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Size functions

This idea led to the concept of the size function:

• Filter a topological space S by taking the sublevel sets of a
continuous function ϕ : S → R.

• Consider the function ℓ(x ,y) that, for each pair (x ,y) with x < y ,
counts the number of connected components of the sublevel set
below y that contain at least one point below x .

Figure: In this example, the topological space S is a line segment.
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Size functions

A. Verri, C. Uras, P. Frosini, M. Ferri. On the use of size functions for
shape analysis. Biological Cybernetics, 70, 99–107 (1993).
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Size functions

A. Verri, C. Uras. Metric-topological approach to shape
representation and recognition. Image and Vision Computing,
14(3), 189-207 (1996).
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Size functions

C. Uras, A. Verri. Computing Size Functions from Edge Maps.
International Journal of Computer Vision, 23, 169-183 (1997).
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Size functions

Size functions are equivalent to persistence diagrams in degree 0. In
other words, they record the birth and death times of connected
components as the level of a filtering function varies, interpreting the
level as time.

Persistence diagrams can be generalized to higher degrees, counting
holes of higher dimensions. These diagrams are used in Topological
Data Analysis.
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Idea n.2
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The definition of dG

Let X and G be a compact metric space and a subgroup of the
group Homeo(X ) of all homeomorphisms from X to X , respectively.
If ϕ1,ϕ2 are two continuous and bounded functions from X to R we

can consider the value infg∈G ∥ϕ1−ϕ2 ◦g∥∞ . This value is called

the natural pseudo-distance dG (ϕ1,ϕ2) between ϕ1 and ϕ2 with
respect to the group G .

In plain words, the natural pseudo-distance associated with group
G measures how similar two signals are under the action of G .

P. Donatini, P. Frosini. Natural pseudodistances between closed
surfaces. Journal of the European Mathematical Society, 9(2),
331-353 (2007).
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The definition of dG
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Idea n.3
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What can we do for vector-valued functions?

In topological data analysis we often have to consider vector-valued
functions instead of scalar functions. As an example, we could have
to compare two closed curves in R2, i.e., two functions
f1, f2 : S1 → R2. How can we extend the concept of persistence
diagram to this setting?
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The foliation method

A not very useful idea is to study the two components f1 and f2
separately. In this case, the two curves below cannot be distinguished.
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The foliation method

A better idea is to study each filtration associated with a line of
positive slope.

The chosen line allows to distinguish between these curves.
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Bifiltrations and positive slope lines

If we have a bifiltration given by a function f = (f1, f2) : X → R2, we
can consider a unit vector (w.r.t. ∥ · ∥1) w = (a,1−a) with a positive
slope, and a point P = (b,−b). Every choice of P and w defines a
filtration {Xt} of X , where Xt is the set of points of X whose image
by f is both under and on the left of the point P + tw . As a
consequence, each choice of P and w defines a persistence diagram.
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Bifiltrations and positive slope lines
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Bifiltrations and positive slope lines
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Bifiltrations and positive slope lines
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The normalized function f ∗(a,b)

If we set (x ,y) = P + tw =
(
at +b,(1−a)t−b

)
and define the

function f(a,b)(p) := max
{

f1(p)−b
a , f2(p)+b

1−a

}
, then we can write

X(x ,y) = {p ∈ X : f1(p) ≤ x , f2(p) ≤ y} as the set
Xt = {p ∈ X : f(a,b)(p) ≤ t}.
As a consequence, the bifiltration {X(x ,y)} of X leads us to consider
the persistence diagram Dgmk(f(a,b)) of the function f(a,b).
In order to get a stability theorem we have to normalize f(a,b) by
setting

f ∗(a,b)(p) := min{a,1−a} · f(a,b)(p).

The persistence diagram Dgmk(f ∗(a,b)) can be obtained by multiplying

the persistence diagram Dgmk(f(a,b)) by the value min{a,1−a}.
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Stability of Dmatch

We can define a 2D matching distance Dmatch (f , f ′) by setting

Dmatch (f , f ′) := sup(a,b)∈]0,1[×R dmatch

(
Dgmk(f ∗(a,b)),Dgmk(f ′∗(a,b))

)
.

Theorem (Stability Theorem for the matching distance)

Dmatch (f , f ′) ≤ ∥f − f ′∥∞.

The distance Dmatch has been introduced in the paper

S. Biasotti, A. Cerri, P. Frosini, D. Giorgi, C. Landi. Multidimensional
size functions for shape comparison. Journal of Mathematical
Imaging and Vision, 32(2), 161-179 (2008).
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Some key remarks

• We have seen that biparameter persistence can be compared by a
method that is based on these operators Fa,b:

Fa,b(f1, f2) := Dgmk

(
min{a,1−a}max

{
f1(p)−b

a
,
f2(p) +b

1−a

})
.

• The operators Fa,b are invariant under reparametrization: if
h : X → X is a homeomorphism, then

Fa,b(f1, f2) = Fa,b(f1 ◦h, f2 ◦h).

• The operators Fa,b are non-expansive:

dmatch
(
Fa,b(f1, f2),Fa,b(f ′1, f

′
2)
)
≤ ∥(f1, f2)− (f ′1, f

′
2)∥∞.

Operators of this kind fall under the definition of group equivariant
non-expansive operators ( GENEOs ).
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Idea n.4
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What is a GENEO?

• A Group Equivariant Non-Expansive Operator (GENEO) is a
mathematical tool used to approximate observers that act on data.

• The theory of GENEOs is based on the idea that the geometric
characteristics of observers significantly influence the interpretation
of data.

• In the next slides, we’ll take a quick look at the core properties of
GENEOs, their role in machine learning, and how they can be
applied to explainable artificial intelligence.
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Let us begin by recalling the concept of a group action

A group G = (G ,◦, idG ) consists of a set G , an associative operation
◦ : G ×G → G having a unit element idG ∈ G such that, for all g ∈ G ,
there exists g−1 ∈ G satisfying g ◦g−1 = g−1 ◦g = idG .

A group homomorphism T : (G ,◦G , idG ) → (K ,◦K , idK ) is a function
T : G → K such that, for all g1,g2 ∈ G ,
T (g2 ◦G g1) = T (g2)◦K T (g1).

Given a group (G ,◦, idG ) and a set X , a group left action is a
function ∗ : G ×X → X such that, for all x ∈ X and g1,g2 ∈ G ,

idG ∗ x = x and (g2 ◦g1)∗ x = g2 ∗ (g1 ∗ x).
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An example of a group action

Let R be the group of rigid motions (isometries) of the Euclidean
plane R2. The group operation is composition ◦:

• Composition is associative: f3 ◦ (f2 ◦ f1) = (f3 ◦ f2)◦ f1.

• The identity rigid motion id is the unit: id◦ f = f ◦ id = f .

• Every f ∈ R has an inverse f −1 ∈ R with f ◦ f −1 = f −1 ◦ f = id.

The group R acts on R2 on the left by evaluation:

f ∗P := f (P), f ∈ R, P ∈ R2.

This is a well-defined left action since

id∗P = P and (f2 ◦ f1)∗P = (f2 ◦ f1)(P) = f2
(
f1(P)

)
= f2 ∗ (f1 ∗P).
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Perception spaces

Recall that a pseudo-metric is a distance function d satisfying
nonnegativity, symmetry, and the triangle inequality, but not
necessarily the property d(x1,x2) = 0 =⇒ x1 = x2.

Definition

Let us consider:

1. A nonempty set Φ endowed with a pseudo-metric DΦ .

2. A group (G ,◦) acting on Φ on the left, denoted by ∗. We assume
the action is by isometries, i.e., for every ϕ1,ϕ2 ∈ Φ and every
g ∈ G , DΦ (g ∗ϕ1,g ∗ϕ2) = DΦ (ϕ1,ϕ2).

We call (Φ ,G ) an (extended) perception space.

Moreover, the action induces a pseudo-metric DG on G defined by

DG (g1,g2) := sup
ϕ∈Φ

DΦ (g1 ∗ϕ, g2 ∗ϕ), g1,g2 ∈ G .
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Perception spaces

The set Φ represents the data we may obtain from our measuring
tools (functions, graphs, point clouds, ...). The group G represents
the possible transformations of the data that the observer may be
interested in.

For example, Φ can be a set of grey-level images represented as
functions from R2 to [0,1], while G can be the group of isometries of
the real plane.

A more interesting example arises when the data consist of neural
networks, viewed as functions. In this case, the group G acts on each
neural network F by composition:

F
g7→ F ◦g .
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GEOs and GENEOs

Definition

• Let (Φ ,G ), (Ψ ,K ) be two perception spaces. If a map F : Φ →Ψ

and a group homomorphism T : G → K are given, such that
F (g ∗ϕ) = T (g)∗F (ϕ) for every ϕ ∈ Φ , g ∈ G , we say that
(F ,T ) is an (extended) group equivariant operator (GEO).

• If (F ,T ) is non-expansive (i.e., DΨ (F (ϕ1),F (ϕ2)) ≤DΦ (ϕ1,ϕ2) for
every ϕ1,ϕ2 ∈ Φ and DK (T (g1),T (g2)) ≤ DG (g1,g2) for every
g1,g2 ∈ G ), we say that (F ,T ) is an (extended) group equivariant
non-expansive operator (GENEO).
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An example of GENEO

When we blur an image by applying a convolution with a rotationally
symmetric kernel whose mass is less than 1 in L1, we apply a GENEO:
• T : Isom(R2) → Isom(R2) is the identity homomorphism;
• (F ,T ) :

(
Cc

(
R2, [0,1]3

)
, Isom(R2)

)
→

(
Cc

(
R2, [0,1]3

)
, Isom(R2)

)
is a GENEO.
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Another example of GENEO

When we compute the convex hull of a cloud of points, we apply a
GENEO:
• F = the collection of all finite nonempty subsets of the real plane;
• C = the collection of all convex nonempty subsets of the real plane;
• T : Isom(R2) → Isom(R2) is the identity homomorphism;
• (F ,T ) :

(
F , Isom(R2)

)
→

(
C , Isom(R2)

)
is a GENEO.
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Another example

The operator taking each filtering function f : X → R to its
persistence diagram is another example of GENEO:
• DGM is the metric space of all persistence diagrams of real-valued

continuous functions defined on a topological space X ;
• {id} is the trivial group acting on DGM, consisting only of the

identity map;
• T is the trivial homomorphism from Homeo(X ) to {id};
• (F ,T ) : (Cc(X ,R),Homeo(X )) → (DGM,{id}) is a GENEO.
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Why are GENEOs interesting?

• GENEOs rest on a rigorous topological/geometric framework
(in what follows we outline several results).

• GENEOs encode prior knowledge about the chosen observer.

• The non-expansiveness property of GENEOs imposes a strong
constraint that enables meaningful data simplification.

• GENEOs enable a compositional approach to deep learning.

• Analyzing the geometry of the observer space (as represented
by GENEOs) is often more informative than analyzing the
geometry of the data space.
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The main point in the approach based on GENEOs

In perspective, we are looking for a good compositional theory for
building efficient and transparent networks of GENEOs.
Some preliminary experiments suggest that replacing neurons with
GENEOs could make some applications in deep learning more
transparent and interpretable and speed up the learning process.
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Some research projects concerning GENEOs (I)
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Some research projects concerning GENEOs (II)

https://pandora-heu.eu/consortium/
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Some research projects concerning GENEOs (III)

The GENEOnet webservice represents the outcome of a partnership
with Italian Pharmaceutical Company Dompé Farmaceutici S.p.A.:
https://geneonet.exscalate.eu/
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Good news for applications

A metric can be naturally defined on the space of GENEOs between
two fixed perception pairs (Φ ,G ) and (Ψ ,K ), given a fixed
homomorphism T between the transformation groups G and K .

The following result holds.

Theorem

• If the input and output spaces of admissible data are compact, then
the space of GENEOs is also compact. (NOT TRUE FOR GEOS!)

• If the output space of admissible data is convex, then the space of
GENEOs is also convex.
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Good news for applications

As a consequence,

• If the input and output spaces of admissible data can be
approximated with arbitrarily small error, then the space
of observers has the same property.

• If the output space of admissible data is convex, then the
space of observers is also convex.
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The functional case of GENEOs

A particularly important case of GENEO is the one in which the
perception spaces involved consist of sets of data expressed as
functions with values in R or Rn.

In the remainder of this talk we shall restrict our attention to
the case of data expressed as real-valued functions.

In every perception space (Φ,G ) under consideration, Φ will be a set
of R-valued functions defined on a domain X (denoted by Dom(Φ)
and endowed with the metric DΦ(ϕ,ϕ ′) = ∥ϕ −ϕ ′∥∞).

The group G will be a group of permutations of X such that, if ϕ ∈ Φ
and g ∈ G , then ϕ ◦g−1 ∈ Φ as well, and the left action of G on Φ
will be given by g ∗ϕ = ϕ ◦g−1.
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Representation Theorem for linear GENEOs

Let X be a finite set and G a group of permutations of X .
A permutant measure is a measure on the set P of all permutations
of X that is invariant under the conjugation action of G on P.
The following theorem illustrates the significance of the notion of a
permutant measure.

Theorem (Representation Theorem for linear GENEOs)

Let us assume that the group G transitively acts on the finite set X
and that F is a map from RX to RX . The map F is a linear GENEO
from RX to RX with respect to the identical homomorphism
idG : g 7→ g if and only if a permutant measure µ with respect to G
exists, such that F (ϕ) = ∑h∈Bij(X ) ϕh−1 µ(h) for every ϕ ∈ RX , and

∑h∈Bij(X ) |µ(h)| ≤ 1.
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Some references about GENEOs (I)

• P. Frosini, G. Jab loński, Combining persistent homology and
invariance groups for shape comparison, Discrete &
Computational Geometry, 55(2), 373-409 (2016).

• M. G. Bergomi, P. Frosini, D. Giorgi, N. Quercioli, Towards a
topological-geometrical theory of group equivariant non-expansive
operators for data analysis and machine learning, Nature
Machine Intelligence, 1(9), 423-433 (2019).

• G. Bocchi, S. Botteghi, M. Brasini, P. Frosini and N. Quercioli, On
the finite representation of linear group equivariant operators via
permutant measures, Annals of Mathematics and Artificial
Intelligence, 91(4), 465-487 (2023).

• A. Micheletti, A new paradigm for artificial intelligence based on
group equivariant non-expansive operators, European
Mathematical Society Magazine, 128, 4–12 (2023).
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Some references about GENEOs (II)

• G. Bocchi, M. Ferri, P. Frosini, A novel approach to graph
distinction through GENEOs and permutants, Scientific Reports,
15, 6259 (2025).

• G. Bocchi, P. Frosini, A. Micheletti et al. GENEOnet: a
breakthrough in protein binding pocket detection using group
equivariant non-expansive operators. Scientific Reports, 15,
34597 (2025).

• D. Lavado, A. Micheletti, G. Bocchi, P. Frosini, C. Soares,
SCENE-Net: Geometric induction for interpretable and
low-resource 3D pole detection with Group-Equivariant
Non-Expansive Operators, Computer Vision and Image
Understanding, 262, 104531 (2025).
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GENEOs and XAI

GENEOs as a mathematical framework to quantify distances
between operators with distinct domain–codomain pairs

How close are these two operators?
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Basic idea

How can we mathematically and generally formalize the concept of an
explanation provided by an agent, viewed as an operator?

Informal idea: We could say that the action of an agent A is explained
by another agent B from the perspective of an agent C if:

1. C perceives A and B as similar to each other;

2. C perceives B as less complex than A.

E.g., let’s consider two neural networks represented as two GEOs.

Note that a GEO can take another GEO as an input.
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Basic idea

How can we transform our informal idea into a precise mathematical
model?

Let us begin by formalizing property 1.

Informal idea: We could say that the action of an agent A is explained
by another agent B from the perspective of an agent C if:

1. C perceives A and B as similar to each other;

2. C perceives B as less complex than A.
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An extended pseudo-metric for ALL GEOs

We have to introduce a pseudo-metric between GEOs that remains
well-defined even when the GEOs operate on different domains and
produce outputs in distinct codomains. This is a non-trivial challenge.

In other words, what does it mean for two GEOs to behave
approximately the same way?
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An extended pseudo-metric for ALL GEOs

Informally speaking, two GEOs are considered similar if there exist two
horizontal GENEOs that make this diagram “nearly commutative”,
with the same holding true in the opposite direction:

We can measure the non-commutativity of each diagram by a
cost function .
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An extended pseudo-metric for ALL GEOs

To formalize our new pseudo-metric dE between GEOs, let us
consider the category Sall whose objects are all perception spaces, and
whose morphisms (F ,T ) : (Φ ,G ) → (Φ ′,G ′) are GENEOs.
The morphisms in Sall are called translation GENEOs. These
morphisms describe the possible “logical correspondences” between
data represented by different perception spaces.

For example, a translation GENEO might transform high-resolution
images into low-resolution images.
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An extended pseudo-metric for ALL GEOs

Let us choose a set G of GEOs. Therefore,

G = {(Fα ,Tα ) : (Φα ,Gα ) → (Ψα ,Kα )}α∈A.

To proceed with the definition of our pseudo-metric on G , we need to
specify which logical correspondences between data we consider
admissible. To this end, let us consider a small subcategory S of the
category Sall . Recall that a category is small if it has a set (rather
than a proper class) of objects and a set (rather than a proper class)
of morphisms.

G will be the set of GEOs on which we will define our pseudo-
metric, while the morphisms in S will be the translation GE-
NEOs considered admissible.
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Definition of the explainability distance

Let

(Fα ,Tα ) : (Φα ,Gα ) → (Ψα ,Kα )

(Fβ ,Tβ ) : (Φβ ,Gβ ) → (Ψβ ,Kβ )

be two GEOs in the given set of GEOs G .
Let us consider a pair

π =
(

(Lα,β ,Pα,β ),(Mβ ,α ,Qβ ,α )
)

of morphisms in S, with

• (Lα,β ,Pα,β ) a morphism from (Φα ,Gα ) to (Φβ ,Gβ ),

• (Mβ ,α ,Qβ ,α ) a morphism from (Ψβ ,Kβ ) to (Ψα ,Kα ),

Note that the two GENEOs have opposite directions. We say that π

is a crossed pair of translation GENEOs from (Fα ,Tα ) to (Fβ ,Tβ ).
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Definition of the explainability distance

Figure: A crossed pair of translation GENEOs.
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Definition of the explainability distance

To proceed, we need to equip each metric space Φα with a Borel
probability measure µα . In simple terms, the measure µα represents
the probability of the data points in Φα appearing in our experiments.

We will assume that all GENEOs in S are not just distance-decreasing
(i.e., non-expansive) but also measure-decreasing, i.e., if
(Lα,β ,Pα,β ) : (Φα ,Gα ) → (Φβ ,Gβ ) belongs to S and the set A⊆ Φα

is measurable for µα , then Lα,β (A) is measurable for µβ , and
µβ (Lα,β (A)) ≤ µα (A).
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Definition of the explainability distance

We also assume that the function that takes each ϕ ∈ Φα to

fα,β (ϕ) := DΨ

(
(Mβ ,α ◦Fβ ◦Lα,β )(ϕ),Fα (ϕ)

)
is integrable with

respect to the probability measure µα defined on the dataset Φα .
The functional cost of π is defined by setting

cost(π) :=
∫

Φα

DΨ

(
(Mβ ,α ◦Fβ ◦Lα,β )(ϕ),Fα (ϕ)

)
dµα .

The value cost(π) quantifies how far the two paths in the next
figure are from being equivalent, on average, when ϕ is ran-
domly selected in Φα according to the probability measure µα .

A similar cost can also be defined for the group component.
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Definition of the explainability distance

Figure: The explainability distance we are going to define measures how far
the green path and the red path are from being equivalent, on average.
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Definition of the explainability distance

We can formalize the new pseudo-metric dE on G by defining
dE (GEO1,GEO2) as the infimum of the maximum between the cost
of π1 and the cost of π2, over all crossed pairs π1 of admissible
translation GENEOs from GEO1 to GEO2 and all crossed pairs π2 of
admissible translation GENEOs from GEO2 to GEO1.

Formally, dE (GEO1,GEO2) is equal to
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Definition of the explainability distance

Proposition

dE is an extended pseudo-distance.

The non-expansiveness of GENEOs is a key component in the defi-
nition of dE .

In simple terms, the value dE ((Fα ,Tα ),(Fβ ,Tβ )) measures the cost of
changing (Fα ,Tα ) into (Fβ ,Tβ ).

When dE ((Fα ,Tα ),(Fβ ,Tβ )) is small, it indicates that
the GEOs (Fα ,Tα ) and (Fβ ,Tβ ) act approximately in
the same way on the data they process, on average.
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Back to the basic idea of explanation

Let us recall our informal idea.

Informal idea: We could say that the action of an agent A is explained
by another agent B from the perspective of an agent C if:

1. C perceives A and B as similar to each other; ✓

2. C perceives B as less complex than A.

The formalization of 1 is completed using the pseudo-metric dE .
How about the formalization of 2?

65 of 72



Complexity of GEOs

Let us assume a set Γ = {(Fi ,Ti ) : (Φi ,Gi ) → (Ψi ,Ki )} of GEOs is
given. We will say that Γ is our internal library. For each GEO
(Fi ,Ti ) ∈ Γ we arbitrarily choose a value ci representing the
complexity comp((Fi ,Ti )) of (Fi ,Ti ).

The set Γ represents the elementary GEOs that we can use to build
other more complex GEOs.

Let us now consider the closure of Γ, i.e., the minimal set Γ̄ such that

• Γ̄ ⊇ Γ;

• Γ̄ is closed under composition (i.e., if (F ,T ),(F ′,T ′) ∈ Γ̄ are
composable, then (F ′,T ′)◦ (F ,T ) ∈ Γ̄);

• Γ̄ is closed under direct product (i.e., if the GEOs
(F ,T ),(F ′,T ′) ∈ Γ̄, then (F ,T )⊗ (F ′,T ′) ∈ Γ̄).
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Complexity of GEOs

Each composition and direct product is associated with a complexity.

The complexity of each GEO (F ,T ) ∈ Γ̄ is obtained by minimizing the
sum of the complexities of the GEOs (Fi ,Ti ) that we use and the
complexities of the compositions and direct products that we apply to
build (F ,T ).

Other forms of composition of GEOs can be added to the model.
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Back to the basic idea of explanation

Informal idea: We could say that the action of an agent A is explained
by another agent B from the perspective of an agent C if:

1. C perceives A and B as similar to each other; ✓

2. C perceives B as less complex than A. ✓

Our theoretical construction is now complete.
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A mathematical concept of explanation

Now we can formalize our mathematical concept of explanation.
Specifically, we can define it as follows: The action of an agent
represented by a GEO (Fα ,Tα ) is explained at a level ε by the

action of another agent of complexity less than k represented by a

GEO (Fβ ,Tβ ) ∈ Γ̄ when dE ((Fα ,Tα ),(Fβ ,Tβ )) ≤ ε.

69 of 72



A reference

Further details on the explainability distance can be found in this
paper:

J. J. Colombini, F. Bonchi, F. Giannini, F. Giannotti, R. Pellungrini
and P. Frosini, Mathematical Foundation of Interpretable Equivariant
Surrogate Models, In: Guidotti, R., Schmid, U., Longo, L. (eds)
Explainable Artificial Intelligence. xAI 2025. Communications in
Computer and Information Science, Springer, Cham, 2577,
294-318 (2026).
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The journey continues...
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