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Some epistemological assumptions



Assumption 1: Data are often represented by functions

Many types of data can be represented as functions:

Images, electrocardiograms, computerized tomography scans, and
more.

Additionally:
e A point cloud C in R"” (where C is equivalent to the function
dc : R" — R that expresses the distance from C).

e A graph I (where I is equivalent to its adjacency matrix, which
can be interpreted as a function).

$/ C = I

GRAPHS FUNCTIONS POINT CLOUDS




Assumption 2: Data are processed by observers

Data have no meaning without an observer to interpret them.

An observer is an agent that transforms data while preserving their
symmetries.
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Assumption 3: Observers are variables

Data interpretation strongly depends on the chosen observer.




Assumption 4: Observers are important

We are rarely directly interested in the data, but rather in how
observers react to their presence.

Consequently, we should focus more on the properties of the observers
than on the properties of the data.
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Assumption 5: There is no structure in the data

Generally speaking, data lack inherent structure. Instead, the
structure of data reflects the observer’s own structure.

The shape is not in the data but in the eyes of the observer.




Some basics on the theory of GENEOs



Let's start by defining perception pairs

Let us consider
1. A collection @ of functions from a set X to Rk;
2. A group G of bijections g : X — X such that p € ® — @Qogec P

for every ¢ € ®.
We say that (@, G) is a perception pair.

The choice of a perception pair states which data can be
considered as legitimate measurements (the functions in @)
and which group represents the admissible symmetries between

data (the group G).

action of the group G

/\ - /\




Admissible and not admissible data

ADMISSIBLE AS AN NOT ADMISSIBLE AS AN
ELECTROCARDIOGRAM ELECTROCARDIOGRAM

ADMISSIBLE AS A NUMBER NOT ADMISSIBLE AS A NUMBER




What metric can we consider on @, X and G?

We endow @ with the sup-norm metric:

’ Do (91, 02) = sup,ex || @1(x) — @2(x) || ‘

NB: What other metric could we put on @, given that X is not
endowed with any measure or structure?

Then, we endow X with the pseudo-metric

Dx(x1,%0) = supgeq [ 9(x1) — 9(x2) |-

We recall that a pseudo-metric is just a metric d without the property
d(Xl,Xz) =0 = x1 = xo.

Finally, we put on G the pseudo-metric

D¢(g1,82) == supgea Dao(@ o g1, 90 g2).

b



Some mathematical properties

A mathematical theory has been formulated to analyze and
describe perception pairs.

For example:

e Every function ¢ € @ is non-expansive and hence continuous.

e 1. If @ is compact and X is complete, then X is compact.
2. If @ is compact and G is complete, then G is compact.
3. If @ is totally bounded, we can always assume that @, X, and G are
compact.

e G is a topological group for the topology induced by D¢, and the
action of G on & by composition on the right is continuous.

e Any @-preserving bijection is an isometry.
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GEOs and GENEOs

Let us assume that two perception pairs (@, G), (¥, K) are given.
Each pair (F: @ - ¥, T:G — K) s. t. T is a homomorphism and

F(pog)=F(¢)oT(g)
for every ¢ € @, g € G is called a Group Equivariant Operator (GEO).

If F is also non-expansive (i.e., ‘ Dy (F(¢1), F(92)) < Do (91, 92) ‘ for
every @1,@, € @), then (F, T) is called a Group Equivariant
Non-Expansive Operator (GENEO ).

( GEOs and GENEOs represent observers in our setting. )
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An example of GENEO

When we blur an image by applying a convolution with a rotationally
symmetric kernel whose mass is less than 1 in L1, we are applying a
GENEO (here, we are considering the group of isometries).

Th% 0
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quivalent




Another example of GENEO

When we compute the convex hull of a cloud of points, we are
applying a GENEO (here, we are considering the group of

isometries).
Th% |
paths
are

quivalent




Good news for applications

A metric can be naturally defined on the space of GENEOs
between two fixed perception pairs (P, G) and (¥, K), given a fixed
homomorphism T between the transformation groups G and K.

The following result holds.
Theorem

e [f the input and output spaces of admissible data are compact,
then the space of GENEO:s is also compact. (NOT TRUE FOR
GEOS!)

e |f the output space of admissible data is convex, then the space of
GENEQOs is also convex.



Good news for applications

As a consequence,

e |f the input and output spaces of admissible data can be
approximated with arbitrarily small error, then the space
of observers has the same property.

e |f the output space of admissible data is convex, then the
space of observers is also convex.

\

These properties are quite useful in applications.



Three key observations (1)

e While the input space @ of data is often non-convex (and hence
averaging data does not make sense), the assumption of convexity
of the output space ¥ implies the convexity of the space of
observers and allows us to consider the “average of observers”.




Three key observations (2)

Our main goal is to build a robust geometric and compositional theory
for approximating an ideal observer through GENEOs and GEOs.




Three key observations (3)

GENEOs are functions and can be taken as inputs of higher-level
GENEOs. Data obtained through measuring instruments can be seen
as GENEOs of level 0. Therefore, hierarchies of GENEOs can be
considered.




Construction of GENEOs

How can we build GENEOs?

The space of GENEOs is closed under composition, computation of
minimum and maximum, translation, direct product, and convex
combination. (However there is much more than this...)

GENEO:s are like LEGO bricks that can be combined together to form
more complex GENEOs.




The main point in the approach based on GENEOs

In perspective, we are looking for a good compositional theory for
building efficient and transparent networks of GENEOs.

Some preliminary experiments suggest that replacing neurons with
GENEOs could make deep learning more transparent and
interpretable and speed up the learning process.

Output

NEURAL NETWORK NETWORK OF GENEOS




What happens when we apply GENEOs to our data?

An example of use: comparison between real dice and fake dice.

- - - -
- -
) = i % = #
LY .
N 8 ¥ . ¥
L)
\ 4 REAL DIE ’ FAKE DIE
. /L. 0,00 0,250 Cﬂlg)s051 0,750 1,00 ” L‘ 000 0.250 C()IgJSJSQ 0,750 1,00
B ] B ]

(Experiment and computations by Giovanni Bocchi)
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What happens to data when we apply GENEOs?

We produced 10000 dice (a training set of size 7000 and a test set of
size 3000), then we applied PCA to the test set and to the test set
transformed by a suitable GENEO, optimized on the training set:

-3 2 -1 0 1 2 3 -i0 -05 00 05 10

WITHOUT GENEOS WITH GENEOS

For each die the first two principal components are plotted. Blue
points are associated with real dice, while orange ones with fake
dice. The GENEO we use was built by a convex combination of 3

GENEOs defined by permutant measures.
b



GENEOs and Machine Learning

More details about the theory of GENEOs are available in this paper:

namre, = .
machl ne 1 ntell lgence https://doi.org/10.1038/s42256-019-0087-3

ARTICLES

Towards a topological-geometrical theory of
group equivariant non-expansive operators for
data analysis and machine learning

Mattia G. Bergomi®’, Patrizio Frosini©2**, Daniela Giorgi®* and Nicola Quercioli®??

vol. 1(9) (2019), 423-433.
https://rdcu.be/bPEHV
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https://rdcu.be/bP6HV

GENEOs and Machine Learning

For more details about the use of GENEOs in Machine Learning, you
can have a look at this paper:

EUROPEAN
MATHEMATICAL
SOCIETY

—

- —
EMS Magazine MAG » ONLINE FIRST » 24 APRIL 2023

A new paradigm for artificial intelligence based
on group equivariant non-expansive operators

Alessandra Micheletti
Universita degli Studi di Milano, Italy

https://ems.press/journals/mag/articles/10389352
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https://ems.press/journals/mag/articles/10389352

Current research projects (I)

CNIT / WiLab - Huawei Joint Innovation Center (JIC)

Project on GENEOs for 6G ’7

WILAB V2 HUAWE!




Current research projects (II)

P/ANDOMR/A\

Horizon Europe (HORIZON)

Call: HORIZON-CL4-2023-HUMAN-01-CNECT
Project: 101135775-PANDORA

Funding: approximately 9 million euros.

Task 3.3 - Leveraging domain knowledge for explainable learning:

This task aims to investigate the use of domain knowledge in the development
of explainable Al models. Tools like GENEOs for applications in TDA and ML
and new theoretical methods of GENEOs for explainable Al will be used.

https://pandora-heu.eu/consortium/

b


https://pandora-heu.eu/consortium/

Current research projects (I11)

B2 GeneoNet PR - |

GeneoNet

fon of binding pocketsin profeins is crucial for understanding proein function, drug
Jating protein function, predicting protein protein interactions, and faciltating sructural
i logical systems and

The GENEOnet webservice represents the outcome of our partnership
with Italian Pharmaceutical Company Dompé Farmaceutici S.p.A.:
https://geneonet.exscalate.eu/
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https://geneonet.exscalate.eu/

Finding pockets in proteins by applying GENEOs

GENEOnet: A new machine learning paradigm based on Group
Equivariant Non-Expansive Operators. An application to
protein pocket detection.

Giovanni Bocchi ', Patrizio Frosini 2, Alessandra Micheletti ', Alessandro Pedretti 3
Carmen Gratteri 4, Filippo Lunghini * , Andrea Rosario Beccari ° and Carmine Talarico 5

" Department of Environmental Science and Policy, Universita degli Studi di Milano

2 Department of Mathematics, Universita degli Studi di Bologna

3 Department of Pharmaceutical Sciences, Universita degli Studi di Milano

“ Dipartimento di Scienze della Salute, Universita degli Studi “Magna Greecia di Catanzaro”
5Dompé Farmaceutici SpA

https://arxiv.org/ftp/arxiv/papers/2202/2202.00451.pdf

Updated results of this research have been presented at xAl-2024
(The 2nd World Conference on eXplainable Artificial Intelligence).
Giovanni Bocchi has produced the data shown in these slides.

b


https://arxiv.org/ftp/arxiv/papers/2202/2202.00451.pdf

Finding pockets in proteins by applying GENEOs

GENEOs can be used for the detection of druggable protein pockets.

Model predictions for protein 2QWE. In Figure a) the global view of the prediction
is shown, where different pockets are depicted in different colors and are labelled with their
scores. In Figure b) the zoomed of the pocket containing the ligand is shown.




Results

Percentage of correct answers when allowing n=1,2,3,4 attempts.

100%

80%-

60%-

40%-

20%1 —— CAVIAR —— Fpocket
—— P2Rank —— SiteMap CavVis
—— DeepPocket
0%-— T T T T
1 2 3 4 >4 Number of allowed

attempts

Please note that GENEOnet uses 17 parameters, while a CNN
such as DeepPocket requires 665122 parameters.
b



GENEOs and XAl



Basic idea

How can we mathematically and generally formalize the concept of an
explanation provided by an agent, viewed as a functional operator?

Informal idea: We could say that the action of an agent A is explained
by another agent B from the perspective of an agent C if:

1. C perceives A and B as similar to each other;

2. C perceives B as less complex than A.

Note that if A and B are represented as GEOs, they are functions and
can therefore be treated as inputs to a higher-level GEO C.

E.g., let’s consider two neural networks represented as two GEOs.

b




Basic idea

How can we transform our informal idea into a precise mathematical

model?

Let us begin by formalizing property 1.

Informal idea: We could say that the action of an agent A is explained
by another agent B from the perspective of an agent C if:

1. C perceives A and B as similar to each other;

2. C perceives B as less complex than A.




An extended pseudo-metric for ALL GEQOs

We have to introduce a pseudo-metric between GEOs that remains
well-defined even when the GEOs operate on different domains and
produce outputs in distinct codomains. This is a non-trivial challenge.

(wa, K(x) What's the (\Vﬁ, K[})
A distance A~
(Fas Ta) between (Fg,Tp)

! these two !

(Pa, Go)| GEOs? (®p, Gg)

In other words, what does it mean for two GEOs to behave
approximately the same way?
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An extended pseudo-metric for ALL GEQOs

Informally speaking, two GEOs are considered similar if there exist
two horizontal GENEOs that make this diagram nearly commutative,
with the same holding true in the opposite direction:

Vo, Ka) —— (,V/KB)

9
(F;s )
|

AN
(FOUTOC)
I

(©a,Ga) 5 (9p,Gp)

We can measure the non-commutativity of each diagram by a
’cost function ‘




An example

Suppose we have two neural networks for edge detection in images,
represented as GEOs.

NEARLY

NEARLY
COMMUTING
DIAGRAM

COMMUTING
DIAGRAM

HIGH-RESOLUTI({N LOW-RESOLUTION

HIGH-RESOLUTION LOW-RESOLUTION

The two neural networks are considered close if there exist two pairs
of horizontal GENEOs that make these diagrams nearly commutative.




An extended pseudo-metric for ALL GEQOs

To formalize our new pseudo-metric dg between GEOs, let us
consider the category S,; whose objects are all perception pairs, and
whose morphisms (F, T): (®,G) — (¢',G’) are GENEOs.

The morphisms in S,y are called translation GENEQOs. These
morphisms describe the possible “logical correspondences” between
data represented by different perception pairs.

For example, a translation GENEO might transform high-resolution
images into low-resolution images.

TRANSLATION
GENEO

| == |
High Res Image 300dpi

Low Res Image 72dpi




An extended pseudo-metric for ALL GEQOs

Let us choose a set ¢4 of GEOs. Therefore,
Y ={(Fa; Ta) : (Par, Ga) = (Var, Kar) b -

To proceed with the definition of our pseudo-metric on ¢, we need to
specify which logical correspondences between data we consider
admissible. To this end, let us consider a small subcategory S of the
category S,

¢ will be the set of GEOs/functional agents where we will
define our pseudo-metric, while the morphisms in S will be the
translation GENEOs considered admissible.




An extended pseudo-metric for ALL GEQOs

We can formalize the new pseudo-metric dg on ¢ as the infimum,
over all admissible GENEOs, of the maximum between:

e the cost of the pair of GENEOs from GEO1 to GEO2;
e the cost of the pair of GENEOs from GEO2 to GEOL.

_ (Var k) ™ (v 1) (. k5) D W k)

dE =ﬂf max cost (F(,Tra) P (FBTT,,) 3 cost (FBTT;;) - (ﬁ,?n)
%{’%} (®a,Ga) — (®p,Gp) (®p,Gp) —— (Pa;Ga)

GEO1 GEO2 GEO2 GEO1



An extended pseudo-metric for ALL GEQOs

Proposition

dg is an extended pseudo-distance.

This statement does not hold for expansive operators.

’ The non-expansiveness of GENEOs is a key component of our theory.

In simple terms, the value dg((Fa, Ta), (Fp, Tg)) measures the cost of
changing (Fq, Tg) into (Fg, Tg).

When de((Fa, Ta),(Fg, Tg)) is small, it indicates that
the GEOs (Fq, To) and (Fg, Tg) act approximately in
the same way on the data they process.

b



Back to the basic idea of explanation

Let us recall our informal idea.

Informal idea: We could say that the action of an agent A is explained
by another agent B from the perspective of an agent C if:

1. C perceives A and B as similar to each other;

2. C perceives B as less complex than A.

The formalization of 1 is completed using the pseudo-metric dg.
How about the formalization of 27




Complexity of GEOs

Let us assume a (possibly infinite) set

Fr={(Fi,Ti): (P;,G) — (¥,Ki)} of GEOs is given. We will say that

I" is our internal library.

For each GEO (F;, T;) € I we arbitrarily choose a value ¢;

representing the complexity comp((F;, T;)) of (Fi, T;).

Let us now consider the closure of T, i.e., the minimal set T such that

o T2T;

o T is closed under composition (i.e., if (F,T),(F,T") € I are
composable, then (F',T")o(F,T)eT);

e [ is closed under direct product (i.e., if the GEOs
(F,T),(F,T")eT, then (F, T)®(F',T') €T).

The complexity of each GEO in T is the minimal total cost of

building such an operator through compositions and direct products.

b



Back to the basic idea of explanation

Informal idea: We could say that the action of an agent A is explained
by another agent B from the perspective of an agent C if:

1. C perceives A and B as similar to each other;

2. C perceives B as less complex than A.

The formalization of this idea is now complete.

We believe that this general mathematical model of explainability,
based on precise operator theory, could benefit XAl.



A mathematical concept of explanation

In summary, the pseudo-metric dg enables us to introduce a precise
mathematical concept of explanation. Specifically, we can define it
as follows: The action of an agent represented by a GEO (Fq, Ty) is

explained at a level 8‘ by the action of another agent of

complexity less than k‘ represented by a GEO (Fg, Tg) when
dE((FOC'/ Ta)v(FBa TB)) <e.

REAL REAL SIMPLIFIED SIMPLIFIED
DATA OBSERVER DATA OBSERVER

Sy




GENEOs and contradiction



Intelligence and contradiction

Representing observers as GENEOSs results in
another key implication, which can be inter;'?reted
as a form of "principle of contradiction”.

Available online at www.sciencedirect.com

ScienceDirect Cogpitive Systems

ELSEVIER Cognitive Systems Research 10 (2009) 297-315
www.elsevier.com/locate/cogsys

Does intelligence imply contradiction?
Action editor: Vasant Honavar

P. Frosini*

Department of Mathematics and ARCES, University of Bologna, 1-40126 Bologna, Italy
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Intelligence and contradiction

What do we mean by contradiction?

My name is
Drumi
andIam
from Bulgaria

?v

My name is
Jean
andIam
from France

An entity E is said to be contradictory for an observer O if it reacts
differently at different times under the same internal and external
conditions, according to O's judgment.




Intelligence and contradiction

In an appropriate framework, this statement can be proven:

Every sufficiently intelligent entity is contradictory

Tractatus
Logico-Philosophicus

»
LUDWIG WITTGRNSTEIN

i e by
BERTMAND RUSSELL, FRS.

HARCOURT, BRACE & COMPANY, INC.
LONDON: KEGAX PAVL TRENGH, TRUINER 4 €O, 170,

Ludwig Josef Johann Wittgenstein
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Intelligence and contradiction

Equivalently, we can say that

The behavior of any sufficiently
intelligent entity is unpredictable.




Intelligence and contradiction

How can we prove that?
We can use an approach based on cellular automata.

ml oml om om o
= =1 =N =3 =
i .
m|l = n = =
=5 3 = T =
u mol e e e
=10 =11 1 Z‘“ =13 =14
|
HH H
3 e ot
H H "8 | |
e o = =

https://playgameoflife.com/
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Intelligence and contradiction

Sketch of proof:

* An observer is identified (understood as a GENEO that transforms
the functions representing the states of the cellular automaton into
functions describing the perceived entity and its surrounding
environment).

e The intelligence of an entity is defined as its ability to survive in
the environment, as judged by the observer.

e It is shown that there exists a threshold for intelligence (dependent
on the number of states the observer can associate with the entity
and its environment), beyond which the observed entity necessarily
appears contradictory to the chosen observer.

In this model, contradictoriness and unpredictability are
not limitations of intelligent structures but necessary
conditions for developing complex intellectual behaviors.

b



Intelligence and contradiction

Theorem. Let E be an entity with a finite lifespan and assume that its
environment is deterministic. If the intelligence of E is greater than the
product of the cardinalities of the sets P,; and P, the entity must
necessarily be contradictory.

ATTENTION! The theorem does not assert that
intelligent entities must change their behavior
(this fact is obvious) but that they must do so
without the observer understanding why.

Pent = set of states of E recognized *Z ;
by the observer.
Peyy = set of environmental states
recognized by the observer. )
"l expect you all to be independent,

innovative, critical thinkers who will
do exactly as | say!"




Intelligence and contradiction

A precise formulation of this approach can be found here:

P. Frosini, Does intelligence imply contradiction?, Cognitive Systems
Research, vol. 10 (2009), n. 4, 297-315.

(A synthetic and beautiful slideshow of this paper has been made by
Mattia G. Bergomi. It is available at the link
https://mgbergomi.github.io/Contradiction/.)


https://mgbergomi.github.io/Contradiction/

Intelligence and contradiction

According to our mathematical framework based on GENEOs, an
agent A appears unpredictable to a fixed observer if the “intelligence”
of A exceeds a threshold determined by the product of the number of
states the observer can perceive in the agent and its environmental
context. This implies that, to achieve predictability of behavior, it is
necessary to choose models where the aforementioned threshold is
greater than the desired intelligence value.




Summary

To sum up, GENEOs are novel mathematical tools designed to
approximate equivariant neural networks using a compositional
approach. They are particularly useful when prior knowledge about
the expected behavior of the neural network is available. GENEOs are
generally interpretable, making them potentially beneficial for
explainable artificial intelligence (XAl) and helpful in elucidating
certain properties of intelligent systems.




THANKS FOR YOUR ATTENTION!
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