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About my talk

• The purpose of this talk is to illustrate my research activity in the
fields of Topological Data Analysis (TDA) and Geometric Deep
Learning (GDL), also describing some recent theoretical results and
their applicability in concrete cases.

• I will limit the technical details to the bare minimum, while taking
care to present formally precise results after a few introductory
slides.

• I will also show some examples that will hopefully clarify the
concepts presented.
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What is TDA, in practice?

Informally speaking, TDA can be seen as a particular stable
topological operator that transforms objects belonging to a
high-dimensional space into simpler descriptors. Stability is with
respect to appropriate metrics: these metrics are a key
ingredient in the theory. Let us see how TDA can transform a
closed curve into a simpler object.
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Persistence diagrams have good properties

The operator that computes the persistence diagrams thus allows the
projecting of high-dimensional topological spaces onto
low-dimensional topological spaces. In other words, TDA helps us to
select the information that is considered most important in our
application.

The usefulness of this operator depends on the following properties:

• TDA is invariant under homeomorphisms of the domain of the
functions we consider (i.e., our data). In other words, it does not
depend on the parameterization we are using.

• It can be approximated easily and quite quickly using
algorithmic procedures.

• It admits stability results with respect to noise.
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When was TDA born?

The history of TDA begins (ante litteram) with these papers:

• P. Frosini, A distance for similarity classes of submanifolds of a
Euclidean space, Bulletin of the Australian Mathematical Society,
42, 3 (1990), 407-416.

• P. Frosini, Measuring shapes by size functions, Proc. of SPIE,
Intelligent Robots and Computer Vision X: Algorithms and
Techniques, Boston, MA 1607 (1992), 122-133.

For more details, see

• H. Edelsbrunner and D. Morozov, Persistent homology: theory and
practice, In: European Congress of Mathematics, pages 31—50,
European Mathematical Society, Zürich (2013).

• https:

//en.wikipedia.org/wiki/Topological_data_analysis
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The definition of dG

Let X and G be a compact metric space and a subgroup of the
group Homeo(X ) of all homeomorphisms from X to X , respectively.
If ϕ1,ϕ2 are two continuous and bounded functions from X to R we

can consider the value infg∈G ∥ϕ1−ϕ2 ◦g∥∞ . This value is called

the natural pseudo-distance dG (ϕ1,ϕ2) between ϕ1 and ϕ2 with
respect to the group G .

We endow both C 0(X ,R) and G with the topology of uniform
convergence, so that G becomes a topological group acting
continuously on C 0(X ,R) by composition on the right.
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The definition of dG

If G is the trivial group Id, then dG is the max-norm distance
∥ϕ1−ϕ2∥∞. Moreover, if G1 and G2 are subgroups of Homeo(X ) and
G1 ⊆ G2, then

dHomeo(X )(ϕ1,ϕ2)≤ dG2(ϕ1,ϕ2)≤ dG1(ϕ1,ϕ2)≤ ∥ϕ1−ϕ2∥∞

for every ϕ1,ϕ2 ∈ C 0(X ,R).

We usually restrict dG to Φ ×Φ , where Φ is a bounded subset of
C 0(X ,R).
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Our ground truth: the natural pseudo-distance dG

The natural pseudo-distance dG is our ground truth: it describes
the differences that the observer can perceive between the
measurements in Φ with respect to the equivalence expressed by the
group G .

A possible objection: “The use of the concept of homeomorphism
makes the natural pseudo-distance dG difficult to apply. For example,
in shape comparison two similar objects can be non-homeomorphic,
hence this pseudo-metric cannot be applied to real problems.”

11 of 70



A possible objection

Answer: the homeomorphisms do not concern the “objects”
but the space X where the measurements are made.

• For example, if we are interested in grey level images, the domain
of our measurements can be modelled as the real plane and each
image can be represented as a function from R2 to R. Therefore,
the space X is not given by the (possibly non-homeomorphic)
objects displayed in the pictures, but by the topological space R2.

• If we make two CAT scans, the topological space X is always given
by a helix turning many times around a body, and no requirement
is made about the topology of such a body.

In other words, it is usually legitimate to assume that the topological
space X is determined only by the measuring instrument we are using
to get our measurements.
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dG and critical values: manifolds

Theorem

Assume that M is a closed manifold of class C 1 and that
ϕ1,ϕ2 : M → R are C 1. Set d := dHomeo(M )(ϕ1,ϕ2). Then a positive
integer k exists such that one of the following properties holds:

1) k is odd and kd is the distance between a critical value of ϕ1 and a
critical value of ϕ2;

2) k is even and kd is either the distance between two critical values
of ϕ1 or the distance between two critical values of ϕ2.

• P. Donatini, P. Frosini, Natural pseudodistances between closed
manifolds, Forum Mathematicum, vol. 16 (2004), n. 5, 695-715.
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dG and critical values: surfaces

Theorem

Assume that S is a closed surface of class C 1 and that
ϕ1,ϕ2 : S → R are C 1. Set d := dHomeo(S )(ϕ1,ϕ2). Then at least
one of the following properties holds:

1) d is the distance between a crit. value of ϕ1 and a crit. value of ϕ2;

2) d is half the distance between two critical values of ϕ1;

3) d is half the distance between two critical values of ϕ2;

4) d is one third of the distance between a critical value of ϕ1 and a
critical value of ϕ2.

• P. Donatini, P. Frosini, Natural pseudodistances between closed
surfaces, Journal of the European Mathematical Society, vol. 9
(2007), n. 2, 331–353.
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dG and critical values: curves

Theorem

Assume that C is a closed curve of class C 1 and that ϕ1,ϕ2 : C → R
are C 1. Set d := dHomeo(C )(ϕ1,ϕ2). Then at least one of the following
properties holds:

a) d is the distance between a crit. value of ϕ1 and a crit. value of ϕ2;

b) d is half the distance between two critical values of ϕ1;

c) d is half the distance between two critical values of ϕ2.

• P. Donatini, P. Frosini, Natural pseudo-distances between closed
curves, Forum Mathematicum, vol. 21 (2009), Issue 6, 981–999.

The last theorem is sharp, as shown by the following examples.
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dG and critical values: curves

Let us consider the two embeddings of S1 in R2 represented in the
following figure. The ordinate y defines two filtering functions ϕ1,ϕ2

on S1. In this case dHomeo(S1)(ϕ1,ϕ2) = |ϕ1(A)−ϕ(B)| is the distance
between a critical value of ϕ1 and a critical value of ϕ2.
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dG and critical values: curves

Let us consider the two embeddings of S1 in R2 represented in the
following figure. The ordinate y defines two filtering functions ϕ1,ϕ2

on S1. In this case dHomeo(S1)(ϕ1,ϕ2) =
1
2 |ϕ1(A)−ϕ(B)| is half the

distance between two critical values of ϕ1.
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Optimal homeomorphisms

Assume that X is a compact topological space and ϕ1,ϕ2 : X →R are
continuous functions. Let G be a subgroup of Homeo(X ). We say
that a homeomorphism g ∈ G is optimal in G for (ϕ1,ϕ2) if
∥ϕ1−ϕ2 ◦g∥∞ = dG (ϕ1,ϕ2). The following result holds for optimal
homeomorphisms.

Theorem

Assume that M is a C 1 closed manifold and that ϕ1,ϕ2 : M → R are
of class C 1. If an optimal homeomorphism g ∈ Homeo(M ) for
(ϕ1,ϕ2) exists, then dHomeo(M )(ϕ1,ϕ2) is the distance between a
critical value of ϕ1 and a critical value of ϕ2.
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A KEY OBSERVATION

The natural pseudo-distance can be seen as a ground
truth in our model but, unfortunately, computing this
pseudo-metric is difficult, since the group G is often
too large.

How can we get information about the natural
pseudo-distance dG?

We need a new idea: persistent homology.
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What is persistent homology?

If ϕ : X → R is a continuous function, we can consider the sublevel
sets Xt := {x ∈ X : ϕ(x)≤ t}. When t varies we see the birth and
death of k-dimensional holes.
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What is persistent homology?

In plain words, the persistence diagram Dgmk(ϕ) in degree k of ϕ

is the collection of the pairs (bi ,di ) where bi and di are the times of
birth and death of the i-th hole of dimension k .

The points of the persistence diagram are endowed with
multiplicities.
Each point of the diagonal u = v is assumed to be a point of
the persistence diagram, endowed with infinite multiplicity.
23 of 70



What are the Persistent Betti Numbers Functions?

Persistence diagrams are not quite suitable for statistical purposes,
because no good definition of average of persistence diagrams exists.
Persistent Betti numbers functions are more suitable for statistics.

Definition

The k-th persistent Betti numbers function βk(u,v) is the number
of holes of dimension k whose time of birth is smaller than u and
whose time of death is greater than v .
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What are the Persistent Betti Numbers Functions?

More precisely:

Definition

Let ϕ : X → R be a continuous function. If u,v ∈ R and u < v , we
can consider the inclusion i of Xu into Xv . Such an inclusion induces
a homomorphism i∗ : Hk (Xu)→ Hk (Xv ) between the homology
groups of Xu and Xv in degree k . The group
PH

ϕ

k (u,v) := i∗ (Hk (Xu)) is called the k-th persistent homology
group with respect to the function ϕ : X → R, computed at the point
(u,v). The rank rk(ϕ)(u,v) of this group is called the k-th
persistent Betti numbers function with respect to the function
ϕ : X → R, computed at the point (u,v).

The average of persistent Betti numbers functions can be
trivially defined as the usual average of real-valued functions.
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What are persistent Betti numbers functions?

The use of averages of persistent Betti numbers functions in degree 0
firstly appeared in the papers

• P. Donatini, P. Frosini, A. Lovato, Size functions for signature
recognition, Proceedings of SPIE, Vision Geometry VII, vol. 3454
(1998), 178–183.

• M. Ferri, P. Frosini, A. Lovato, C. Zambelli, Point selection: A new
comparison scheme for size functions (With an application to
monogram recognition), Proceedings Third Asian Conference on
Computer Vision, Lecture Notes in Computer Science 1351, vol. I,
R. Chin, T. Pong (editors) Springer-Verlag, Berlin Heidelberg
(1998), 329–337.

These papers also introduce the first vectorization method for TDA:
each point of the considered persistence diagram is replaced with a
suitable function (usually a Gaussian function centered at that point).
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What are persistent Betti numbers functions?

If we use Čech homology, persistence diagrams are equivalent to
persistent Betti numbers functions:

• Patrizio Frosini, Claudia Landi, Size theory as a topological tool for
computer vision, Pattern Recognition And Image Analysis, vol. 9
(4) (1999), 596-603.
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Comparison of persistent Betti numbers functions

Persistence diagrams (and hence persistent Betti numbers functions)
can be compared by means of the bottleneck distance dmatch. The

bottleneck distance dmatch(D1,D2) between two persistence diagrams

D1, D2 is the minimum cost of moving the points of D1 to the points
of D2, where the cost of moving each point is given by the max-norm
distance in R2. Moving a point to the diagonal is equivalent to
delete it.
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The PBNFs give lower bounds for dG

A fundamental property of the metric dmatch is its stability:

Theorem

If k is a natural number and ϕ1,ϕ2 ∈ C 0(X ,R), then

dmatch(Dgmk(ϕ1),Dgmk(ϕ2))≤ dHomeo(X )(ϕ1,ϕ2)≤ ∥ϕ1−ϕ2∥∞
.

• D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, Stability of
persistence diagrams, Discr. Comput. Geom., 37:103–120, 2007.

• M. d’Amico, P. Frosini and C. Landi (2005), Natural
pseudo-distance and optimal matching between reduced size
functions, Technical Report no. 66, DISMI, University of Modena
and Reggio Emilia, Italy. (case k = 0)
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Limitations of TDA (1)

So the theory does what it promises: TDA gives us
a lower bound for the natural pseudo-distance
dG when G = Homeo(X ):

dmatch(Dgmk(ϕ1),Dgmk(ϕ2))≤ dHomeo(X )(ϕ1,ϕ2).

By definition, this is also a lower bound for dG when
G ⊂ Homeo(X ), but it is not a good lower bound, in
general.
How can we get good lower bounds for dG in
the general case?
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Limitations of TDA (2)

When TDA was born, it was data-centric, but in many
cases, data analysis is highly dependent on the
observer (think, for example, of judging a film).
How can we adapt TDA according to this
remark?
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A topological theory for spaces of observers

We need to develop a topological theory for spaces
of observers. The main question is not “What is the
shape of data?” but “What is the shape of
observers?”
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Representing observers as equivariant operators

Observers are structures able to change data into other data, and
usually do that by respecting some data equivalences, i.e., by
commuting with some transformations.

As a first approximation, observers can be represented as group
equivariant operators (GEOs).

In this talk we will illustrate some results on the theory of Group
Equivariant Non-Expansive Operators (GENEOs).

Why “non-expansive”?
Because

1 observers are often assumed to simplify the metric structure
of data in order to produce meaningful interpretations;

2 non-expansiveness guarantees good topological properties.
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How could we represent observers?

https://rdcu.be/bP6HV
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All begins with the space of admissible functions

Let X be a nonempty set. Let Φ be a topological subspace of the set
RX
b of all bounded functions ϕ from X to R, endowed with the

topology induced by the metric

DΦ(ϕ1,ϕ2) := ∥ϕ1−ϕ2∥∞
.

We can see X as the space where we can make our measurements,
and Φ as the space of all possible measurements. We will say that Φ
is the set of admissible functions. In other words, Φ is the set of
all functions from X to R that can be produced by our
measuring instruments (or by other observers). For example, a
gray-level image can be represented as a function from the real plane
to the interval [0,1] (in this case X = R2).
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Perception pairs

Let us consider a group G of bijections g : X → X such that
ϕ ∈ Φ =⇒ ϕ ◦g ∈ Φ for every ϕ ∈ Φ. We say that (Φ,G ) is a
perception pair.

The choice of a perception pair states which data can be considered
as legitimate measurements (the functions in Φ) and which group
represents the equivalence between data (the group G ).

To proceed, we need to introduce suitable topologies on X and G .
Before doing that, we recall that the initial topology τin on X with
respect to Φ is the coarsest topology on X such that every function ϕ

in Φ is continuous.
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A pseudo-metric on X

Let us define on X the pseudo-metric

DX (x1,x2) = sup
ϕ∈Φ

|ϕ(x1)−ϕ(x2)|.

DX induces a topology τDX
on X .

The use of DX implies that we can distinguish two points only if a
measurement exists, taking those points to different values.

Proposition

The topology τDX
is finer than the initial topology τin on X with

respect to Φ. If Φ is totally bounded, then τDX
coincides with τin.
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A pseudo-metric on X

The following properties are of use in our model.

Proposition

Every function in Φ is non-expansive, and hence continuous.

Proposition

If Φ is compact and X is complete, then X is compact.

In the following, we will usually assume that Φ is compact and X is
complete (and hence compact).
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An interesting outcome: each bijection is an isometry

• BijΦ(X ) =
{
bijections g :X→X s.t. Φ◦g ,Φ◦g−1 ⊆ Φ

}
;

• HomeoΦ(X ) =
{
homeomorphisms g :X→X s.t. Φ◦g ,Φ◦g−1 ⊆ Φ

}
;

• IsoΦ(X ) =
{
isometries g :X→X s.t. Φ◦g ,Φ◦g−1 ⊆ Φ

}
.

Proposition

BijΦ(X ) = HomeoΦ(X ) = IsoΦ(X ).
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A pseudo-metric on G

Let us now focus our attention on a subgroup G of HomeoΦ(X ).
We can define a pseudo-metric DG on G by setting

DG (g1,g2) := sup
ϕ∈Φ

DΦ(ϕ ◦g1,ϕ ◦g2).

Proposition

G is a topological group with respect to DG and the action of G on Φ
by right composition is continuous.

Proposition

If Φ is compact and G is complete, then G is compact.
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GEOs and GENEOs

Each pair (Φ,G ) with G ⊆ HomeoΦ(X ) is called a perception pair.

Let us assume that two perception pairs (Φ,G ), (Ψ ,H) are given, and
fix a group homomorphism T : G → H.

Each function F : Φ→Ψ such that F (ϕ ◦g) = F (ϕ)◦T (g) for

every ϕ ∈ Φ,g ∈ G is called a Group Equivariant Operator (GEO)
associated with the homomorphism T .

If F is also non-expansive (i.e., DΨ (F (ϕ1),F (ϕ2))≤ DΦ (ϕ1,ϕ2) for

every ϕ1,ϕ2 ∈ Φ), then F is called a Group Equivariant
Non-Expansive Operator (GENEO) associated with the
homomorphism T .
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An example of GENEO

Let us assume to be interested in the comparison of the distributions
of temperatures on a sphere, taken at two different times:

Let us also assume that only two opposite points N,S can be
localized on the sphere.
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An example of GENEO

Let us introduce two perception pairs (Φ,G ),(Ψ ,H) by setting

• X = S2

• Φ = set of 1-Lipschitz functions from S2 to a fixed interval [a,b]

• G = group of rotations of S2 around the axis N−S

and

• Y = the equator S1 of S2

• Ψ = set of 1-Lipschitz functions from S1 to [a,b]

• H = group of rotations of S1
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An example of GENEO

This is a simple example of GENEO from (Φ,G ) to (Ψ ,H):

• T (g) is the rotation h ∈ H of the equator S1 that is induced by
the rotation g of S2, for every g ∈ G .

• F (ϕ) is the function ψ that takes each point y belonging to the
equator S1 to the average of the temperatures along the meridian
containing y , for every ϕ ∈ Φ;

We can easily check that F verifies the properties defining the
concept of group equivariant non-expansive operator with respect to
the isomorphism T : G → H.

In plain words, our GENEO simplifies the data by transforming
“temperature distributions on the earth” into “temperature
distributions on the equator”.
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Two key results (and two good news for applications)

Let us assume that a homomorphism T : G → H has been fixed.
Let us define a metric DGENEO on GENEO((Φ,G ),(Ψ ,H)) by setting

DGENEO (F1,F2) := sup
ϕ∈Φ

DΨ (F1(ϕ),F2(ϕ)) .

Theorem

If Φ and Ψ are compact, then GENEO((Φ,G ),(Ψ ,H)) is compact
with respect to DGENEO.

Theorem

If Ψ is convex, then GENEO((Φ,G ),(Ψ ,H)) is convex.
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Two key observations (1)

• While the space of data is often non-convex (and hence averaging
data does not make sense), the assumption of convexity of Ψ
implies the convexity of the space of observers and allows us to
consider the “average of observers”.
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Two key observations (2)

• Our main goal is to develop a good geometric and compositional
theory to approximate an ideal observer. In our model,
“approximate an observer” means to look for a GENEO F that
minimizes a suitable “cost function” c(F ). The cost function
quantifies the error that is committed by taking the GENEO F
instead of the ideal observer. Since the space of GENEOs is
compact and convex (under the assumption that the data spaces
are compact and convex), if the cost function c(F ) is strictly
convex we have that there is one and only one GENEO that best
approximates the ideal observer.
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How can we build linear and nonlinear GENEOs?

https://www.frontiersin.org/articles/10.3389/frai.2022.786091/full
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Elementary methods to build GENEOs

Proposition (Composition)

If F1 ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T1 : G → H and
F2 ∈ GENEO((Ψ,H),(χ,K )) w.r.t. T2 : H → K then
F2 ◦F1 ∈ GENEO((Φ,G ),(χ,K )) w.r.t. T2 ◦T1 : G → K .

Proposition (Image by a 1-Lipschitz function)

If F1, . . . ,Fn ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T : G → H, L is a
1-Lipschitz map from Rn to R, and L∗(F1, . . . ,Fn)(Φ)⊆Ψ (where L∗

is the map induced by L), then
L∗(F1, . . . ,Fn) ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T .

The next three statements follow from the last proposition.
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Elementary methods to build GENEOs

Proposition (LATTICE OF GENEOS)

If F1, . . . ,Fn ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T : G → H and
max(F1, . . . ,Fn)(Φ),min(F1, . . . ,Fn)(Φ)⊆Ψ, then
max(F1, . . . ,Fn),min(F1, . . . ,Fn) ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T .

Proposition (Translation)

If F ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T : G → H, and Fb(Φ)⊆Ψ for
Fb(ϕ) := F (ϕ)−b, then Fb ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T .

Proposition (Convex combination)

If F1, . . . ,Fn ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T : G → H,
(a1, . . . ,an) ∈ Rn con ∑

n
i=1 |ai | ≤ 1 and FΣ(Φ)⊆Ψ for

FΣ(ϕ) := ∑
n
i=1 aiFi (ϕ), then FΣ ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T .
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Permutant measures

Let us consider the set Φ = RX ∼= Rn of all functions from a finite set
X = {x1, . . . ,xn} to R, and a subgroup G of the group Bij(X ) of all
permutations of X .

Definition

A finite (signed) measure µ on Bij(X ) is called a permutant
measure with respect to G if every subset H of Bij(X ) is measurable
and µ is invariant under the conjugation action of G (i.e.,
µ(H) = µ(gHg−1) for every g ∈ G ).

Proposition

If µ is a permutant measure with respect to G , then the map
Fµ : RX → RX defined by setting Fµ(ϕ) := ∑h∈Bij(X ) ϕh−1 µ(h) is a
linear GEO. If ∑h∈Bij(X ) |µ(h)| ≤ 1, then Fµ(ϕ) is a GENEO.
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An example of permutant measure

Let us consider the set X of the vertices of a cube in R3, and the
group G of the orientation-preserving isometries of R3 that take X to
X . Let π1,π2,π3 be the three planes that contain the center of mass
of X and are parallel to a face of the cube. Let hi : X → X be the
orthogonal symmetry with respect to πi , for i ∈ {1,2,3}.
We can now define a permutant measure µ on the group Bij(X ) by
setting µ(h1) = µ(h2) = µ(h3) = c , where c is a positive real number,
and µ(h) = 0 for any h ∈ Bij(X ) with h /∈ {h1,h2,h3}.
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Building GENEOs by permutant measures

It is interesting to observe that the set PM(G ) of permutant measures
with respect to G is a lattice. Indeed, if µ1,µ2 ∈ PM(G ), then the
measures µ ′,µ ′′ on Bij(X ), respectively defined by setting
µ ′(h) := min{µ1(h),µ2(h)} and µ ′′(h) := max{µ1(h),µ2(h)}, still
belong to PM(G ). Moreover, if µ ∈ PM(G ) then |µ| ∈ PM(G ).
Furthermore, PM(G ) is closed under linear combination. Therefore,
PM(G ) has a natural structure of real vector space.

We stress that when the group G becomes larger and larger the
lattice PM(G ) becomes smaller and smaller.
In other words, the theory of permutant measures becomes more and
more useful as the groups get bigger and bigger.
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Building GENEOs by permutant measures

The method for building GENEOs based on permutant
measures can be generalized by replacing the arithmetic mean
with another symmetric function. We can indeed show that when
a symmetric function and a permutant for the equivariance group G
are available, we can easily build a (non-linear) GENEO with respect
to G . First of all, let us recall the concept of permutant, which is
equivalent to the one of permutant measure uniformly distributed on
its support.

Definition

We say that a subset H ⊆ Bij(X ) is a permutant for G if either
H = /0 or gHg−1 = H for every g ∈ G .

Note that a subset H of Bij(X ) is a permutant for G if and only if H
is a union of orbits for the conjugation action of G on Bij(X ).
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Building GENEOs by permutant measures

Let S : Rn → R be a symmetric function. If H = {hi}ni=1 is a
non-empty permutant for G ⊆ BijΦ(X ), then we can define an
operator SH : Φ→ RX

b by setting, for any ϕ ∈ Φ,

SH(ϕ) := S (ϕ ◦h1, . . . ,ϕ ◦hn),

where S (ϕ ◦h1, . . . ,ϕ ◦hn)(x) := S ((ϕ ◦h1)(x), . . . ,(ϕ ◦hn)(x)) for
every x ∈ X .

Proposition

SH is a GEO from (Φ,G ) to (RX
b ,G ) with respect to the identity

homomorphism idG : G → G . If the restriction of S to Im(Φ)n is
non-expansive, then SH is a GENEO from (Φ,G ) to (RX

b ,G ) with
respect to idG .
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How can we represent linear GENEOs?

https://rdcu.be/c5Obw
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Representation Theorem for linear GENEOs

The following theorem strengthens our previous result about building
linear GENEOs via permutant measures.

Theorem (Representation Theorem for linear GENEOs)

Let us assume that G ⊆ Bij(X ) transitively acts on the finite set X
and that F is a map from RX to RX . The map F is a linear GENEO
from RX to RX with respect to the identical homomorphism
IdG : g 7→ g if and only if a permutant measure µ with respect to G
exists, such that F (ϕ) = ∑h∈Bij(X ) ϕh−1 µ(h) for every ϕ ∈ RX , and

∑h∈Bij(X ) |µ(h)| ≤ 1.
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What happens when we apply GENEOs to our data?

An example of use: comparison between real dice and fake dice.

(Experiment and computations by Giovanni Bocchi)
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What happens to data when we apply GENEOs?

We produced 10000 dice (a training set of size 7000 and a test set of
size 3000), then we applied PCA to the test set and to the test set
transformed by a suitable GENEO, optimized on the training set:

For each die the first two principal components are plotted. Blue
points are associated with real dice, while orange ones with fake
dice. The GENEO we use was built by a convex combination of 3
GENEOs defined by permutant measures.
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A real application: finding pockets in proteins

https://arxiv.org/ftp/arxiv/papers/2202/2202.00451.pdf
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A real application: finding pockets in proteins

The search for the pockets was carried out by identifying an optimal
GENEO in the convex hull of 8 GENEOs (each focused on a
particular property of the pockets).
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A real application: finding pockets in proteins

Here are the results of our experiments:

Please note that GENEOnet uses 17 parameters, while a CNN such as
DeepPocket requires 665122 parameters.
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The main point in our approach

In perspective, we are looking for a good compositional theory for
building efficient and transparent networks of GENEOs.
Some preliminary experiments suggest that replacing neurons with
GENEOs could make deep learning more transparent and
interpretable and speed up the learning process.
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GENEOs and Machine Learning

For more details about the use of GENEOs in Machine Learning:

• A. Micheletti, A new paradigm for artificial intelligence based on
group equivariant non-expansive operators, In: EMS Magazine,
Online First, 24 April 2023.

• https://ems.press/content/serial-article-files/27673
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My current lines of research

I am presently studying these problems:
• What is the expected value of the reconstruction error when we
apply some suitable denoising GENEOs to 1D signals? (P. Frosini,
I. Gridelli, A. Pascucci, A probabilistic result on impulsive noise
reduction in Topological Data Analysis through Group Equivariant
Non-Expansive Operators,
https://arxiv.org/pdf/2202.14021.pdf.)

• How can we extend the theory of GENEOs to graphs? (F. Ahmad,
M. Ferri, P. Frosini, Generalized Permutants and Graph GENEOs,
https://arxiv.org/pdf/2206.14798.pdf.)

• How can we extend the theory of GENEOs to probability spaces of
signals? P. Cascarano, P. Frosini, N. Quercioli, A. Saki, On the
geometric and Riemannian structure of the spaces of group
equivariant non-expansive operators,
https://arxiv.org/pdf/2103.02543.pdf
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A current research project
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