G becomes larger, the lattice PM(G )
becomes smaller. In other words, the theory of permutant measures
becomes increasingly useful as the groups grow larger.
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Building GENEOs by permutant measures

The method for building GENEOs based on permutant measures can
be generalized by replacing the arithmetic mean with another
symmetric function. We can indeed show that when a symmetric
function and a permutant for the equivariance group G are available,
we can easily build a (non-linear) GENEO with respect to G . First of
all, let us recall the concept of permutant, which is equivalent to the
one of permutant measure uniformly distributed on its support.

Definition

We say that a subset H ⊆ Bij(X ) is a permutant for the group
G ⊆ Bij(X ) if either H = /0 or gHg−1 = H for every g ∈ G .

Note that a subset H of Bij(X ) is a permutant for G if and only if H
is a union of orbits for the conjugation action of G on Bij(X ).
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Building GENEOs by permutant measures

Let S : Rn→ R be a symmetric function.
Set BijΦ(X ) = {g ∈ Bij(X ) : Φ◦g ⊆ Φ}. If H = {hi}ni=1 is a
non-empty permutant for G ⊆ BijΦ(X ), then we can define an
operator SH : Φ→ RX by setting, for any ϕ ∈ Φ,

SH(ϕ) := S (ϕ ◦h1, . . . ,ϕ ◦hn),

where S (ϕ ◦h1, . . . ,ϕ ◦hn)(x) := S ((ϕ ◦h1)(x), . . . ,(ϕ ◦hn)(x)) for
every x ∈ X .

Proposition

SH is a GEO from (Φ,G ) to (RX ,G ) with respect to the identity
homomorphism idG : G → G. If the restriction of S to Im(Φ)n is
non-expansive, then SH is a GENEO from (Φ,G ) to (RX ,G ) with
respect to idG .
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Some references about GENEOs (III)
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GENEOs and XAI

In this second lecture we explore how GENEOs can be applied to
explainable AI.
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GENEOs and XAI

GENEOs as a mathematical framework to quantify distances
between operators with distinct domain–codomain pairs

How close are these two operators?
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Basic idea

How can we mathematically and generally formalize the concept of an
explanation provided by an agent, viewed as an operator?

Informal idea: We could say that the action of an agent A is explained
by another agent B from the perspective of an agent C if:

1. C perceives A and B as similar to each other;

2. C perceives B as less complex than A.

E.g., let’s consider two neural networks represented as two GEOs.

Note that a GEO can take another GEO as an input.
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Basic idea

How can we transform our informal idea into a precise mathematical
model?

Let us begin by formalizing property 1.

Informal idea: We could say that the action of an agent A is explained
by another agent B from the perspective of an agent C if:

1. C perceives A and B as similar to each other;

2. C perceives B as less complex than A.

55 of 103



An extended pseudo-metric for ALL GEOs

We have to introduce a pseudo-metric between GEOs that remains
well-defined even when the GEOs operate on different domains and
produce outputs in distinct codomains. This is a non-trivial challenge.

In other words, what does it mean for two GEOs to behave
approximately the same way?
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Our main goal: observer approximation

The previous pseudo-metric is necessary to build a geometric theory
for approximating an ideal observer through GENEOs and GEOs.
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An extended pseudo-metric for ALL GEOs

Informally speaking, two GEOs are considered similar if there exist two
horizontal GENEOs that make this diagram “nearly commutative”,
with the same holding true in the opposite direction:

We can measure the non-commutativity of each diagram by a
cost function .
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An example

Suppose we have two neural networks for edge detection in images,
represented as GEOs.

The two neural networks are considered close if there exist two pairs of
horizontal GENEOs that make these diagrams “nearly commutative”.
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An extended pseudo-metric for ALL GEOs

To formalize our new pseudo-metric dE between GEOs, let us
consider the category Sall whose objects are all perception spaces, and
whose morphisms (F ,T ) : (Φ ,G )→ (Φ ′,G ′) are GENEOs.
The morphisms in Sall are called translation GENEOs. These
morphisms describe the possible “logical correspondences” between
data represented by different perception spaces.

For example, a translation GENEO might transform high-resolution
images into low-resolution images.
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An extended pseudo-metric for ALL GEOs

Let us choose a set G of GEOs. Therefore,

G = {(Fα ,Tα ) : (Φα ,Gα )→ (Ψα ,Kα )}α∈A.

To proceed with the definition of our pseudo-metric on G , we need to
specify which logical correspondences between data we consider
admissible. To this end, let us consider a small subcategory S of the
category Sall .

G will be the set of GEOs where we will define our pseudo-
metric, while the morphisms in S will be the translation GE-
NEOs considered admissible.
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Definition of the explainability distance

Let

(Fα ,Tα ) : (Φα ,Gα )→ (Ψα ,Kα )

(Fβ ,Tβ ) : (Φβ ,Gβ )→ (Ψβ ,Kβ )

be two GEOs in the given set of GEOs G .
Let us consider a pair

π =
(

(Lα,β ,Pα,β ),(Mβ ,α ,Qβ ,α )
)

of morphisms in S, with

• (Lα,β ,Pα,β ) a morphism from (Φα ,Gα ) to (Φβ ,Gβ ),

• (Mβ ,α ,Qβ ,α ) a morphism from (Ψβ ,Kβ ) to (Ψα ,Kα ),

Note that the two GENEOs have opposite directions. We say that π

is a crossed pair of translation GENEOs from (Fα ,Tα ) to (Fβ ,Tβ ).
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Definition of the explainability distance

Figure: A crossed pair of translation GENEOs.
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Definition of the explainability distance

To proceed, we need to equip each metric space Φα with a Borel
probability measure µα . In simple terms, the measure µα represents
the probability of the data points in Φα appearing in our experiments.

We will assume that all GENEOs in S are not just distance-decreasing
(i.e., non-expansive) but also measure-decreasing, i.e., if
(Lα,β ,Pα,β ) : (Φα ,Gα )→ (Φβ ,Gβ ) belongs to S and the set A⊆Φα

is measurable for µα , then Lα,β (A) is measurable for µβ , and
µβ (Lα,β (A))≤ µα (A) (We recall that GENEOs are not surjective, in
general).
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Definition of the explainability distance

We also assume that the function that takes each ϕ ∈Φα to

fα,β (ϕ) := DΨ

(
(Mβ ,α ◦Fβ ◦Lα,β )(ϕ),Fα (ϕ)

)
is integrable with

respect to the probability measure µα defined on the dataset Φα .
The functional cost of π is defined by setting

cost(π) :=
∫

Φα

DΨ

(
(Mβ ,α ◦Fβ ◦Lα,β )(ϕ),Fα (ϕ)

)
dµα .

The value cost(π) quantifies how far the two paths in the next
figure are from being equivalent, on average, when ϕ is ran-
domly selected in Φα according to the probability measure µα .
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Definition of the explainability distance

Figure: The explainability distance we are going to define measures how far
the green path and the red path are from being equivalent, on average.
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Definition of the explainability distance

We can formalize the new pseudo-metric dE on G by defining
dE (GEO1,GEO2) as the infimum of the maximum between the cost
of π1 and the cost of π2, over all crossed pairs π1 of admissible
translation GENEOs from GEO1 to GEO2 and all crossed pairs π2 of
admissible translation GENEOs from GEO2 to GEO1.

Formally, dE (GEO1,GEO2) is equal to
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Definition of the explainability distance

Proposition

dE is an extended pseudo-distance.

The non-expansiveness of GENEOs is a key component in the defi-
nition of dE .

In simple terms, the value dE ((Fα ,Tα ),(Fβ ,Tβ )) measures the cost of
changing (Fα ,Tα ) into (Fβ ,Tβ ).

When dE ((Fα ,Tα ),(Fβ ,Tβ )) is small, it indicates that
the GEOs (Fα ,Tα ) and (Fβ ,Tβ ) act approximately in
the same way on the data they process, on average.
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Back to the basic idea of explanation

Let us recall our informal idea.

Informal idea: We could say that the action of an agent A is explained
by another agent B from the perspective of an agent C if:

1. C perceives A and B as similar to each other; ✓

2. C perceives B as less complex than A.

The formalization of 1 is completed using the pseudo-metric dE .
How about the formalization of 2?
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Complexity of GEOs

Let us assume a set Γ = {(Fi ,Ti ) : (Φi ,Gi )→ (Ψi ,Ki )} of GEOs is
given. We will say that Γ is our internal library. For each GEO
(Fi ,Ti ) ∈ Γ we arbitrarily choose a value ci representing the
complexity comp((Fi ,Ti )) of (Fi ,Ti ).

The set Γ represents the elementary GEOs that we can use to build
other more complex GEOs.

Let us now consider the closure of Γ, i.e., the minimal set Γ̄ such that

• Γ̄⊇ Γ;

• Γ̄ is closed under composition (i.e., if (F ,T ),(F ′,T ′) ∈ Γ̄ are
composable, then (F ′,T ′)◦ (F ,T ) ∈ Γ̄);

• Γ̄ is closed under direct product (i.e., if the GEOs
(F ,T ),(F ′,T ′) ∈ Γ̄, then (F ,T )⊗ (F ′,T ′) ∈ Γ̄).
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Complexity of GEOs

Each composition and direct product is associated with a complexity.

The complexity of each GEO (F ,T ) ∈ Γ̄ is obtained by minimizing the
sum of the complexities of the GEOs (Fi ,Ti ) that we use and the
complexities of the compositions and direct products that we apply to
build (F ,T ).

Other forms of composition of GEOs can be added to the model.
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Back to the basic idea of explanation

Informal idea: We could say that the action of an agent A is explained
by another agent B from the perspective of an agent C if:

1. C perceives A and B as similar to each other; ✓

2. C perceives B as less complex than A. ✓

Our theoretical construction is now complete.
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A mathematical concept of explanation

Now we can formalize our mathematical concept of explanation.
Specifically, we can define it as follows: The action of an agent
represented by a GEO (Fα ,Tα ) is explained at a level ε by the

action of another agent of complexity less than k represented by a

GEO (Fβ ,Tβ ) ∈ Γ̄ when dE ((Fα ,Tα ),(Fβ ,Tβ ))≤ ε.
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Explainable signal reconstruction

Reconstruction of sparse urban wireless signals via GENEOs
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Explainable signal reconstruction

We propose a GENEO-based approach for reconstructing radio signals
in urban wireless networks from extremely sparse samples.

We describe the signal to be reconstructed as a function
ϕ : R2→ [0,1]. The function ϕ represents the intensity of the signal
over a 2D grid, and is often referred to as ground truth or GT. We
also consider the function ψ : R2→ [0,1] taking each point p to the
reliability ψ(p) of the value ϕ(p) measured at the point
p = (x ,y) ∈ R2.

We aim at reconstructing ϕ by starting from a very poor sampling of
ϕ (tipically 2% or 3% of the GT), by using GENEOs.
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Explainable signal reconstruction

The main idea is to build GENEOs able to look for meaningful
patterns in the signal.

In our model, a pattern is a pair of functions P = (h,χh), where:

• h : R2→ [0,1] represents a shape we are looking for in the signals;

• χh : R2→{0,1} establishes where the values expressed by h are
reliable.

Simple illustrative examples of patterns.
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Explainable signal reconstruction

We consider a pair S = (f ,ψf ) of functions from R2 to [0,1],
representing the available sampling and its reliability.
Then, for each possible pattern P = (h,χh), we can define:

SS ,P(x ,y) =
∫
R2
|f (x + ξ ,y + η)−h(ξ ,η)|

·ψf (x + ξ ,y + η)χh(ξ ,η) dµ(ξ ,η) ,

which tells us how much S differs from P in a neighborhood of the
point (x ,y); and

AS ,P(x ,y) =
∫
R2

ψf (x + ξ ,y + η)χh(ξ ,η) dµ(ξ ,η) ,

which quantifies the reliability of our data in the region where we can
perform the comparison between S and P.
78 of 103



Explainable signal reconstruction

In the definition of SS ,P(x ,y) and AS ,P(x ,y), we consider the
standard Lebesgue measure µ̄ on R2, and set µ(A) = µ̄(A)/µ̄(Dh) for
each measurable A⊆ R2, where the support Dh of χh is assumed to
have finite positive measure. Hence, we can define the following
GENEO F , which maps the function f to the function ĉS ,P given by

ĉS ,P(x ,y) = AS ,P(x ,y)−SS ,P(x ,y) .

The value ĉS ,P(x ,y) quantifies the similarity between the pattern
described by h and the structure of f in the neighborhood of (x ,y).
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Explainable signal reconstruction

Proposition

0≤ ĉS ,P(x ,y)≤AS ,P(x ,y)≤ 1 for every (x ,y) ∈ R2.

Proposition

Assume that two signals S1 = (f1,ψf1), S2 = (f2,ψf2) and a pattern
P = (h,χh) are given. If ψf1 ≡ ψf2 , it holds that A := AS1,P = AS2,P

and
∥ĉS1,P − ĉS2,P∥∞ ≤ ∥A ∥∞∥f1− f2∥∞.

Proposition

The map F taking S = (f ,ψf ) to the function ĉS ,P is a GENEO with
respect to the group of planar translations.
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Explainable signal reconstruction

Remark

Depending on the geometry of Dh and the choice of patterns, we can
allow F to be equivariant with respect to a larger group, i.e., the
group of isometries of the plane.

In the following, we will assume that our samplings and our patterns
are reliable everywhere, i.e., ψ ≡ ψf1 ≡ ψf2 ≡ 1 for every f1, f2.

Given a sampled signal Ŝ = (ϕ̂, ψ̂), we have to consider a library of N
patterns to reconstruct ϕ, that is

{P1 = (h1,χh1), . . . ,PN = (hN ,χhN )} .

81 of 103



Explainable signal reconstruction

Therefore, we can compute {ĉŜ ,Pi
}Ni=1.
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Explainable signal reconstruction

Now, for any index i we define the similarity coefficient of the pattern
Pi at the point p, when Pi is centered at another point q ∈ R2, as

sim(p,Pi ,q) = ĉŜ ,Pi
(q)χhi (p−q) .

In plain words, the value sim(p,Pi ,q) quantifies how plausible it is
that at the point p the dominant pattern is Pi , centered at the point
q. The term χhi (p−q) is needed because we are interested only in
the points of Pi at which the pattern is reliable (i.e., χhi (p−q) ̸= 0).
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Explainable signal reconstruction

The last step in our procedure consists of using the functions
sim(·,Pi ,q), varying Pi and q, to produce the reconstructed signal
ϕrec : R2→ [0,1]. To do this, considering

( q̄(p), ı̄(p)) = argmax
i∈{1,...,N}

q∈R2

sim
(
p, Pi , q

)
,

we reconstruct the point p using the ı̄(p)-th pattern with a shift equal
to q̄(p) as

ϕrec(p) := hı̄(p)

(
p− q̄(p)

)
.
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Explainable signal reconstruction

(a) Heatmap of the maximum confidence max
i

ĉS ,Pi
(p) at each point

p, indicating how well the best-matching pattern Pı̄ locally agrees
with the original image.
(b) Map of indices ı̄(p) = argmax

i
ĉS ,Pi

(x ,y), showing which pattern

Pı̄ achieves the highest confidence at each point.
(c) Reconstructed output ϕrec(p) produced by the GENEO-based
pattern matching.
85 of 103



Explainable signal reconstruction

In our numerical experiments, we focus on reconstructing the signal
over a two-dimensional area. We generated signal measurements with
the Sionna RT ray-tracing simulator, using its built-in outdoor urban
scenarios for Munich and Paris. Each scenario is discretized into a
L×L grid of 1m2 pixels {pj}L

2

j=1.
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Explainable signal reconstruction

Each L×L signal map ϕ is partitioned using circular tiling, covering
the full 270×270 m2 area and keeping minimal overlap between
circles. This process yields 67 patterns per area. In this paper, each
χi is modelled as a fixed, rotation-invariant mask with a support of
diameter of 45 m:

χ(x ,y) =

{
1 if x2 + y2 ≤ 222,

0 otherwise.

Each pattern is therefore a pair Pi =
(
hi , χ

)
, with i = 1, . . . ,67. To

enrich the library, we generate 24 rotated variants of every pattern by
using 15◦ increments, such that pattern h i θ

15+i
is equal to pattern hi

rotated by θ degrees. Thus each area contributes 67×24 = 1608
patterns.

87 of 103



Explainable signal reconstruction

Examples of patterns extracted from Munich signal images.
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Explainable signal reconstruction

We sample only M% of the signal values, selected uniformly at
random, and mark those as “known.” We define

ψ̂ :{pj}L
2

j=1 → {0,1} ,

∑
j

ψ̂(pj) =
M

100
L2 ,

where ψ̂(pj) = 1 if the measurement ϕ̂(pj) is retained, and 0
otherwise. We consider M ∈ {1,2,3}.
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Explainable signal reconstruction

To simulate noisy or corrupted measurements, we replace a further
Q% of those retained pixels with uniform random noise in [0,1].
Concretely, out of the M

100 L
2 locations with ψ̂ = 1, we choose Q%

uniformly at random and for each such pixel p̄j set

ϕ̂(p̄j) ← u ∼U (0,1) ,

with Q ∈ {15,30}.
This process yields incomplete and noisy observations of the true
normalized signal map, reflecting realistic measurement limitations.
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Explainable signal reconstruction

Comparison of reconstruction methods on the Munich scenario, with
only M = 3% of signals known, whose Q = 15% of them is featuring
errors. (a) ground truth, (b) GENEO, (c) 1-KNN, and (d) U-Net.
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Explainable signal reconstruction

Comparison of reconstruction methods on the Paris scenario, with
only M = 3% of signals known, whose Q = 15% of them is featuring
errors. (a) ground truth, (b) GENEO, (c) 1-KNN, and (d) U-Net.
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Explainable signal reconstruction

MSE achieved by GENEO, U-Net, and 1-KNN for normalized signal
reconstruction in Munich scenario, where M ∈ {1,2,3} and Q = 15.
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Explainable signal reconstruction

MSE achieved by GENEO, U-Net, and 1-KNN for normalized signal
reconstruction in Munich scenario, where M ∈ {1,2,3} and Q = 30.

94 of 103



Explainable signal reconstruction

1-Wasserstein achieved by GENEO, U-Net, and 1-KNN for normalized
signal reconstruction in Munich scenario, where M ∈ {1,2,3} and
Q = 15.
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Explainable signal reconstruction

1-Wasserstein achieved by GENEO, U-Net, and 1-KNN for normalized
signal reconstruction in Munich scenario, where M ∈ {1,2,3} and
Q = 30.
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Explainable signal reconstruction

MSE achieved by GENEO, U-Net, and 1-KNN for normalized signal
reconstruction in Paris scenario, where M ∈ {1,2,3} and Q = 15.
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Explainable signal reconstruction

MSE achieved by GENEO, U-Net, and 1-KNN for normalized signal
reconstruction in Paris scenario, where M ∈ {1,2,3} and Q = 30.
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Explainable signal reconstruction

1-Wasserstein achieved by GENEO, U-Net, and 1-KNN for normalized
signal reconstruction in Paris scenario, where M ∈ {1,2,3} and
Q = 15.
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Explainable signal reconstruction

1-Wasserstein achieved by GENEO, U-Net, and 1-KNN for normalized
signal reconstruction in Paris scenario, where M ∈ {1,2,3} and
Q = 30.
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Explainable signal reconstruction

MSE Performance: For Q = 15, GENEO (green) achieves the lowest
reconstruction error in terms of MSE across all sampling ratios M.
Under heavier corruption (Q=30), GENEO’s advantage persists: it
consistently outperforms 1-KNN and U-Net, with the largest margin
at M=1.

1-Wasserstein Performance: For Q = 15, GENEO again yields
substantially lower topological error, improving over 1-KNN and
U-Net across all M. For Q=30, GENEO maintains its lead in
topological fidelity, while both baselines exhibit worse performance in
terms of signal reconstruction.
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TAKE-AWAY MESSAGE

To sum up, GENEOs are novel mathematical tools designed to
approximate equivariant neural networks using a compositional
approach. GENEOs are generally interpretable, making them
potentially beneficial for explainable artificial intelligence (XAI).
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