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The key role of observers in data analysis



Data can be often regarded as functions

Some examples of data that can be seen as functions:
® An electrocardiogram (a function from R to R);

o A gray-level image (a function from R? to R);

e A computerized tomography scan (a function from a helix to R).




Data are processed by observers

Data have no meaning if no observer elaborates them.

An observer is an agent that transforms data while respecting its
symmetries.
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Observers are variables in data analysis

Data interpretation strongly depends on the chosen observer:




Our interest in data is greatly overrated

We are rarely directly interested in the data, but rather in how
observers react to their presence.




No data structure

Generally speaking, there is no structure in data. The structure of
data is a projection of the structure of the observer.




Representing observers as equivariant operators

Observers are structures able to change data into other data, and
usually do that by respecting some data symmetries, i.e., by
commuting with some transformations (equivariance).




Representing observers as equivariant operators

As a first approximation, observers can be represented as Group

Equivariant Operators (GEOs).
In this talk we will illustrate some results on the theory of Group
Equivariant Non-Expansive Operators (GENEOs).

Why “non-expansive”?

Because

1. observers are often assumed to simplify the metric structure of
data in order to produce meaningful interpretations;

2. non-expansiveness guarantees good topological properties.



Topological and metric basics for the theory of GENEOs



How could we represent observers?

nature, = .
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group equivariant non-expansive operators for
data analysis and machine learning
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We provide a general mathematical framework for group and set equivariance in machine learning. We define group equivariant
non-expansive operators (GENEOs) as maps b ion spaces iated with groups of transformations. We study the
topologl:al and metrlc properties of the space of GENEOs to evaluate their approximating power and set the basis for general
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groups and the set of non-expansive operators We prove that, under suitable assumptlons, the space of GENEOs is compact and

convex. These results provide fund. I isometry-equivariant

ina ine learning persp e.By
non-expansive operators, we describe a simple strategy to select and sample operators. Thereafter, we show how selected and
sampled operators can be used both to perform classical metric learning and to inject knowledge in artificial neural networks.
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All begins with the space of admissible functions

Let X be a nonempty set. Let ® be a topological subspace of the set
Rff of all bounded functions ¢ from X to R, endowed with the
topology induced by the metric

Do(¢1,92) :== ||o1 — ¢2]|... -

We can see X as the space where we can make our measurements,
and ¢ as the space of all possible measurements. We will say that ¢
is the set of admissible functions. In other words, ® is the set of all
functions from X to R that can be produced by our measuring
instruments (or by other observers). For example, a gray-level
image can be represented as a function from the real plane to the
interval [0,1] (in this case X = R?).

b



Perception pairs

Let us consider a group G of bijections g : X — X such that
Qed = pogec P forevery ¢ € d. We say that ($,G) is a
perception pair.

The choice of a perception pair states which data can be considered
as legitimate measurements (the functions in ®) and which group
represents the symmetries between data (the group G).

To proceed, we need to introduce suitable topologies on X and G.
Before doing that, we recall that the initial topology 7, on X with
respect to @ is the coarsest topology on X such that every function ¢
in ® is continuous.



A pseudo-metric on X

Let us define on X the pseudo-metric

Dx(x1,x2) = sup|@(x1) — ¢(x2)|.
pcd

Dx induces a topology 7p, on X.
The use of Dx implies that we can distinguish two points only if a
measurement exists, taking those points to different values.

Proposition

The topology Tp, is finer than the initial topology T, on X with
respect to ®. If ® is totally bounded, then Tp, coincides with T,.



A pseudo-metric on X

The following properties are of use in our model.
Proposition

Every function in ® is non-expansive, and hence continuous.
Proposition
If ® is compact and X is complete, then X is compact.

In the following, we will usually assume that ¢ is compact and X is
complete (and hence compact).



Some magic happens: each bijection is an isometry

* Bijy(X) = {bijections g: X—Xs.t. dog,Pog™! C d};
¢ Homeog(X) ={homeomorphisms g:X—Xs.t. dog,dog™! C d};
¢ Isog(X) = {isometries g: X—Xs.t. dog, dog™t C d}.

Proposition
Bije(X) = Homeog (X) = Isos(X).



A pseudo-metric on G

Let us now focus our attention on a subgroup G of Homeog(X).
We can define a pseudo-metric Dg on G by setting

D¢ (g1,82) := sup Do(@og1, ¢ 0g2).
ocd

Theorem

G is a topological group with respect to D¢ and the action of G on ®
by right composition is continuous.

Theorem

If ® is compact and G is complete, then G is compact.



GEOs and GENEOs

Each pair (®,G) with G C Homeog(X) is called a perception pair.

Let us assume that two perception pairs (¢, G), (¥, H) are given, and
fix a group homomorphism T : G — H.

Each function F : ® — ¥ such that ’ F(pog)=F(9)oT(g) ‘ for
every ¢ € ®,g € G is called a Group Equivariant Operator (GEO)
associated with the homomorphism T.

If F is also non-expansive (i.e., ’ Dy (F(¢1),F(92)) < Do (1, ¢2) ‘ for
every @1, @2 € ®), then F is called a Group Equivariant Non-Expansive
Operator (GENEO) associated with the homomorphism T.




An example of GENEO

Let us assume to be interested in the comparison of the distributions
of temperatures on a sphere, taken at two different times:

Let us also assume that only two opposite points N,S can be
localized on the sphere.




An example of GENEO

Let us introduce two perception pairs (¢, G), (¥, H) by setting
[ ] X = 52
e ® = set of 1-Lipschitz functions from S2 to a fixed interval [a, b]

e G = group of rotations of S? around the axis N — S
and

e Y = the equator S! of §2

o W = set of 1-Lipschitz functions from S* to [a, b]
e H = group of rotations of S!



An example of GENEO

This is a simple example of GENEO from (®, G) to (¥, H):

e T(g) is the rotation h € H of the equator S! that is induced by
the rotation g of S2, for every g € G.

e F(@) is the function y that takes each point y belonging to the
equator S! to the average of the temperatures along the meridian
containing y, for every ¢ € ®;

We can easily check that F verifies the properties defining the
concept of group equivariant non-expansive operator with respect to
the isomorphism T : G — H.

In plain words, our GENEO simplifies the data by transforming
“temperature distributions on the earth” into “temperature
distributions on the equator”.

b



Two key results (and two good news for applications)

Let us assume that a homomorphism T : G — H has been fixed.
Let us define a metric Dgeneo on GENEO ((®, G), (¥, H)) by setting

Dgeneo (F1, F2) = SUED‘P(FI((P)v Fa(9)).
pc

Theorem

If ® and W are compact, then GENEO ((®,G), (¥, H)) is compact
with respect to DGeNgo-

Theorem
If V is convex, then GENEO ((®, G),(¥,H)) is convex.



Two key observations (1)

e While the space of data is often non-convex (and hence averaging
data does not make sense), the assumption of convexity of W
implies the convexity of the space of observers and allows us to
consider the “average of observers”.




Two key observations (2)

e Our main goal is to develop a good geometric and compositional
theory to approximate an ideal observer. In our model, “to
approximate an observer” means to look for a GENEO F that
minimizes a suitable “cost function” ¢(F). The cost function
quantifies the error that is committed by taking the GENEO F
instead of the ideal observer. Since the space of GENEOs is
compact and convex (under the assumption that the data spaces
are compact and convex), if the cost function c(F) is strictly
convex we have that there is one and only one GENEO that best
approximates the ideal observer.



Building linear and nonlinear GENEOs



How can we build linear and nonlinear GENEQOs?

” 1 ORIGINAL RESEARCH
- frontlers published: 15 February 2022

in Artificial Intelligence doi: 10.3380//rai.2022.786091
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Elementary methods to build GENEOs

Proposition (Composition)

If F; € GENEO((®, G),(¥,H)) w.r.t. T1: G — H and
F» € GENEO((V, H), (%, K)) w.rt. To:H — K then
Fyo F1 € GENEO((9,G),(x,K)) w.r.t. TooT;: G — K.

Proposition (Image by a 1-Lipschitz function)

If Fi,...,F, € GENEO((®,G),(¥,H)) wrt. T:G—H, Lisa
1-Lipschitz map from R" to R, and L*(Fy,...,F,)(®) C WV (where L*
is the map induced by L), then

L*(F,...,F,) € GENEO((®,G),(V,H)) w.rt. T.

The next three statements follow from the last proposition.

b



Elementary methods to build GENEOs

Proposition (LATTICE OF GENEOS)

If Fi,...,F, € GENEO((®,G),(¥Y,H)) w.rt. T: G — H and
max(Fi,...,Fp)(®), min(F1,...,Fp)(P) C WV, then
max(Fi,...,Fp),min(Fy,...,F,) € GENEO((®,G),(¥Y,H)) w.r.t. T.

Proposition (Translation)

If F € GENEO((®,G),(¥,H)) w.r.t. T:G — H, and Fp(®) C WV for
Fo(®) := F(@)— b, then Fp € GENEO ((®,G),(¥,H)) w.r.t. T.

Proposition (Convex combination)

If Fi,...,F, € GENEO((®,G),(¥,H)) w.rt. T: G — H,

(a1,...,an) €R" con Y7 ;|aj| <1 and Fs(®) C WV for

Fs(@):=Y7"1aiFi(¢), then Fx € GENEO((®,G),(¥,H)) w.r.t. T.
b



Permutant measures

Let us consider the set ® = RX = R" of all functions from a finite set
X ={x1,...,xa} to R, and a subgroup G of the group Bij(X) of all
permutations of X.

Definition
A finite (signed) measure u on Bij(X) is called a permutant measure
with respect to G if every subset H of Bij(X) is measurable and u is

invariant under the conjugation action of G (i.e., u(H) = u(gHg 1)
for every g € G).

Proposition

If u is a permutant measure with respect to G, then the map
Fu : RX — RX defined by setting Fu(@) := Lhenij(x) oh t u(h)isa
linear GEO. If Y pegij(x) [t(h)| <1, then Fu(¢@) is a GENEO.

b



An example of permutant measure

Let us consider the set X of the vertices of a cube in R3, and the
group G of the orientation-preserving isometries of R3 that take X to
X. Let my,m, w3 be the three planes that contain the center of mass
of X and are parallel to a face of the cube. Let h; : X — X be the
orthogonal symmetry with respect to 7;, for i € {1,2,3}.

We can now define a permutant measure p on the group Bij(X) by
setting t(h1) = w(h2) = u(hs) = ¢, where c is a positive real number,
and p(h) =0 for any h € Bij(X) with h ¢ {h1, ho, h3}.




Building GENEQOs by permutant measures

It is interesting to observe that the set PM(G) of permutant measures
with respect to G is a lattice. Indeed, if ui, tp € PM(G), then the
measures ', u” on Bij(X), respectively defined by setting

' (h) == min{u1(h),u2(h)} and u”(h) := max{ui(h), uz(h)}, still
belong to PM(G). Moreover, if u € PM(G) then |u| € PM(G).
Furthermore, PM(G) is closed under linear combination. Therefore,
PM(G) has a natural structure of real vector space.

We stress that when the group G becomes larger and larger the
lattice PM(G) becomes smaller and smaller.

In other words, the theory of permutant measures becomes more and
more useful as the groups get bigger and bigger.



Building GENEQOs by permutant measures

The method for building GENEOs based on permutant
measures can be generalized by replacing the arithmetic mean
with another symmetric function. We can indeed show that when
a symmetric function and a permutant for the equivariance group G
are available, we can easily build a (non-linear) GENEO with respect
to G. First of all, let us recall the concept of permutant, which is
equivalent to the one of permutant measure uniformly distributed on
its support.

Definition

We say that a subset H C Bij(X) is a permutant for G if either

H=0or gHg ' = H for every g € G.

Note that a subset H of Bij(X) is a permutant for G if and only if H

is a union of orbits for the conjugation action of G on Bij(X).
b



Building GENEQOs by permutant measures

Let .#: R” — R be a symmetric function. If H={h;}"_; is a
non-empty permutant for G C Bijg(X), then we can define an
operator .} ® — RX by setting, for any ¢ € o,

where L (@ohy,...,0o0hy)(x) =L ((¢oh1)(x),...,(@ohy)(x)) for
every x € X.
Proposition

Sy is a GEO from (®,G) to (RX, G) with respect to the identity
homomorphism idg : G — G. If the restriction of . to Im(®)" is
non-expansive, then .7 is a GENEO from (®,G) to (RX, G) with
respect to idg.

b



How can we represent linear GENEQOs?

Annals of Mathematics and Artificial Intelligence
https://doi.org/10.1007/5s10472-022-09830-1

On the finite representation of linear group
equivariant operators via permutant measures

Giovanni Bocchi' - Stefano Botteghi? - Martina Brasini? - Patrizio Frosini?
Nicola Quercioli®

Accepted: 26 December 2022
© The Author(s) 2023
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Representation Theorem for linear GENEQOs

The following theorem strengthens our previous result about building
linear GENEOs via permutant measures.

Theorem (Representation Theorem for linear GENEOs)

Let us assume that G C Bij(X) transitively acts on the finite set X
and that F is a map from RX to RX. The map F is a linear GENEO
from RX to RX with respect to the identical homomorphism

idg: g — g if and only if a permutant measure L with respect to G
exists, such that F(¢) = ¥pegij(x) oh™t u(h) for every ¢ € RX, and
Yhesijx) [1(h) < 1.



Impulsive noise reduction by GENEOs

@ entropy My

Article

A Probabilistic Result on Impulsive Noise Reduction in
Topological Data Analysis through Group Equivariant
Non-Expansive Operators

Patrizio Frosini **(©, Ivan Gridelli t and Andrea Pascucci
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Partially equivariant GENEOs
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Generalized permutants and Graph GENEOs
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A current line of research

We are presently studying this problem:

How can we extend the theory of GENEQOs to probability spaces of
signals?

P. Cascarano, P. Frosini, N. Quercioli, A. Saki,

On the geometric and Riemannian structure of the spaces of group
equivariant non-expansive operators,
https://arxiv.org/pdf/2103.02543.pdf
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How can we use GENEOs in applications?



What happens when we apply GENEOs to our data?

An example of use: comparison between real dice and fake dice.

- - - -
- -
) = i % = #
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N 8 ¥ . ¥
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\ 4 REAL DIE ’ FAKE DIE
. /L. 0,00 0,250 Cﬂlg)s051 0,750 1,00 ” L‘ 000 0.250 C()IgJSJSQ 0,750 1,00
B ] B ]

(Experiment and computations by Giovanni Bocchi)
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What happens to data when we apply GENEOs?

We produced 10000 dice (a training set of size 7000 and a test set of
size 3000), then we applied PCA to the test set and to the test set
transformed by a suitable GENEO, optimized on the training set:

-3 2 -1 0 1 2 3 -i0 -05 00 05 10

WITHOUT GENEOS WITH GENEOS

For each die the first two principal components are plotted. Blue
points are associated with real dice, while orange ones with fake
dice. The GENEO we use was built by a convex combination of 3

GENEOs defined by permutant measures.
b



A real application: finding pockets in proteins

GENEOnet: A new machine learning paradigm based on Group
Equivariant Non-Expansive Operators. An application to
protein pocket detection.

Giovanni Bocchi 1, Patrizio Frosini 2, Alessandra Micheletti !, Alessandro Pedretti 3
Carmen Gratteri 4, Filippo Lunghini 5, Andrea Rosario Beccari °* and Carmine Talarico °

' Department of Environmental Science and Policy, Universita degli Studi di Milano

2 Department of Mathematics, Universita degli Studi di Bologna

3 Department of Pharmaceutical Sciences, Universita degli Studi di Milano

4 Dipartimento di Scienze della Salute, Universita degli Studi “Magna Greecia di Catanzaro”

5Dompé Farmaceutici SpA

https://arxiv.org/ftp/arxiv/papers/2202/2202.00451.pdf
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A real application: finding pockets in proteins

Model predictions for protein 2QWE. In Figure a) the global view of the prediction

is shown, where different pockets are depicted in different colors and are labelled with their

scores. In Figure b) the zoomed of the pocket containing the ligand is shown.
The search for the pockets was carried out by identifying an optimal
GENEO in the convex hull of 8 GENEOs (each focused on a
particular property of the pockets).




A real application: finding pockets in proteins

Here are the results of our experiments:
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Please note that GENEOnet uses 17 parameters, while a CNN such as
DeepPocket requires 665122 parameters.




The main point in our approach

In perspective, we are looking for a good compositional theory for
building efficient and transparent networks of GENEOs.

Some preliminary experiments suggest that replacing neurons with
GENEOs could make deep learning more transparent and
interpretable and speed up the learning process.
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GENEOs and Machine Learning

For more details about the use of GENEQOs in Machine Learning:
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A new paradigm for artificial intelligence based
on group equivariant non-expansive operators

Alessandra Micheletti
Universita degli Studi di Milano, Italy

e A. Micheletti, A new paradigm for artificial intelligence based on
group equivariant non-expansive operators, In: EMS Magazine,
Online First, 24 April 2023.

e https://ems.press/content/serial-article-files/27673
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Current research projects

CNIT / WiLab - Huawei Joint Innovation Center (JIC)

Project on GENEOs for 6G ’7
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Current research projects

Horizon Europe (HORIZON)

Call: HORIZON-CL4-2023-HUMAN-01-CNECT
io: Project: 101135775 — PANDORA

Funding: approximately 9 million euros.

Task 3.3 - Leveraging domain knowledge for explainable learning:
This task aims to investigate the use of domain knowledge in the
development of explainable Al models. Tools like GENEOs for
applications in TDA and ML and new theoretical methods of GENEOs
for explainable Al will be used.
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