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Assumption 1: Data are often represented by functions

Many kinds of data can be represented as functions:

Images, electrocardiograms, computerized tomography scans...

But also:
• A cloud C of points in Rn (C is equivalent to the function
dC : Rn → R expressing the distance from C ).

• A graph Γ (Γ is equivalent to its adjacency matrix, which can be
seen as a function).
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Assumption 2: Data are processed by observers

Data have no meaning if no observer elaborates them.

An observer is an agent that transforms data while respecting their
symmetries.
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Asm. 3: Observers are often more relevant than data

We are rarely directly interested in the data, but rather in how
observers react to their presence.
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Asm. 4: No data structure

Generally speaking, there is no structure in data. The structure of
data is a projection of the structure of the observer.
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Let’s start by defining perception pairs

Let us consider

1. A collection Φ of functions from a set X to R;
2. A group G of bijections g : X → X such that ϕ ∈ Φ =⇒ ϕ ◦g ∈ Φ

for every ϕ ∈ Φ .

We say that (Φ ,G ) is a perception pair.

The choice of a perception pair states which data can be considered
as legitimate measurements (the functions in Φ) and which group
represents the admissible symmetries between data (the group G ).
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An important remark

Another important assumption in our model is that any topological or
metric structure we employ must be grounded in the functions we
recognize as valid measurements. No reference to mathematical
structures is allowed unless they are represented through these
admissible measurements. Therefore, in our model, adding structure
requires the expansion of the set of admissible functions.

To proceed, we need to introduce suitable topologies on X and G .
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What metric can we consider on Φ , X and G?

We endow Φ with the sup-norm metric:

DΦ(ϕ1,ϕ2) = supx∈X |ϕ1(x)−ϕ2(x)|.
NB: What other metric could we put on Φ , given that X is not
endowed with any measure or structure?

Then, we endow X with the pseudo-metric

DX (x1,x2) = supϕ∈Φ |ϕ(x1)−ϕ(x2)|.

We recall that a pseudo-metric is just a metric d without the property
d(x1,x2) = 0 =⇒ x1 = x2.

Finally, we put on G the pseudo-metric

DG (g1,g2) := supϕ∈Φ DΦ(ϕ ◦g1,ϕ ◦g2).
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Some useful propositions

Proposition

Every function in Φ is non-expansive and hence continuous.

Proposition

If Φ is compact and X is complete, then X is compact.

Proposition

G is a topological group for the topology induced by DG , and the
action of G on Φ by composition on the right is continuous.

Proposition

If Φ is compact and G is complete, then G is compact.
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An interesting remark

If Φ is totally bounded, we can complete Φ , X , and G .

In other words, because of the previous results, if Φ is totally
bounded, we can assume that Φ , X , and G are compact.

• F. Ahmad, Compactification of perception pairs and spaces of
group equivariant non-expansive operators,
https://arxiv.org/pdf/2210.04043
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Some magic happens: each bijection is an isometry

• BijΦ(X ) =
{
bijections g :X→X s.t. Φ◦g ,Φ◦g−1 ⊆ Φ

}
;

• HomeoΦ(X ) =
{
homeomorphisms g :X→X s.t. Φ◦g ,Φ◦g−1 ⊆ Φ

}
;

• IsoΦ(X ) =
{
isometries g :X→X s.t. Φ◦g ,Φ◦g−1 ⊆ Φ

}
.

Proposition

BijΦ(X ) = HomeoΦ(X ) = IsoΦ(X ).
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GEOs and GENEOs

Let us assume that two perception pairs (Φ ,G ), (Ψ ,K ) are given,
and fix a group homomorphism T : G → K .

Each function F : Φ →Ψ such that F (ϕ ◦g) = F (ϕ)◦T (g) for

every ϕ ∈ Φ ,g ∈ G is called a Group Equivariant Operator (GEO)
associated with the homomorphism T .

If F is also non-expansive (i.e., DΨ (F (ϕ1),F (ϕ2))≤ DΦ (ϕ1,ϕ2) for

every ϕ1,ϕ2 ∈ Φ), then F is called a Group Equivariant
Non-Expansive Operator (GENEO) associated with the
homomorphism T .

GENEOs represent observers in our setting.
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An example of GENEO

Let us assume to be interested in the comparison of the distributions
of temperatures on a sphere, taken at two different times:

Let us also assume that only two opposite points N,S can be
localized on the sphere.
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An example of GENEO

Let us introduce two perception pairs (Φ ,G ),(Ψ ,K ) by setting

• X = S2

• Φ = set of 1-Lipschitz functions from S2 to a fixed interval [a,b]

• G = group of rotations of S2 around the axis N−S

and

• Y = the equator S1 of S2

• Ψ = set of 1-Lipschitz functions from S1 to [a,b]

• K = group of rotations of S1
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An example of GENEO

This is a simple example of GENEO from (Φ ,G ) to (Ψ ,K ):

• T (g) is the rotation h ∈ K of the equator S1 that is induced by
the rotation g of S2, for every g ∈ G .

• F (ϕ) is the function ψ that takes each point y belonging to the
equator S1 to the average of the temperatures along the meridian
containing y , for every ϕ ∈ Φ ;

We can easily check that F verifies the properties defining the
concept of group equivariant non-expansive operator with respect to
the isomorphism T : G → K .

In plain words, our GENEO simplifies the data by transforming
“temperature distributions on the earth” into “temperature
distributions on the equator”.
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Two key results (and two good news for applications)

Let us assume that a homomorphism T : G → K has been fixed.
Let us define a metric DGENEO on GENEO((Φ ,G ),(Ψ ,K )) (the space
of all GENEOs from (Φ ,G ) to (Ψ ,K ) w.r.t. T : G → K ) by setting

DGENEO (F1,F2) := sup
ϕ∈Φ

DΨ (F1(ϕ),F2(ϕ)) .

Theorem

If Φ and Ψ are compact, then GENEO((Φ ,G ),(Ψ ,K )) is compact
with respect to DGENEO.

Theorem

If Ψ is convex, then GENEO((Φ ,G ),(Ψ ,K )) is convex.
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Two key observations (1)

• While the space of data is often non-convex (and hence averaging
data does not make sense), the assumption of convexity of Ψ

implies the convexity of the space of observers and allows us to
consider the “average of observers”.
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Two key observations (2)

• Our main goal is to develop a good geometric and compositional
theory to approximate an ideal observer. In our model, “to
approximate an observer” means to look for a GENEO F that
minimizes a suitable “cost function” c(F ). The cost function
quantifies the error that is committed by taking the GENEO F
instead of the ideal observer. Since the space of GENEOs is
compact and convex (under the assumption that the data spaces
are compact and convex), if the cost function c(F ) is strictly
convex we have that there is one and only one GENEO that best
approximates the ideal observer.
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Construction of GENEO with elementary methods

How can we build GENEOs?

Without going into technical details, we only observe here that, under
reasonable assumptions,

• the composition of GENEOs is still a GENEO;

• the maximum and minimum of GENEOs is still a GENEO;

• the translation of a GENEO is still a GENEO;

• the convex combination of GENEOs is still a GENEO;

However there is much more than this...
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Permutant measures

Let us consider the set Φ = RX ∼= Rn of all functions from a finite set
X = {x1, . . . ,xn} to R, and a subgroup G of the group Bij(X ) of all
permutations of X .

Definition

A finite (signed) measure µ on Bij(X ) is called a permutant measure
with respect to G if every subset H of Bij(X ) is measurable and µ is
invariant under the conjugation action of G (i.e., µ(H) = µ(gHg−1)
for every g ∈ G ).
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Representation theorem for linear GENEOs

Theorem (Representation Theorem for linear GENEOs)

Let us assume that G ⊆ Bij(X ) transitively acts on the finite set X
and that F is a map from RX to RX . The map F is a linear GENEO
from RX to RX with respect to the identical homomorphism
idG : g 7→ g if and only if a permutant measure µ with respect to G
exists, such that F (ϕ) = ∑h∈Bij(X ) ϕh−1 µ(h) for every ϕ ∈ RX , and

∑h∈Bij(X ) |µ(h)| ≤ 1.

Two remarks:

1. The set PM(G ) of permutant measures with respect to G is a
lattice and a real vector space.

2. The method for building GENEOs based on permutant measures
can be generalized by replacing the weighted mean with a
symmetric function, so building non-linear GENEOs.
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An example of permutant measure

Let us consider the set X of the vertices of a cube in R3, and the
group G of the orientation-preserving isometries of R3 that take X to
X . Let π1,π2,π3 be the three planes that contain the center of mass
of X and are parallel to a face of the cube. Let hi : X → X be the
orthogonal symmetry with respect to πi , for i ∈ {1,2,3}.
We can now define a permutant measure µ on the group Bij(X ) by
setting µ(h1) = µ(h2) = µ(h3) = c , where c is a positive real number,
and µ(h) = 0 for any h ∈ Bij(X ) with h /∈ {h1,h2,h3}.
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Why build GENEOs via permutant measures?

We observe that the smaller the support of a permutant measure µ,
the more the summation Fµ(ϕ) := ∑h∈Bij(X ) ϕh−1 µ(h) which defines
the associated GENEO is simple to calculate.

In the example just seen, the group Bij(X ) has cardinality 40,320, the
equivariance group G contains 24 elements, while the permutant
measure support contains only 3 permutations of X .

The usefulness of the construction method based on permutant
measures lies in the fact that we can often use rather small
permutants.
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What happens when we apply GENEOs to our data?

An example of use: comparison between real dice and fake dice.

(Experiment and computations by Giovanni Bocchi)
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What happens to data when we apply GENEOs?

We produced 10000 dice (a training set of size 7000 and a test set of
size 3000), then we applied PCA to the test set and to the test set
transformed by a suitable GENEO, optimized on the training set:

For each die the first two principal components are plotted. Blue
points are associated with real dice, while orange ones with fake
dice. The GENEO we use was built by a convex combination of 3
GENEOs defined by permutant measures.
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The main point in the approach based on GENEOs

In perspective, we are looking for a good compositional theory for
building efficient and transparent networks of GENEOs.
Some preliminary experiments suggest that replacing neurons with
GENEOs could make deep learning more transparent and
interpretable and speed up the learning process.
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GENEOs and Machine Learning

If interested, you can find more details about the theory of GENEOs
in this paper:

• M. G. Bergomi, P. Frosini, D. Giorgi, N. Quercioli,

Towards a topological-geometrical theory of group equivariant
non-expansive operators for data analysis and machine learning,

Nature Machine Intelligence, vol. 1(9) (2019), 423–433.

https://rdcu.be/bP6HV
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GENEOs and Machine Learning

For more details about the use of GENEOs in Machine Learning, you
can have a look at this paper:

30 of 58



Current research projects (I)
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Current research projects (II)
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GENEOs restrict the invariance of TDA

Let F be a set of GENEOs between the perception pairs (Φ ,G ) and
(Ψ ,K ), for a homomorphism T : G → K . Call X the domain of the
functions in Φ , and Y the domain of the functions in Ψ .
The use of GENEOs allows us to restrict the invariance of TDA by
considering the following pseudo-metric:

DF ,Φ
match(ϕ1,ϕ2) = supF∈F dB

(
Dgmk(F (ϕ1)),Dgmk(F (ϕ2))

)
.

where Dgmk(F (ϕ1)) and Dgmk(F (ϕ2)) are the persistence diagrams
in degree k of the functions F (ϕ1),F (ϕ2), respectively.

The pseudo-metric DF ,Φ
match is strongly invariant with respect to G ,

i.e., DF ,Φ
match(ϕ1,ϕ2 ◦g) = DF ,Φ

match(ϕ1 ◦g ,ϕ2) = DF ,Φ
match(ϕ1,ϕ2) for every

ϕ1,ϕ2 ∈ Φ and every g ∈ G , but not invariant with respect to every

g ∈ HomeoΦ(X ), in general.
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The computation of persistence diagrams is a GENEO

Let us endow the extended half-plane {x ≤ y} ⊆ (R∪{∞})2 with the
usual pseudo-metric δ , defined by setting δ ((x ,y),(x ′,y ′)) as

min

{
max

{
|x−x ′|, |y −y ′|

}
,max

{
|x−y |

2
,
|x ′−y ′|

2

}}
(by agreeing that ∞−y = ∞, y −∞ =−∞ for y ̸= ∞, ∞−∞ = 0,
∞/2 = ∞, |±∞|= ∞, min{∞,c}= c , max{∞,c}= ∞).

Then, we take a compact metric space X and assume that:

• Φ = C 0(X ,R) and Ψ = C 0({x ≤ y},R) (with “C 0” defined w.r.t.
the metric and pseudo-metric that we have considered).

• G is the group of all homeomorphisms from X to X .

• K is the trivial group containing only the identity of {x ≤ y}.
• T : G → K is the trivial homomorphism.
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The computation of persistence diagrams is a GENEO

Let us consider the operator F : Φ →Ψ defined by setting F (ϕ) = ψ,
where ψ(p) is the distance of p ∈ R2 from the support of the multiset
Dgmk(ϕ). In plain words, if we discard multiplicities, F associates
each function ϕ with its persistence diagram, represented as a
function ψ. The key point is that

F is a GENEO from (Φ ,G ) to (Ψ ,K ) with respect to T .

Equivariance follows from the invariance of persistence diagrams
under the action of the homeomorphisms from X to X .
Non-expansiveness is a direct consequence of the stability of
persistence diagrams with respect to the Hausdorff distance.
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GENEOs interact with biparameter PH

The definition of the matching distance between two bifiltrations
ϕ,ψ : X → R2 of the topological space X can be seen as the
supremum of the classical bottleneck distance between the persistence
diagrams associated with the filtrations Fa,b(ϕ),Fa,b(ψ) : X → R,
where the operator Fa,b is defined by setting, for a ∈]0,1[ and b ∈ R,

Fa,b(ϕ) = ϕ
∗
(a,b)

=max

{
min{a,1−a}

a
· (ϕ1−b),

min{a,1−a}
1−a

· (ϕ2+b)

}
.

The operator Fa,b is a GENEO for any value of a and b

(provided that we consider the natural extension of the concept of
GENEO to operators acting on vector-valued functions).
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GENEOs can be compared by means of TDA

Persistent homology can be used to define a computable and stable
pseudo-metric ∆GENEO,k between GENEOs by setting

∆GENEO,k(F1,F2) := sup
ϕ∈Φ

dB (Dgmk(F1(ϕ)),Dgmk(F2(ϕ)))

for every F1,F2 ∈ GENEO((Φ ,G ),(Ψ ,K )).

Remark

Persistent homology also gives a shortcut to compare elements of
each equivariance group G , by the pseudo-distance

∆G ,k(g1,g2) := sup
ϕ∈Φ

dB (Dgmk(ϕ ◦g1),Dgmk(ϕ ◦g2)) .
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Finding pockets in proteins by applying GENEOs

https://arxiv.org/ftp/arxiv/papers/2202/2202.00451.pdf

Updated results of this research will be presented at xAI-2024 (The
2nd World Conference on eXplainable Artificial Intelligence).
Giovanni Bocchi has produced the data shown in these slides.
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Finding pockets in proteins by applying GENEOs

GENEOs can be used for the detection of druggable protein pockets.
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Our data

Data sources: the PDBbind v.2020 database (Liu et al., 2017) and
the RCSB PDB (Berman et al., 2003).

The protein structures were preprocessed using the Schrödinger
Protein Preparation Wizard (Schrödinger, The Schrödinger Software.
2020). A total of 12295 protein-ligand complexes from PDBbind and
41519 from the RCSB PDB were retrieved.

The data from PDBbind were used to train a set of models, to select
the best model in terms of scoring, and compare it with other
methods.
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Data preparation

We represent the protein-ligand complex stored in a PDB file as
functions in a compact and convex space.

The space around the protein is discretized using a parallelepiped grid
of cubic voxels. For each voxel, piecewise constant approximations of
8 input functions, or channels ϕi , are computed.

The functions ϕi describe a set of geometrical, physical, and chemical
protein properties that are considered to be relevant for pocket
detection by experts.

The co-crystallized ligand of a protein will be used in the evaluation
step to define the true pocket (i.e. the ground truth) for the
parameters identification.
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The functions ϕi
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GENEOnet

The channels ϕi describing the protein are fed to a layer of 8
GENEOs, F1, . . . ,F8.

Each Fi is a convolutional operator defined by setting
Fi (ϕi ) = ϕi ∗Ki , where Ki is a normalized kernel in L1(R3), symmetric
with respect to the origin. This fact ensures that all the operators
under consideration are indeed non-expansive and equivariant with
respect to rigid motions in R3. Every operator Fi is associated with a
shape parameter σi ∈ R regulating the “amplitude” of the kernel Ki .

The set {F1, . . . ,F8} reflects the experts’ prior knowledge on the
relevant properties to identify a pocket.
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Convex combinations in GENEOnet

The GENEO outputs ψi = Fi (ϕi ) are combined through a convex
combination, with weights α1, . . . ,α8 in order to obtain a composite

operator F
(
(ϕ1, . . . ,ϕ8)

)
= ∑

8
i=1 αiFi (ϕi ), which is a new GENEO.

The output of the convex combination is then normalized to obtain a
function ψ from R3 to [0,1].

The function ψ can be interpreted as the probability that a voxel
belongs to a pocket. The coefficients α1, . . . ,α8 can be regarded as
weights, highlighting the importance of each channel in the pockets
identification.

To obtain pockets, a thresholding operation with a parameter θ is
applied to ψ, producing the binary function ψ̂, which finally can be
compared to the ground truth through a volumetric accuracy function
that will be described later.
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GENEOnet structure
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Training

The data retrieved from the PDBbind were firstly used to train
GENEOnet on the spatial recognition of the true pocket. In order to
identify the unknown parameters, we choose to optimize an accuracy
function evaluating the quality of the prediction.

For each crystallized complex, the ligand has been converted to the
binary function τ that is equal to 1 in the voxels (possibly partially)
overlapped to the ligand, and equal to 0 elsewhere.

The function τ represents our ground truth.
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Training

We train GENEOnet by maximizing the following accuracy function
with respect to our parameters:

ℓ(ψ̂,τ) =
|ψ̂ ∧ τ|+κ|(1− ψ̂)∧ (1− τ)|

|τ|+κ|1− τ|
∈ [0,1].

Here | · | denotes the discretized volume, that is the number of voxels
labelled with 1 inside the region, ψ̂ ∧ τ is a function equal to 1 on the
intersection between the predicted pockets ψ̂ and the true pocket τ,
1 is a constant function equal to 1. All these functions are defined on
the voxelized bounding box built around the protein. They are binary
and piecewise constant on each voxel. The hyperparameter κ ranges
in [0,1] (we saw that the best values belong to [0.01,0.05]).
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Training

The optimization of ℓ(ψ̂,τ) was performed using Adam optimizer.

A random set of 200 proteins from the PDBbind was used as a
training set.

Training time for 50 epochs of the optimization algorithm is
approximately 6 minutes with GPU acceleration (on a laptop
equipped with an NVIDIA GeForce RTX 3060 GPU) and
approximately 40 minutes with only CPU processing (on a laptop
featuring an Intel® CoreTM i7-10870H 8-core CPU).
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Testing

After training, for each protein our trained network of GENEOs
produces a set of predicted pockets, represented as connected
components in the support of ψ̂.

We order these predicted pockets according to a score obtained by
computing the mean value of ψ on each pocket (the higher this value,
the more reliable the predicted pocket according to GENEOnet).

This ordered list is the output of GENEOnet.
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Comparing our results with the ground truth

Now we consider our ordered list and take the predicted pocket Π̂j

that best overlaps the ground truth Π.

Method: We say that a predicted pocket Π̂j ⊂ R3 best overlaps

the true pocket Π⊂ R3 if Π̂j maximizes the value
|Π̂j∧Π|
|Π|

in the set of predicted pockets. In this expression, | · |
denotes the 3D discretized volume of a region, which
corresponds to the number of voxels in that region.

We define Hj as the percentage of times that the best choice in the
list is the j-th choice of GENEOnet.

NB: If no predicted pocket shares any intersection with the true one,
we say that the method failed for that protein.
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Evaluation parameters for testing

Moreover, by computing cumulative sums of the values Hj , we
generate another sequence of coefficients (Tj)j≥1 that represents the
fraction of proteins whose true pocket has been successfully
recognized within the j-th highest-scored predicted pocket, i.e.,

Tj = ∑
j
i=1Hi
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Comparison of GENEOnet with other methods

GENEOnet has ben compared with the following state-of-the-art
methods: Fpocket, P2Rank, DeepPocket, CAVIAR, SiteMap, CavVis.

These methods also evaluate the true pocket as the area outside the
protein that contains the co-crystallized ligand.

Each method we consider orders the pockets it predicts, according to
its scoring procedure. Therefore, we can define the values Hj and Tj

for all those methods.

In the following table, we report estimates of Hj and Tj coefficients
computed on a test set made of 9070 proteins from the PDBbind (this
is about the 75% of the entire data extracted from the PDBbind).
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Comparison of GENEOnet with other methods
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Results

Please note that GENEOnet uses 17 parameters, while a CNN
such as DeepPocket requires 665122 parameters.
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GENEOnet webservice

The GENEOnet webservice represents the outcome of our partnership
with Italian Pharmaceutical Company Dompé Farmaceutici S.p.A.,
and can be accessed via the URL:
https://geneonet.exscalate.eu.

Webservice Developer: Anna Fava (EXSCALATE, Dompé
Farmaceutici SpA)

The webservice has been designed for open access within the scientific
community to test and evaluate our model. It has a user-friendly
interface and delivers results in mere seconds. Upon submitting the
code, the protein structure and all associated annotations from the
Protein Data Bank are retrieved. Following submission, protein
pockets are identified via GENEOnet, and the results are subsequently
presented in a results table.
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