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Assumption 1: Data are processed by observers

Data have no meaning without an observer to interpret them.

An observer is an agent that transforms data while preserving their
symmetries.
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Assumption 2: Observers are variables

Data interpretation strongly depends on the chosen observer.
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Assumption 3: Observers are important

We are rarely directly interested in the data, but rather in how
observers react to their presence.

Consequently, we should focus more on the properties of the observers
than on the properties of the data.
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Assumption 4: There is no structure in the data

Generally speaking, data lack inherent structure. Instead, the
structure of data reflects the observer’s own structure.

The shape is not in the data but in the eyes of the observer.
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How can we translate these ideas into mathematics?
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Perception spaces and GENEOs
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Let’s start by defining perception spaces

We recall that a pseudo-metric is just a metric d without the property
d(x1,x2) = 0 =⇒ x1 = x2.

Definition

Let us consider

1. A nonempty set Φ endowed with a pseudo-metric DΦ .

2. Let us denote by the symbol ∗ the left action of a group (G ,◦) on
Φ , and endow G with the pseudo-metric DG defined by setting
DG (g1,g2) := supϕ∈Φ DΦ(g1 ∗ϕ,g2 ∗ϕ) for any g1,g2 ∈ G . We will
also assume that the action of the group G on the metric space
(Φ ,DΦ) is isometric, i.e., for every ϕ1,ϕ2 ∈ Φ and every g ∈ G ,
DΦ(g ∗ϕ1,g ∗ϕ2) = DΦ(ϕ1,ϕ2).

We say that (Φ ,G ) is a perception space.
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Perception spaces

The set Φ represents the data we may get from our measuring tools
(functions, graphs, cloud of points,...). The group G represents the
possible invariances of data the observer may be interested in.
For example, Φ can be a set of grey-level images represented as
functions from R2 to [0,1], while G can be the group of isometries of
the real plane.
Another simple example can be given by the set of electrocardiograms
represented as functions of the time variable, while G can be the
group of time translations.
In any case, the following statement holds.

Proposition

(G ,◦) is a topological group and the action of G on Φ is continuous.
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GEOs and GENEOs

Definition

• Let (Φ ,G ), (Ψ ,K ) be two perception spaces. If a map F : Φ →Ψ

and a group homomorphism T : G → K are given, such that
F (g ∗ϕ) = T (g)∗F (ϕ) for every ϕ ∈ Φ , g ∈ G , we say that
(F ,T ) is an (extended) group equivariant operator (GEO).

• If (F ,T ) is non-expansive (i.e. DΨ (F (ϕ1),F (ϕ2))≤ DΦ(ϕ1,ϕ2) for
every ϕ1,ϕ2 ∈ Φ , and DK (T (g1),T (g2))≤ DG (g1,g2) for every
g1,g2 ∈ G ), we say that (F ,T ) is an (extended) group equivariant
non-expansive operator (GENEO).
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An example of GENEO

When we blur an image by applying a convolution with a rotationally
symmetric kernel whose mass is less than 1 in L1, we are applying a
GENEO (here, we are considering the group of isometries).
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Another example of GENEO

When we compute the convex hull of a cloud of points, we are
applying a GENEO (here, we are considering the group of
isometries).
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Another example of GENEO

For those familiar with topological data analysis and persistence
diagrams, the operator that maps filtering functions to persistence
diagrams constitutes another example of a GENEO.
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Why are GENEOs interesting?

• GENEOs are based on a precise topological/geometric theory
(guaranteeing compactness and convexity properties,
representability by permutant measures, some relevant links with
TDA, and much more).

• GENEOs allow us to represent the information we know about the
chosen observer.

• GENEOs’ non-expansiveness property is a strong constraint,
allowing for relevant data simplification.

• GENEOs allow for a compositional approach to deep learning.

• Studying the shape of the observer space (representable by
GENEOs) is often more important than studying the shape of the
data space.
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Two key observations (1)

Our main goal is to build a robust geometric and compositional theory
for approximating an ideal observer through GENEOs and GEOs.
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Two key observations (2)

GENEOs can be taken as inputs of higher-level GENEOs. Data
obtained through measuring instruments can be seen as GENEOs of
level 0. Therefore, hierarchies of GENEOs can be considered.
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Construction of GENEOs

How can we build GENEOs?

When data are represented by real-valued functions, the space of
GENEOs is closed under composition, computation of minimum and
maximum, translation, direct product, and convex combination.
(However there is much more than this...)

GENEOs are like LEGO bricks that can be combined together to form
more complex GENEOs.
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The main point in the approach based on GENEOs

In perspective, we are looking for a good compositional theory for
building efficient and transparent networks of GENEOs.
Some preliminary experiments suggest that replacing neurons with
GENEOs could make deep learning more transparent and
interpretable and speed up the learning process.
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A reference for the general setting

• Jacopo Joy Colombini, Filippo Bonchi, Francesco Giannini, Fosca
Giannotti, Roberto Pellungrini and Patrizio Frosini,

Mathematical Foundation of Interpretable Equivariant Surrogate
Models,

Proceedings of the World Conference on Explainable
Artificial Intelligence (XAI-2025) (to appear), Novel Post-hoc &
Ante-hoc XAI Approaches, 09-11 July, 2025 - Istanbul, Turkey.
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An interesting case

An important case arises when the elements of the set Φ are
functions and the group G consists of homeomorphisms of Rn. In this
setting, the action of G on Φ is defined via right composition.

Many types of data can be represented as functions:

Images, electrocardiograms, computerized tomography scans, and
more.

Additionally:

• A point cloud C in Rn (where C is equivalent to the function
dC : Rn → R that expresses the distance from C ).

• A graph Γ (where Γ is equivalent to its adjacency matrix, which
can be interpreted as a function).
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GENEOs and Machine Learning

If you are interested, you can find more details about the theory of
GENEOs for functions in these papers:

• M. G. Bergomi, P. Frosini, D. Giorgi, N. Quercioli,

Towards a topological-geometrical theory of group equivariant
non-expansive operators for data analysis and machine learning,

Nature Machine Intelligence, vol. 1(9) (2019), 423–433.

https://www.nature.com/articles/s42256-019-0087-3

• G. Bocchi, P. Frosini, M. Ferri,

A novel approach to graph distinction through GENEOs and
permutants,

Scientific Reports, 15 (2025), 6259.

https://www.nature.com/articles/s41598-025-90152-7
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GENEOs and Machine Learning

For more details about the use of GENEOs in Machine Learning, you
can have a look at this paper:

https://ems.press/journals/mag/articles/10389352
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Research projects (I)
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Research projects (II)
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Finding pockets in proteins by applying GENEOs

GENEOs can be used for the detection of druggable protein pockets.
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Our data

Data sources: the PDBbind v.2020 database (Liu et al., 2017) and
the RCSB PDB (Berman et al., 2003).

The protein structures were preprocessed using the Schrödinger
Protein Preparation Wizard (Schrödinger, The Schrödinger Software.
2020). A total of 12295 protein-ligand complexes from PDBbind and
41519 from the RCSB PDB were retrieved.

The data from PDBbind were used to train a set of models, to select
the best model in terms of scoring, and compare it with other
methods.
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Data preparation

We represent the protein-ligand complex stored in a PDB file as
functions in a compact and convex space.

The space around the protein is discretized using a parallelepiped grid
of cubic voxels. For each voxel, piecewise constant approximations of
8 input functions, or channels ϕi , are computed.

The functions ϕi describe a set of geometrical, physical, and chemical
protein properties that are considered to be relevant for pocket
detection by experts.

The co-crystallized ligand of a protein will be used in the evaluation
step to define the true pocket (i.e. the ground truth) for the
parameters identification.
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The functions ϕi
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GENEOnet

The channels ϕi describing the protein are fed to a layer of 8
GENEOs, F1, . . . ,F8.

Each Fi is a convolutional operator defined by setting
Fi (ϕi ) = ϕi ∗Ki , where Ki is a normalized kernel in L1(R3), symmetric
with respect to the origin. This fact ensures that all the operators
under consideration are indeed non-expansive and equivariant with
respect to rigid motions in R3. Every operator Fi is associated with a
shape parameter σi ∈ R regulating the “amplitude” of the kernel Ki .

The set {F1, . . . ,F8} reflects the experts’ prior knowledge on the
relevant properties to identify a pocket.
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Convex combinations in GENEOnet

The GENEO outputs ψi = Fi (ϕi ) are combined through a convex
combination, with weights α1, . . . ,α8 in order to obtain a composite

operator F
(
(ϕ1, . . . ,ϕ8)

)
= ∑

8
i=1 αiFi (ϕi ), which is a new GENEO.

The output of the convex combination is then normalized to obtain a
function ψ from R3 to [0,1].

The function ψ can be interpreted as the probability that a voxel
belongs to a pocket. The coefficients α1, . . . ,α8 can be regarded as
weights, highlighting the importance of each channel in the pockets
identification.

To obtain pockets, a thresholding operation with a parameter θ is
applied to ψ, producing the binary function ψ̂, which finally can be
compared to the ground truth through a volumetric accuracy function
that will be described later.
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GENEOnet structure
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Training

The data retrieved from the PDBbind were firstly used to train
GENEOnet on the spatial recognition of the true pocket. In order to
identify the unknown parameters, we choose to optimize an accuracy
function evaluating the quality of the prediction.

For each crystallized complex, the ligand has been converted to the
binary function τ that is equal to 1 in the voxels (possibly partially)
overlapped to the ligand, and equal to 0 elsewhere.

The function τ represents our ground truth.
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Training

We train GENEOnet by maximizing the following accuracy function
with respect to our parameters:

ℓ(ψ̂,τ) =
|ψ̂ ∧ τ|+κ|(1− ψ̂)∧ (1− τ)|

|τ|+κ|1− τ|
∈ [0,1].

Here | · | denotes the discretized volume, that is the number of voxels
labelled with 1 inside the region, ψ̂ ∧ τ is a function equal to 1 on the
intersection between the predicted pockets ψ̂ and the true pocket τ,
1 is a constant function equal to 1. All these functions are defined on
the voxelized bounding box built around the protein. They are binary
and piecewise constant on each voxel. The hyperparameter κ ranges
in [0,1] (we saw that the best values belong to [0.01,0.05]).
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Training

The optimization of ℓ(ψ̂,τ) was performed using Adam optimizer.

A random set of 200 proteins from the PDBbind was used as a
training set.

Training time for 50 epochs of the optimization algorithm is
approximately 6 minutes with GPU acceleration (on a laptop
equipped with an NVIDIA GeForce RTX 3060 GPU) and
approximately 40 minutes with only CPU processing (on a laptop
featuring an Intel® CoreTM i7-10870H 8-core CPU).
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Testing

After training, for each protein our trained network of GENEOs
produces a set of predicted pockets, represented as connected
components in the support of ψ̂.

We order these predicted pockets according to a score obtained by
computing the mean value of ψ on each pocket (the higher this value,
the more reliable the predicted pocket according to GENEOnet).

This ordered list is the output of GENEOnet.
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Comparing our results with the ground truth

Now we consider our ordered list and take the predicted pocket Π̂j

that best overlaps the ground truth Π.

Method: We say that a predicted pocket Π̂j ⊂ R3 best overlaps

the true pocket Π⊂ R3 if Π̂j maximizes the value
|Π̂j∧Π|
|Π|

in the set of predicted pockets. In this expression, | · |
denotes the 3D discretized volume of a region, which
corresponds to the number of voxels in that region.

We define Hj as the percentage of times that the best choice in the
list is the j-th choice of GENEOnet.

NB: If no predicted pocket shares any intersection with the true one,
we say that the method failed for that protein.
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Evaluation parameters for testing

Moreover, by computing cumulative sums of the values Hj , we
generate another sequence of coefficients (Tj)j≥1 that represents the
fraction of proteins whose true pocket has been successfully
recognized within the j-th highest-scored predicted pocket, i.e.,

Tj = ∑
j
i=1Hi
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Comparison of GENEOnet with other methods

GENEOnet has ben compared with the following state-of-the-art
methods: Fpocket, P2Rank, DeepPocket, CAVIAR, SiteMap, CavVis.

These methods also evaluate the true pocket as the area outside the
protein that contains the co-crystallized ligand.

Each method we consider orders the pockets it predicts, according to
its scoring procedure. Therefore, we can define the values Hj and Tj

for all those methods.

In the following table, we report estimates of Hj and Tj coefficients
computed on a test set made of 9070 proteins from the PDBbind (this
is about the 75% of the entire data extracted from the PDBbind).
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Comparison of GENEOnet with other methods

43 of 47



Results

Please note that GENEOnet uses only 17 parameters, whereas
a CNN like DeepPocket requires 665,122 parameters.
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GeneoNet webservice

The GeneoNet webservice represents the outcome of our partnership
with Italian Pharmaceutical Company Dompé Farmaceutici S.p.A.:
https://geneonet.exscalate.eu/
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GeneoNet webservice

More information about GeneoNet is available in this paper:

G. Bocchi, P. Frosini, A. Micheletti, A. Pedretti, G. Palermo, D.
Gadioli, C. Gratteri, F. Lunghini, A. R. Beccari, A. Fava, C. Talarico,
A geometric XAI approach to protein pocket detection, The 2nd
World Conference on eXplainable Artificial Intelligence, Valletta,
Malta, July 17-19, 2024, , vol. 3793, 217-224 (2024).
https://ceur-ws.org/Vol-3793/paper_28.pdf
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