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Assumption 1: Data are processed by observers

Data have no meaning without an observer to interpret them.

An observer is an agent that transforms data while preserving their
symmetries.
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Assumption 2: Observers are variables

Data interpretation strongly depends on the chosen observer.
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Assumption 3: Observers are important

We are rarely directly interested in the data, but rather in how
observers react to their presence.

Consequently, we should focus more on the properties of the observers
than on the properties of the data.
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Assumption 4: There is no structure in the data

Generally speaking, data lack inherent structure. Instead, the
structure of data reflects the observer’s own structure.

The shape is not in the data but in the eyes of the observer.
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How can we translate these ideas into mathematics?
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Let’s start by defining perception spaces

We recall that a pseudo-metric is just a metric d without the property
d(x1,x2) = 0 =⇒ x1 = x2.

Definition

Let us consider

1. A nonempty set Φ endowed with a pseudo-metric DΦ .

2. Let us denote by the symbol ∗ the left action of a group (G ,◦) on
Φ , and endow G with the pseudo-metric DG defined by setting
DG (g1,g2) := supϕ∈Φ DΦ(g1 ∗ϕ,g2 ∗ϕ) for any g1,g2 ∈ G . We will
also assume that the action of the group G on the metric space
(Φ ,DΦ) is isometric, i.e., for every ϕ1,ϕ2 ∈ Φ and every g ∈ G ,
DΦ(g ∗ϕ1,g ∗ϕ2) = DΦ(ϕ1,ϕ2).

We say that (Φ ,G ) is a perception space.
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Perception spaces

The set Φ represents the data we may get from our measuring tools
(functions, graphs, cloud of points,...). The group G represents the
possible invariances of data the observer may be interested in.
For example, Φ can be a set of grey-level images represented as
functions from R2 to [0,1], while G can be the group of isometries of
the real plane.
Another simple example can be given by the set of electrocardiograms
represented as functions of the time variable, while G can be the
group of time translations.
In any case, the following statement holds.

Proposition

(G ,◦) is a topological group and the action of G on Φ is continuous.
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GEOs and GENEOs

Definition

• Let (Φ ,G ), (Ψ ,K ) be two perception spaces. If a map F : Φ →Ψ

and a group homomorphism T : G → K are given, such that
F (g ∗ϕ) = T (g)∗F (ϕ) for every ϕ ∈ Φ , g ∈ G , we say that
(F ,T ) is an (extended) group equivariant operator (GEO).

• If (F ,T ) is non-expansive (i.e. DΨ (F (ϕ1),F (ϕ2))≤ DΦ(ϕ1,ϕ2) for
every ϕ1,ϕ2 ∈ Φ , and DK (T (g1),T (g2))≤ DG (g1,g2) for every
g1,g2 ∈ G ), we say that (F ,T ) is an (extended) group equivariant
non-expansive operator (GENEO).
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An example of GENEO

When we blur an image by applying a convolution with a rotationally
symmetric kernel whose mass is less than 1 in L1, we are applying a
GENEO (here, we are considering the group of isometries).
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Another example of GENEO

When we compute the convex hull of a cloud of points, we are
applying a GENEO (here, we are considering the group of
isometries).
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Two key observations (1)

Our main goal is to build a robust geometric and compositional theory
for approximating an ideal observer through GENEOs and GEOs.
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Two key observations (2)

GENEOs can be taken as inputs of higher-level GENEOs. Data
obtained through measuring instruments can be seen as GENEOs of
level 0. Therefore, hierarchies of GENEOs can be considered.
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Construction of GENEOs

How can we build GENEOs?

When data are represented by real-valued functions, the space of
GENEOs is closed under composition, computation of minimum and
maximum, translation, direct product, and convex combination.
(However there is much more than this...)

GENEOs are like LEGO bricks that can be combined together to form
more complex GENEOs.
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The main point in the approach based on GENEOs

In perspective, we are looking for a good compositional theory for
building efficient and transparent networks of GENEOs.
Some preliminary experiments suggest that replacing neurons with
GENEOs could make deep learning more transparent and
interpretable and speed up the learning process.

19 of 50



GENEOs and Machine Learning

If interested, you can find more details about the theory of GENEOs
in these papers:

• M. G. Bergomi, P. Frosini, D. Giorgi, N. Quercioli,

Towards a topological-geometrical theory of group equivariant
non-expansive operators for data analysis and machine learning,

Nature Machine Intelligence, vol. 1(9) (2019), 423–433.

https://www.nature.com/articles/s42256-019-0087-3

• G. Bocchi, P. Frosini, M. Ferri,

A novel approach to graph distinction through GENEOs and
permutants,

Scientific Reports, 15 (2025), 6259.

https://www.nature.com/articles/s41598-025-90152-7
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GENEOs and Machine Learning

For more details about the use of GENEOs in Machine Learning, you
can have a look at this paper:

https://ems.press/journals/mag/articles/10389352
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Research projects (I)
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Research projects (II)
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Research projects (III)

The GeneoNet webservice represents the outcome of our partnership
with Italian Pharmaceutical Company Dompé Farmaceutici S.p.A.:
https://geneonet.exscalate.eu/
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Research projects (III)

GENEOs can be used for the detection of druggable protein pockets.
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Research projects (III)

More information about GeneoNet is available in this paper:

G. Bocchi, P. Frosini, A. Micheletti, A. Pedretti, G. Palermo, D.
Gadioli, C. Gratteri, F. Lunghini, A. R. Beccari, A. Fava, C. Talarico,
A geometric XAI approach to protein pocket detection, The 2nd
World Conference on eXplainable Artificial Intelligence, Valletta,
Malta, July 17-19, 2024, , vol. 3793, 217-224 (2024).
https://ceur-ws.org/Vol-3793/paper_28.pdf
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Collaborators on this research

• Filippo Bonchi (University of Pisa)

• Jacopo Joy Colombini (Scuola Normale Superiore, Pisa)

• Francesco Giannini (Scuola Normale Superiore, Pisa)

• Fosca Giannotti (Scuola Normale Superiore, Pisa)

• Roberto Pellungrini (Scuola Normale Superiore, Pisa)

Reference:

• Jacopo Joy Colombini, Filippo Bonchi, Francesco Giannini, Fosca
Giannotti, Roberto Pellungrini and Patrizio Frosini, Mathematical
Foundation of Interpretable Equivariant Surrogate Models, World
Conference on Explainable Artificial Intelligence (XAI-2025), Novel
Post-hoc & Ante-hoc XAI Approaches, 09-11 July, 2025 - Istanbul,
Turkey.
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What is an explanation?

How can we mathematically and generally formalize the concept of an
explanation provided by an agent, viewed as an operator?
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Basic idea

Informal idea: We could say that the action of an agent A is explained
by another agent B from the perspective of an agent C if:

1. C perceives A and B as similar to each other;

2. C perceives B as less complex than A.
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Basic idea

How can we transform our informal idea into a precise mathematical
model?

Let us begin by formalizing property 1.

Informal idea: We could say that the action of an agent A is explained
by another agent B from the perspective of an agent C if:

1. C perceives A and B as similar to each other;

2. C perceives B as less complex than A.
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An extended pseudo-metric for ALL GEOs

We must introduce a pseudo-metric between GEOs that remains
well-defined even when the GEOs operate on different domains and
produce outputs in distinct codomains. This poses a non-trivial
challenge.

In other words, what does it mean for two GEOs to behave
approximately the same way?
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Our main goal: observer approximation

The previous pseudo-metric is necessary to build a geometric theory
for approximating an ideal observer through GENEOs and GEOs.
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An extended pseudo-metric for ALL GEOs

Informally speaking, two GEOs are considered similar if there exist two
horizontal GENEOs that make this diagram “nearly commutative”,
with the same holding true in the opposite direction:

We can measure the non-commutativity of each diagram by a
cost function .
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An example

Suppose we have two neural networks for edge detection in images,
represented as GEOs.

The two neural networks are considered close if there exist two pairs of
horizontal GENEOs that make these diagrams “nearly commutative”.
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An extended pseudo-metric for ALL GEOs

To formalize our new pseudo-metric dE between GEOs, let us
consider the category Sall whose objects are all perception spaces, and
whose morphisms (F ,T ) : (Φ ,G )→ (Φ ′,G ′) are GENEOs.
The morphisms in Sall are called translation GENEOs. These
morphisms describe the possible “logical correspondences” between
data represented by different perception spaces.

For example, a translation GENEO might transform high-resolution
images into low-resolution images.
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An extended pseudo-metric for ALL GEOs

Let us choose a set G of GEOs. Therefore,

G = {(Fα ,Tα) : (Φα ,Gα)→ (Ψα ,Kα)}α∈A.

To proceed with the definition of our pseudo-metric on G , we need to
specify which logical correspondences between data we consider
admissible. To this end, let us consider a small subcategory S of the
category Sall .

G will be the set of GEOs where we will define our pseudo-
metric, while the morphisms in S will be the translation GE-
NEOs considered admissible.
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Definition of the explainability distance

Let

(Fα ,Tα) : (Φα ,Gα)→ (Ψα ,Kα)

(Fβ ,Tβ ) : (Φβ ,Gβ )→ (Ψβ ,Kβ )

be two GEOs in the given set of GEOs G .
Let us consider a pair

π =
(
(Lα,β ,Pα,β ),(Mβ ,α ,Qβ ,α)

)
of morphisms in S, with

• (Lα,β ,Pα,β ) a morphism from (Φα ,Gα) to (Φβ ,Gβ ),

• (Mβ ,α ,Qβ ,α) a morphism from (Ψβ ,Kβ ) to (Ψα ,Kα),

Note that the two GENEOs have opposite directions. We say that π

is a crossed pair of translation GENEOs from (Fα ,Tα) to (Fβ ,Tβ ).
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Definition of the explainability distance

Figure: A crossed pair of translation GENEOs.
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Definition of the explainability distance

To proceed, we need to equip each metric space Φα with a Borel
probability measure µα . In simple terms, the measure µα represents
the probability of the data points in Φα appearing in our experiments.

We will assume that all GENEOs in S are not just distance-decreasing
(i.e., non-expansive) but also measure-decreasing, i.e., if
(Lα,β ,Pα,β ) : (Φα ,Gα)→ (Φβ ,Gβ ) belongs to S and the set A⊆ Φα

is measurable for µα , then Lα,β (A) is measurable for µβ , and
µβ (Lα,β (A))≤ µα(A) (We recall that GENEOs are not surjective, in
general).
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Definition of the explainability distance

We also assume that the function that takes each ϕ ∈ Φα to

fα,β (ϕ) := DΨ

(
(Mβ ,α ◦Fβ ◦Lα,β )(ϕ),Fα(ϕ)

)
is integrable with

respect to the probability measure µα defined on the dataset Φα .
The functional cost of π is defined by setting

cost(π) :=
∫

Φα

DΨ

(
(Mβ ,α ◦Fβ ◦Lα,β )(ϕ),Fα(ϕ)

)
dµα .

The value cost(π) quantifies how far the two paths in the next figure
are from being equivalent, on average, when ϕ is randomly selected in
Φα according to the probability measure µα .
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Definition of the explainability distance

Figure: The explainability distance we are going to define measures how far
the green path and the red path are from being equivalent, on average.
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Definition of the explainability distance

We can formalize the new pseudo-metric dE on G by defining
dE (GEO1,GEO2) as the infimum of the maximum between the cost
of π1 and the cost of π2, over all crossed pairs π1 of admissible
translation GENEOs from GEO1 to GEO2 and all crossed pairs π2 of
admissible translation GENEOs from GEO2 to GEO1.

Formally, dE (GEO1,GEO2) is equal to
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Definition of the explainability distance

Proposition

dE is an extended pseudo-distance.

The non-expansiveness of GENEOs is a key component in the defi-
nition of dE .

In simple terms, the value dE ((Fα ,Tα),(Fβ ,Tβ )) measures the cost of
changing (Fα ,Tα) into (Fβ ,Tβ ).

When dE ((Fα ,Tα),(Fβ ,Tβ )) is small, it indicates that
the GEOs (Fα ,Tα) and (Fβ ,Tβ ) act approximately in
the same way on the data they process, on average.
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Back to the basic idea of explanation

Let us recall our informal idea.

Informal idea: We could say that the action of an agent A is explained
by another agent B from the perspective of an agent C if:

1. C perceives A and B as similar to each other; ✓

2. C perceives B as less complex than A.

The formalization of 1 is completed using the pseudo-metric dE .
How about the formalization of 2?
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Complexity of GEOs

Let us assume a set Γ = {(Fi ,Ti ) : (Φi ,Gi )→ (Ψi ,Ki )} of GEOs is
given. We will say that Γ is our internal library. For each GEO
(Fi ,Ti ) ∈ Γ we arbitrarily choose a value ci representing the
complexity comp((Fi ,Ti )) of (Fi ,Ti ).
Let us now consider the closure of Γ, i.e., the minimal set Γ̄ such that
• Γ̄⊇ Γ;
• Γ̄ is closed under composition (i.e., if (F ,T ),(F ′,T ′) ∈ Γ̄ are
composable, then (F ′,T ′)◦ (F ,T ) ∈ Γ̄);

• Γ̄ is closed under direct product (i.e., if the GEOs
(F ,T ),(F ′,T ′) ∈ Γ̄, then (F ,T )⊗ (F ′,T ′) ∈ Γ̄).

Each composition and direct product is associated with a complexity.
The complexity of each GEO (F ,T ) ∈ Γ̄ is obtained by minimizing the
sum of the complexities of the GEOs (Fi ,Ti ) that we use and the
complexities of the compositions and direct products that we apply to
build (F ,T ).
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Back to the basic idea of explanation

Informal idea: We could say that the action of an agent A is explained
by another agent B from the perspective of an agent C if:

1. C perceives A and B as similar to each other; ✓

2. C perceives B as less complex than A. ✓

Our theoretical construction is now complete.
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A mathematical concept of explanation

Now we can formalize our mathematical concept of explanation.
Specifically, we can define it as follows: The action of an agent
represented by a GEO (Fα ,Tα) is explained at a level ε by the

action of another agent of complexity less than k represented by a

GEO (Fβ ,Tβ ) ∈ Γ̄ when dE ((Fα ,Tα),(Fβ ,Tβ ))≤ ε.
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Summary

To sum up, GENEOs are novel mathematical tools designed to
approximate agents acting on data—particularly equivariant neural
networks—through a compositional approach. They are generally
interpretable, which makes them potentially valuable for explainable
artificial intelligence (XAI).
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