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Persistence diagrams



Let us recall what a persistence diagram is

Let f: X — R be a continuous function. Let us consider the sublevel
sets X := {x € X : f(x) < t} for t varying in R, where the parameter
t is seen as the time.

Informally speaking, the persistence diagram Dgm, () of f in
degree k is the multiset of pairs (b;,d;), where b; and d; denote
the birth and death times of the i-th homological feature (or
“hole”) of dimension k in the filtration (X;) as t increases.

e The points of the persistence diagram are endowed with
multiplicity;
e Each point of the diagonal u = v is assumed to be a point of the
persistence diagram, endowed with infinite multiplicity;
e We can replace the points on the diagonal with just one point A,
counted with infinite multiplicity.
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An example in degree 1
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An example of persistence diagram
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The bottleneck distance

dg (D1, D)

One way to transform D1 into D2

Persistence diagrams can be compared by means of the bottleneck
distance dg. The bottleneck distance dg(D1,D,) between two
persistence diagrams Dy, D> is the minimum cost of matchings
between the two diagrams. The cost of a matching is the maximum
displacement of the points of D; to the points of D, defined by that
matching, where each displacement is given by the sup norm distance
in R? between the points and their images. Moving a point onto the
diagonal means “deleting” it.
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What can we do for vector-valued functions?

In topological data analysis we often have to consider vector-valued
functions instead of scalar functions. As an example, we could have
to compare two closed curves in R2, i.e., two functions

fi,f>: ST — R?. How can we extend the concept of persistence
diagram to this setting?




The foliation method

A not very useful idea is to study the two components f; and £
separately. In this case, the two curves below cannot be distinguished.
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The foliation method

A better idea is to study each filtration associated with a line of
positive slope.
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The chosen line allows to distinguish between these curves.




Bifiltrations and positive slope lines

If we have a bifiltration given by a function f = (f1,£) : X — R?, we
can consider a unit vector (w.r.t. ||-|l1) w=(a,1— a) with a positive
slope, and a point P = (b,—b). Every choice of P and w defines a
filtration {X;} of X, where X; is the set of points of X whose image
by f is both under and on the left of the point P+ tw. As a
consequence, each choice of P and w defines a persistence diagram.
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Bifiltrations and positive slope lines
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Bifiltrations and positive slope lines
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Bifiltrations and positive slope lines
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The normalized function f(’g b)

)

If we set (x,y) = P+tw = (at+ b,(1—a)t — b) and define the
function f, 1)(p) == max{w7 %}, then we can write

Xixy)y =1p € X : fi(p) < x,fa(p) < y} as the set

X ={p X : fiam(p) < t}.

As a consequence, the bifiltration {X(, )} of X leads us to consider
the persistence diagram Dgm, (f, 5)) of the function f, ).

In order to get a stability theorem we have to normalize f(, ) by

setting
fs.p)(P) :=min{a,1—a}-f, )(p).

The persistence diagram ngk(f(’; b)) can be obtained by multiplying
the persistence diagram Dgm,(f(, ) by the value min{a,1— a}.
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Stability of Pmatch

We can define a 2D matching distance Zmach (F,f') by setting
Dnaten (F,f') = SUP(a,b)c]0,1[xR 9B (ngk(f(z.b))vngk(f(/;,b))>-

Theorem (Stability Theorem for the matching distance)
@match(faf,) < ||f_ f/”°°'

The distance Zmaich has been introduced in the paper [S. Biasotti, A.
Cerri, P. Frosini, D. Giorgi, C. Landi, Multidimensional size functions
for shape comparison, Journal of Mathematical Imaging and Vision,
vol. 32 (2008), n. 2, 161-179.]



Some key remarks

e We have seen that biparameter persistence can be compared by a
method that is based on these operators F; :

Fos(fi f) = Dgm, (min{a, |- a} max{ ﬂ(”;_ b fap)+ b}> |

1—-a

e The operators F,;, are invariant under reparametrization: if
h: X — X is a homeomorphism, then

Fau(fi, o) = Fap(fioh,fa0h).

* The operators F, ;, are non-expansive:
ds (Fab(fi, f2), Fan(F'1,'2)) < I(f1,22) = (F'1, f"2) |

Operators of this kind fall under the definition of group equivariant

non-expansive operators (| GENEOs ).



Some basics on the theory of GENEOs



Let's start by defining perception spaces

We recall that a pseudo-metric is just a metric d without the property
d(Xl,XQ) =0 = x1 = x.

Definition
Let us consider
1. A nonempty set @ endowed with a pseudo-metric Dg.

2. Let us denote by the symbol * the left action of a group (G,o) on
@, and endow G with the pseudo-metric D¢ defined by setting
D¢ (g1,82) :=supsee Do(g1+f,go*f) for any g1,82 € G. We will
also assume that the action of the group G on the metric space
(@, Dg) is isometric, i.e., for every fi,f» € @ and every g € G,
D(p(g* fl,g* fz) = D<p(f1, fz)

We say that (@, G) is a perception space.

b



Perception spaces

The set @ represents the data we may get from our measuring tools
(functions, graphs, cloud of points,...). The group G represents the
possible invariances of data the observer may be interested in.

For example, @ can be a set of grey-level images represented as
functions from R? to [0,1], while G can be the group of isometries of
the real plane.

Another simple example can be given by the set of electrocardiograms
represented as functions of the time variable, while G can be the
group of time translations.

In any case, the following statement holds.

Proposition

(G,o0) is a topological group and the action of G on ® is continuous.
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GEOs and GENEOs

Definition

e Let (@,G), (¥,K) be two perception spaces. If a map F: ¢ — ¥
and a group homomorphism T : G — K are given, such that
F(g«f)= T(g)*F(f) for every f € ®, g € G, we say that (F, T)
is an (extended) group equivariant operator (GEO).

e If (F, T) is non-expansive (i.e. Dy(F(f1),F(f)) < Dg(fi,1) for
every f1,f, € @, and Dk (T (g1), T(82)) < Dc(81,82) for every
81,8 € G), we say that (F, T) is an (extended) group equivariant
non-expansive operator (GENEO).

See [Jacopo Joy Colombini, Filippo Bonchi, Francesco Giannini, Fosca
Giannotti, Roberto Pellungrini and Patrizio Frosini, Mathematical
Foundation of Interpretable Equivariant Surrogate Models, World
Conference on Explainable Artificial Intelligence (XAI-2025), 09-11
July, 2025 - Istanbul, Turkey.]



An example of GENEO

When we blur an image by applying a convolution with a rotationally

symmetric kernel whose mass is less than 1 in L, we apply a GENEO:

o T :Isom(R?) — Isom(R?) is the identity homomorphism;

o (F,T):(Cc(R%][0,1]3),Isom(R?)) — (C. (R?,[0,1]*) ,Isom(IR?))
is a GENEO.

Here, the max-norm
distance between
functions is used.

2) Blurring does not
increase the distance
between the images.




Another example of GENEO

When we compute the convex hull of a cloud of points, we apply a
GENEO:

e % = the collection of all finite nonempty subsets of the real plane;
e & = the collection of all convex nonempty subsets of the real plane;
T : Isom(R?) — Isom(IR?) is the identity homomorphism;

(F,T): (Z,Isom(R?)) — (¢,Isom(R?)) is a GENEO.

Here, the

Hausdorff distance

between compact
sets is used.

2) The operation of taking
the convex hull does not
increase the Hausdorff
distance between sets.




Another example of GENEO

The operator taking each filtering function f : X — R to its

persistence diagram is another example of GENEO:

e DGM is the metric space of all persistence diagrams of real-valued
continuous functions defined on a topological space X;

e {id} is the trivial group acting on DGM, consisting only of the
identity map;

e T is the trivial homomorphism from Homeo(X) to {id};

e (F,T):(C(X,R),Homeo(X)) — (DGM,{id}) is a GENEO.




Another example of GENEO

e Equivariance of (F, T) = invariance of persistence diagrams under
reparameterization of the domain.

e Nonexpansiveness of (F, T) = stability of persistence diagrams.




GENEOs and Machine Learning

If interested, you can find more details about the theory of GENEOs
in these papers:

e M. G. Bergomi, P. Frosini, D. Giorgi, N. Quercioli, Towards a
topological-geometrical theory of group equivariant non-expansive
operators for data analysis and machine learning, Nature
Machine Intelligence, vol. 1(9) (2019), 423-433.

e G. Bocchi, P. Frosini, M. Ferri, A novel approach to graph
distinction through GENEQOs and permutants, Scientific Reports,
15 (2025), 6259.



GENEOs and Machine Learning

e A. Micheletti, A new paradigm for artificial intelligence based on
group equivariant non-expansive operators, European
Mathematical Society Magazine, 128 (2023), 4-12.

e G. Bocchi, P. Frosini, A. Micheletti, A. Pedretti, G. Palermo, D.
Gadioli, C. Gratteri, F. Lunghini, A. D. Biswas, P. F.W. Stouten,
A. R. Beccari, A. Fava, C. Talarico, GENEOnet: A breakthrough in
protein binding pocket detection using group equivariant
non-expansive operators, Scientific Reports, (2025) (to appear).



Research projects (1)

CNIT / WiLab - Huawei Joint Innovation Center (JIC)

Project on GENEOs for 6G ’7
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Research projects (Il)

P/ANDOMR/A\

Horizon Europe (HORIZON)

Call: HORIZON-CL4-2023-HUMAN-01-CNECT
Project: 101135775-PANDORA

Funding: approximately 9 million euros.

Task 3.3 - Leveraging domain knowledge for explainable learning:

This task aims to investigate the use of domain knowledge in the development
of explainable Al models. Tools like GENEOs for applications in TDA and ML
and new theoretical methods of GENEOs for explainable Al will be used.

https://pandora-heu.eu/consortium/

b


https://pandora-heu.eu/consortium/

Research projects (I11)

B2 GeneoNet T - |

GeneoNet

fon of binding pocketsin profeins is crucial for understanding proein function, drug
Jating protein function, predicting protein protein interactions, and faciltating sructural
i logical systems and

The GeneoNet webservice represents the outcome of our partnership
with Italian Pharmaceutical Company Dompé Farmaceutici S.p.A.:
https://geneonet.exscalate.eu/

b


https://geneonet.exscalate.eu/

TAKE-AWAY MESSAGE (1)

N
e GENEOs are useful tools for TDA and Machine Learning;
e The computation of persistence diagrams is a special case
of a GENEO;
e The classical matching distance is based on the GENEOs
Fab.
\. J




Modifying GENEOs to derive new distances in TDA



Contributors to this research

Joint work with:

e Ulderico Fugacci (IMATI-CNR, Genoa, Italy)

Eloy Mésig Garcia (University of Pisa, ltaly)

Nicola Quercioli (University of Bologna and WiLab-CNIT, Italy)
Sara Scaramuccia (University of Rome Tor Vergata, ltaly)
Francesca Tombari (University of Oxford, UK)
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The GENEOs F, , have some drawbacks

e They depend on two parameters, which makes the computation
non-trivial.

e The map taking (f1,£) to min{a,l—a}.max{ (a) b fz(1 )+b} "
not differentiable.

Why not replace them with different GENEOs that depend on a single
parameter and are more regular?

Fap = Fi




Let's consider a new GENEO

For each t € [0,1], let us consider the operator
Fe(fi, ) == Dam, (1 )i+ th).

We observe that
(Fi T) (C(X,R2),Homeo(X)) ~ (DGM, {id})

is a GENEO for any t € [0,1], provided that

e DGM is the metric space of all persistence diagrams of real-valued
continuous functions defined on the compact topological space X;

e {id} is the trivial group acting on DGM, consisting only of the

identity map;
e T :Homeo(M) — {id} is the trivial homomorphism.

Remark

This approach can be easily extended to functions taking values in R”.
b



Let's make a comparison

Let us compare F;p and F;:

Fas(fi, 2) == Dgmy (min{a, 1 a} max{ 55, 42 1)

F:(fi,f) :=Dgm, ((1 e tf2>

Remark: Infinitely many other examples of parametric families of
GENEOs can be given. For example, the following:

Filfi, o) == Demy (1= t) max(f, &) + tmin(fy, ) )for ¢ € [0, 1];

1
- 1 1 T
Fi(f1, ) :ngk<<2f1]t+2\f2\t> )for t>1.

b



Why prefer one GENEO over another?

Naturally, the choice to replace F,; with F; has both advantages and
disadvantages:

® F; can be computed more easily than F, p;
e F; is based on a smooth function, whereas F, ;, is not;
however:

* F,p(f1,f2) contains more information than F;(fi,f>) about the pair
of functions (f1,1%).

Consequently, the choice between F,, and F; (or other GENEOs) is
subjective and depends on the application at hand. In this talk, we
aim only to illustrate some of the possibilities offered by choosing F;.



The simplicial matching distance

Just as the operator F,p allows the introduction of the classical
matching distance, the operator F; likewise allows the introduction of
a new pseudo-metric.

Assume that X is a compact and locally path-connected metric space.
If f=(f,H): X —R? let usset ft:=(1—t)f +tf, for any t € [0,1].
If £, : X — R? are two continuous functions, let us define

Ds(fa f/) = MaXe[o,1] dg (ngk(ft)angk(f/t)) :

The distance Ds is called the simplicial matching distance.
Proposition

Ds is a stable pseudo-metric (i.e., Ds(f,f") < ||f — F'||).

b



A related concept

The persistent homology transform (PHT) is a topological transform
which takes as input a subset of a Euclidean space, and to each unit
vector assigns the persistence module of the height function over that
subset with respect to that direction. A distance between two subsets
is defined by integrating over the sphere the distance between the
respective extended persistence modules.

e K. Turner, S. Mukherjee, and D. M. Boyer, Persistent homology
transform for modeling shapes and surfaces, Inf. Inference 3
(2014), no. 4, 310-344.

e K. Turner, V. Robins, and J. Morgan, The extended persistent
homology transform of manifolds with boundary, J Appl. and
Comput. Topology 8, 2111-2154 (2024).



Differences between these two approaches

PHT GENEOs
1. PHT acts on a subset X of 1. The GENEO F; acts on a

the real plane;

2. Knowing the coordinate
functions from X to R? is
equivalent to knowing X;

. PHT considers unit vectors
with respect to the Euclidean
metric.

vector-valued function
f=(h,fH): X =R

. Knowing the input f of the

GENEO F; does not allow
reconstruction of X;

. The GENEO F; is based on

convex combinations, i.e., unit
vectors with respect to the
L'-norm, with non-negative
components.

The last one is a key point: it implies non-expansiveness and allows
us to use the structure illustrated in the next slides: the Pareto grid.



Some technical assumptions

To define the Pareto grid, we need some technical assumptions.

First, we assume that X is a closed smooth manifold M of dimension
r > 2. Then, we assume that f = (f1,£,) is a smooth map from M to
the real plane R%2. We choose a Riemannian metric on M so that we
can define gradients for f; and f.

The Jacobi set J(f) is the set of all points p € M at which the
gradients of f; and £ are linearly dependent.

If p€ J(f) and Vfi(p)-Vfh(p) <0, we say that the point p is a
critical Pareto point for f. The set of all critical Pareto points of f is
denoted by Jp(f).



Some technical assumptions

If we assume that f : M — R? is regular enough in a suitable sense
(here we skip the technical details), then the Jacobi set is a smooth
1-submanifold of M, consisting of finitely many components, each
one diffeomorphic to a circle.

Furthermore, the set of critical Pareto points at which the gradients
of f; and f, are not orthogonal to the Jacobi set is made of a finite
family {o'} of arcs. Along these arcs, one of f; and f, is strictly
increasing and the other is strictly decreasing. Each arc o' can meet
critical points for fi,f; only at its endpoints.

For more details: [Y.H. Wan, Morse theory for two functions,
Topology 14 (1975), no. 3, 217-228.]



The Jacobi set

An example f(x.y.2)=(x,z)
on a torus

J(F)




The set of critical Pareto points

An example fF(x.y.2)=(x,2)
on a torus

Jo(F)




The Pareto grid '(f)

Our goal is to establish a formal connection between the position of
the points in Dgm,(f!) and the orthogonal intersections of all lines
with direction (1 — t,t) with a particular subset of the plane R?,
referred to as the Pareto grid of f.

Definition
The Pareto grid I'(f) of f is the image under f of the set Jp(F) of all
critical Pareto points.

The concept of a Pareto grid is closely related to the concept of the
extended Pareto grid introduced in [A. Cerri, M. Ethier, P. Frosini, On
the geometrical properties of the coherent matching distance in 2D
persistent homology, Journal of Applied and Computational Topology,
vol. 3 (2019), n. 4, 381-422.]

b



The Pareto grid: An example

f(xy.2)=(x.2)

The torus endowed with the filtering function f(p) := (x(p), z(p)).




The Pareto grid: An example

@our

The Pareto grid for the torus endowed with the filtering function
f(p) :=(x(p),z(p)). The closures of the images of the previously
cited arcs a' will be called contours of f.




Contour-arcs

We can endow the points of I'(f) with a suitable concept of
multiplicity.

Let Z(f) be the set of double points in ['(f). Each connected
component of I'(f)\ Z(f) is called a contour-arc of f.

double point

Figure: Two contours intersect and form four contour arcs.

b



The Position Theorem

Theorem (Position Theorem per ff = (1—t)f; + tf)

Let w be a finite coordinate of a point in Dgm,(f*'). There exist a
contour-arc o : [O 1] — R? and a T € [0,1] such that

1L @) (1-t,1)=0
2. o7 )-(1—t,t):W.

At the extrema of [0,1] we consider the left and right derivative. The
symbol - denotes the inner product.

The Position Theorem allows us to compute the possible values for
the coordinates of the points in Dgm, (f?).



The Position Theorem

We conjecture that, for any fixed t € [0,1], the set of points at which
lines of direction (1 — t,t) intersect the Pareto grid orthogonally is
finite, provided that the function f is generic.

.




Special values of t

Definition

Let CA(f,f’) be the set of all contour-arcs of f and f’. The special

set of (f,f'), denoted by Sp(F,f’), is the union of {0,1} with the set

of all t €]0,1[ for which at least one of the following properties holds:

1. There exist four lines (possibly not distinct) r1, o, r3, ra with
direction (1—t,t) and four contour-arcs (possibly not distinct)
al,a?, o3, a* € CA(F,f'), such that r; intersects orthogonally o
at a point P; for each i € {1,2,3,4}, (P1,P2) # (Ps3,Pa), and the
two values |(P1 — P)- (1 —t,t)|, |(Ps— Pa)-(1—t,t)| are either
equal or one is half the other.



Special values of t

Definition (continued)

2. There exist two lines ri, r, with direction (1 —t,t) and two
contour-arcs at,a? € CA(f, '), such that r; intersects
orthogonally @' at the point P; for i € {1,2}, Py # P,, and—
denoting respectively by p’ and (x',y’) the radius and the center

of the osculating circle of o at Pi— we have either p! = p?, or
(p1=p?)—(y' —y?)+(x' —x*)
2(pt—p?) :

p]':oo, orpZ:oo, or t =



Special values of t

Example of case 1): The two yellow segments have the same length.
A /
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Special values of t

Example of case 2): The curvature of al at P; equals the curvature
of a2 at Ps.




Special values of t

Another example of case 2): The curvature of ol at Py vanishes (i.e.,
1




Our main result

The use of the Pareto grid allows us to prove the following result:
Theorem
If the simplicial matching distance Ds(f, ') is realized at t, i.e.,

D(f.f') = dy (Dem, (£F), Demy (F7))

then t belongs to the special set of (f,f').

It is expected that the special set is finite; consequently, the previous
result should significantly reduce the complexity of computing the
simplicial matching distance.



Future research

Several lines of research concerning the matching distance have
corresponding counterparts for the simplicial matching distance

Ds (f,f') := max dg (Dgm,(f*),Dgm,(f'")).
te[0,1]
In particular, it would be interesting to develop algorithms to
efficiently compute the pseudo-metric Ds and to assess its practical
usefulness in applications.



TAKE-AWAY MESSAGE (1)

In this talk, we introduced a new distance for biparameter
persistence, called the simplicial matching distance, since it
is based on the simplex generated by the components of the
vector-valued filtering function.

B BBBBBBBBBBBEEEE——— ————— — —————
We also presented:

e The concept of the Pareto grid;

e The Position Theorem for the simplicial matching distance;

e A theorem stating that the simplicial matching distance is
always realized at special values of the variable t.

\. J




Thanks for
your attention

—
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