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Data can be often regarded as functions

Some examples of data that can be seen as functions:

• An electrocardiogram (a function from R to R);
• A gray-level image (a function from R2 to R);
• A computerized tomography (CT) scan (a function from a helix to
R).
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Data in our model

In our model data are described by real-valued or vector-valued
functions defined on a set X .

We will denote by Φ the set of admissible data, i.e., the set of
functions that can be interpreted as signals to be processed.

It is important to note that only some functions describe admissible
data: for example, functions representing grayscale images should be
bounded. If this does not happen, the function is not usually
interpreted as a representation of an image.
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Data equivalence w.r.t. a group of permutations

What do the expressions “data equivalence” and “data similarity”
mean in our setting?

Two functions ϕ1,ϕ2 : X → R are equivalent with respect to a group
G of permutations on X if a g ∈ G exists, such that ϕ1 = ϕ2 ◦g .

Two functions ϕ1,ϕ2 : X → R are similar with respect to a group G
of permutations on X if a g ∈ G exists, such that ∥ϕ1−ϕ2 ◦g∥∞ is
small.

These observations lead us to define the concept of natural
pseudo-distance with respect to the group G .
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The natural pseudo-distance dG

Let X and G be a topological space and a subgroup of the group
Homeo(X ) of all homeomorphisms from X to X , respectively. Let us
assume that ϕ1,ϕ2 are two continuous and bounded functions from X

to R, and consider the value infg∈G ∥ϕ1−ϕ2 ◦g∥∞ .

This value is called the natural pseudo-distance dG (ϕ1,ϕ2) between
ϕ1 and ϕ2 with respect to the group G .

(We recall that a pseudo-distance is just a distance d without the
assumption that d(x1,x2) = 0 implies x1 = x2.)

We could look at dG as the ground truth in data comparison,
when data equivalence is expressed by the group G .
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The natural pseudo-distance dG

If G is the trivial group Id, then dG is the max-norm distance
∥ϕ1−ϕ2∥∞. Moreover, if G1 and G2 are subgroups of Homeo(X ) and
G1 ⊆ G2, then

dHomeo(X )(ϕ1,ϕ2)≤ dG2(ϕ1,ϕ2)≤ dG1(ϕ1,ϕ2)≤ ∥ϕ1−ϕ2∥∞

for every ϕ1,ϕ2 ∈ C 0(X ,R).

We usually restrict dG to Φ×Φ, where Φ is a bounded subset of
C 0(X ,R).
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Data are processed by observers

Data have no meaning if no observer elaborates them.

An observer is an agent that transforms data into other data.
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Observers are variables in data analysis

Data interpretation strongly depends on the chosen observer:
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The pair (data, observer)

We are hardly ever interested directly in the data, but in the
relationship between the data and the observer. What interests us
above all is the behavior of the observer.

For example, a patient is usually not interested in the picture of her
skin lesion, but in the diagnosis her dermatologist can make from this
image. The cases in which the interest in data seems central are
those in which the observers’ way of reacting is tacitly shared.

11 of 44



Observers are often more important than data

Data analysis strongly depends on the chosen observer. If data
analysis were not dependant on the chosen observer, then physicians’
diagnoses would always be identical, scientists would always see the
same causes for each phenomenon, and all people would agree in
judging who the heroes and villains in a movie or a political event are.

It is indeed well known that different agents can have different
reactions in the presence of the same data, and this suggests that
data analysis should study the pairs (data, observer) instead of
data alone.

All this leads to privilege the study of the “ form of observers ” over
the study of the “ form of data ”.
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Observers are often associated with invariance groups

Observers often think that some data are equivalent to each other,
according to an invariance group.

The group G is not established once and forever: when the observer
changes, G changes too.
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Observers can be seen as equivariant operators

Observers are structures able to change data into other data, and
usually do that by respecting some data equivalences, i.e., by
commuting with some transformations.

As a first approximation, observers can be represented as group
equivariant operators (GEOs).

In this talk we will give some results on the theory of Group
Equivariant Non-Expansive Operators (GENEOs).

Why “non-expansive”?
Because

1. observers are often assumed to simplify the metric structure of
data in order to produce meaningful interpretations;

2. non-expansiveness guarantees good topological properties.
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Summary of our epistemological assumptions

Our mathematical model is based on these assumptions:

• The space of observers is often more important than the space of
data.

• The study of the space of observers requires the development of a
new topological-geometric model.

• This new model could be of great use in data analysis, when the
role of the observers is not negligible.

These assumptions suggest we move from Topological Data Anal-
ysis to what we could call Topological Observer Analysis.
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All begins with the space of admissible functions

Let X be a nonempty set. Let Φ be a topological subspace of the set
RX
b of all bounded functions ϕ from X to R, endowed with the

topology induced by the metric

DΦ(ϕ1,ϕ2) := ∥ϕ1−ϕ2∥∞
.

We can see X as the space where we can make our measurements,
and Φ as the space of all possible measurements. We will say that Φ
is the set of admissible functions. In other words, Φ is the set of all
functions from X to R that can be produced by our measuring
instruments (or by other observers). For example, a gray-level
image can be represented as a function from the real plane to the
interval [0,1] (in this case X = R2).

17 of 44



Perception pairs

Let us consider a group G of bijections g : X → X such that
ϕ ∈ Φ =⇒ ϕ ◦g ∈ Φ for every ϕ ∈ Φ. We say that (Φ,G ) is a
perception pair.

The choice of a perception pair states which data can be considered
as legitimate measurements (the functions in Φ) and which group
represents the equivalence between data (the group G ).

To proceed, we need to introduce suitable topologies on X and G .
Before doing that, we recall that the initial topology τin on X with
respect to Φ is the coarsest topology on X such that every function ϕ

in Φ is continuous.
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A pseudo-metric on X

Let us define on X the pseudo-metric

DX (x1,x2) = sup
ϕ∈Φ

|ϕ(x1)−ϕ(x2)|.

DX induces a topology τDX
on X .

Theorem

The topology τDX
is finer than the initial topology τin on X with

respect to Φ. If Φ is totally bounded, then τDX
coincides with τin.

The use of DX implies that we can distinguish two points only if a
measurement exists, taking those points to different values.
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A pseudo-metric on X

The following properties are of use in our model.

Theorem

Every function in Φ is non-expansive, and hence continuous.

Theorem

If Φ is compact and X is complete, then X is compact.
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Some magic happens: each bijection is an isometry

Let Bij(X ) be the group of all bijections from X to X , and denote by
BijΦ(X ) the subgroup of all g ∈ Bij(X ) such that ϕ ◦g ∈ Φ and
ϕ ◦g−1 ∈ Φ for every ϕ ∈ Φ. Let Homeo(X ) be the group of all
homeomorphisms from X a X with respect to DX , and denote by
HomeoΦ(X ) the subgroup of all g ∈ Homeo(X ) such that ϕ ◦g ∈ Φ
and ϕ ◦g−1 ∈ Φ for every ϕ ∈ Φ. Let Iso(X ) be the group of all
isometries from X a X , and denote by IsoΦ(X ) the subgroup of all
g ∈ Iso(X ) such that ϕ ◦g ∈ Φ and ϕ ◦g−1 ∈ Φ for every ϕ ∈ Φ.

Proposition

BijΦ(X ) = HomeoΦ(X ) = IsoΦ(X ).
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A pseudo-metric on G

Let us now focus our attention on a subgroup G of HomeoΦ(X ).
We can define a pseudo-metric DG on G by setting

DG (g1,g2) := sup
ϕ∈Φ

DΦ(ϕ ◦g1,ϕ ◦g2).

Theorem

G is a topological group with respect to DG and the action of G on Φ
by right composition is continuous.

Theorem

If Φ is compact and G is complete, then G is compact.
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GEOs and GENEOs

Let us assume that two perception pairs (Φ,G ), (Ψ ,H) are given, and
fix a group homomorphism T : G → H.

Each function F : Φ→Ψ such that F (ϕ ◦g) = F (ϕ)◦T (g) for

every ϕ ∈ Φ,g ∈ G is called a Group Equivariant Operator (GEO)
associated with the homomorphism T .

If F is also non-expansive (i.e., DΨ (F (ϕ1),F (ϕ2))≤ DΦ (ϕ1,ϕ2) for

every ϕ1,ϕ2 ∈Φ), then F is called a Group Equivariant Non-Expansive
Operator (GENEO) associated with the homomorphism T .
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An example of GENEO

Let us assume to be interested in the comparison of the distributions
of temperatures on a sphere, taken at two different times:

Let us also assume that only two opposite points N,S can be
localized on the sphere.
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An example of GENEO

Let us introduce two perception pairs (Φ,G ),(Ψ ,H) by setting

• X = S2

• Φ = set of 1-Lipschitz functions from S2 to a fixed interval [a,b]

• G = group of rotations of S2 around the axis N−S

and

• Y = the equator S1 of S2

• Ψ = set of 1-Lipschitz functions from S1 to [a,b]

• H = group of rotations of S1
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An example of GENEO

This is a simple example of GENEO from (Φ,G ) to (Ψ ,H):

• T (g) is the rotation h ∈ H of the equator S1 that is induced by
the rotation g of S2, for every g ∈ G .

• F (ϕ) is the function ψ that takes each point y belonging to the
equator S1 to the average of the temperatures along the meridian
containing y , for every ϕ ∈ Φ;

We can easily check that F verifies the properties defining the
concept of group equivariant non-expansive operator with respect to
the isomorphism T : G → H.

In plain words, our GENEO simplifies the data by transforming
“temperature distributions on the earth” into “temperature
distributions on the equator”.
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Two key results (and two good news for applications)

Let us assume that a homomorphism T : G → H has been fixed.
Let us define a metric DGENEO on GENEO((Φ,G ),(Ψ ,H)) by setting

DGENEO (F1,F2) := sup
ϕ∈Φ

DΨ (F1(ϕ),F2(ϕ)) .

Theorem

If Φ and Ψ are compact, then GENEO((Φ,G ),(Ψ ,H)) is compact
with respect to DGENEO.

Theorem

If Ψ is convex, then GENEO((Φ,G ),(Ψ ,H)) is convex.
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Elementary methods to build GENEOs

Proposition (Composition)

If F1 ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T1 : G → H and
F2 ∈ GENEO((Ψ,H),(χ,K )) w.r.t. T2 : H → K then
F2 ◦F1 ∈ GENEO((Φ,G ),(χ,K )) w.r.t. T2 ◦T1 : G → K .

Proposition (Image by a 1-Lipschitz function)

If F1, . . . ,Fn ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T : G → H, L is a
1-Lipschitz map from Rn to R, and L∗(F1, . . . ,Fn)(Φ)⊆Ψ (where L∗

is the map induced by L), then
L∗(F1, . . . ,Fn) ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T .

The next three statements follow from the last proposition.
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Elementary methods to build GENEOs

Proposition (LATTICE OF GENEOS)

If F1, . . . ,Fn ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T : G → H and
max(F1, . . . ,Fn)(Φ),min(F1, . . . ,Fn)(Φ)⊆Ψ, then
max(F1, . . . ,Fn),min(F1, . . . ,Fn) ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T .

Proposition (Translation)

If F ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T : G → H, and Fb(Φ)⊆Ψ for
Fb(ϕ) := F (ϕ)−b, then Fb ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T .

Proposition (Convex combination)

If F1, . . . ,Fn ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T : G → H,
(a1, . . . ,an) ∈ Rn con ∑

n
i=1 |ai | ≤ 1 and FΣ(Φ)⊆Ψ for

FΣ(ϕ) := ∑
n
i=1 aiFi (ϕ), then FΣ ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T .
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Permutant measures

Let us consider the set Φ = RX ∼= Rn of all functions from a finite set
X = {x1, . . . ,xn} to R, and a subgroup G of the group Bij(X ) of all
permutations of X .

Definition

A finite (signed) measure µ on Bij(X ) is called a permutant measure
with respect to G if every subset H of Bij(X ) is measurable and µ is
invariant under the conjugation action of G (i.e., µ(H) = µ(gHg−1)
for every g ∈ G ).

Proposition

If µ is a permutant measure with respect to G , then the map
Fµ : RX → RX defined by setting Fµ(ϕ) := ∑h∈Bij(X ) ϕh−1 µ(h) is a
linear GEO.
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An example of permutant measure

Let us consider the set X of the vertices of a cube in R3, and the
group G of the orientation-preserving isometries of R3 that take X to
X . Let π1,π2,π3 be the three planes that contain the center of mass
of X and are parallel to a face of the cube. Let hi : X → X be the
orthogonal symmetry with respect to πi , for i ∈ {1,2,3}.
We can now define a permutant measure µ on the group Bij(X ) by
setting µ(h1) = µ(h2) = µ(h3) = c , where c is a positive real number,
and µ(h) = 0 for any h ∈ Bij(X ) with h /∈ {h1,h2,h3}.
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Building GENEOs by permutant measures

The following representation theorem holds.

Theorem

Let us assume that G ⊆ Bij(X ) transitively acts on the finite set X
and that F is a map from RX to RX . The map F is a linear GENEO
from (RX ,G ) to (RX ,G ) (with respect to the identical
homomorphism idG : g 7→ g) if and only if a permutant measure µ

with respect to G exists, such that F (ϕ) = ∑h∈Bij(X ) ϕh−1 µ(h) for

every ϕ ∈ RX , and ∑h∈Bij(X ) |µ(h)| ≤ 1.

Further details can be found in this preprint:
G. Bocchi, S. Botteghi, M. Brasini, P. Frosini and N. Quercioli, On
the finite representation of group equivariant operators via permutant
measures https://arxiv.org/pdf/2008.06340.pdf
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What happens when we apply GENEOs to our data?

An example of use: comparison between real dice and fake dice.

(Experiment and computations by Giovanni Bocchi)
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What happens to data when we apply GENEOs?

We produced 10000 dice (a training set of size 7000 and a test set of
size 3000), then we applied PCA to the test set and to the test set
transformed by a suitable GENEO, optimized on the training set:

For each die the first two principal components are plotted. Blue
points are associated with real dice, while orange ones with fake
dice. The GENEO we use was built by a convex combination of 3
GENEOs defined by permutant measures.
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A real application: finding pockets in proteins
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A real application: finding pockets in proteins

The search for the pockets was carried out by identifying an optimal
GENEO in the convex hull of 8 GENEOs (each focused on a
particular property of the pockets).
39 of 44



A real application: finding pockets in proteins

Here are the results of our experiments:

Please note that GENEOnet uses 17 parameters, while a CNN such as
DeepPocket requires 665122 parameters.
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The main point in our approach

In perspective, we are looking for a good compositional theory for
building efficient and transparent networks of GENEOs.
Some preliminary experiments suggest that replacing neurons with
GENEOs could make deep learning more transparent and
interpretable and speed up the learning process.
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Open questions

• How can we approximate a real observer (let us say, e.g., a
physician) by GENEOs, in order to emulate her behaviour with
respect to data?

• Can we devise constructive procedures, allowing us to build any
possible GENEO with respect to a given equivariance group?

• What is the right way of comparing GENEOs in a
topological-statistical setting?

• How should we select representative sets in a probability space of
GENEOs?

• How can we predict the behaviour of networks of GENEOs and
control their actions?

• How can we evaluate advantages and limits of an approach to data
analysis based on the interaction of GENEOs and TDA?
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