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Data can be often regarded as functions

Some examples of data that can be seen as functions:

• An electrocardiogram (a function from R to R);
• A gray-level image (a function from R2 to R);
• A computerized tomography (CT) scan (a function from a helix to
R).
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Data are processed by observers

Data have no meaning if no observer elaborates them.

An observer is an agent that transforms data.
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Observers are variables in data analysis

Data interpretation strongly depends on the chosen observer:
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Our interest in data is greatly overrated

We are hardly ever interested directly in data but in the reaction of
the observer to the presence of data.
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No data structure

Generally speaking, there is no structure in data. The structure of
data is a projection of the structure of the observer.
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Observers are often associated with invariance groups

Observers often think that some data are equivalent to each other,
according to an invariance group.

The group G is not established once and forever: when the observer
changes, G changes too.
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Representing observers as equivariant operators

Observers are structures able to change data into other data, and
usually do that by respecting some data equivalences, i.e., by
commuting with some transformations.

As a first approximation, observers can be represented as group
equivariant operators (GEOs).

In this talk we will illustrate some results on the theory of Group
Equivariant Non-Expansive Operators (GENEOs).

Why “non-expansive”?
Because

1. observers are often assumed to simplify the metric structure of
data in order to produce meaningful interpretations;

2. non-expansiveness guarantees good topological properties.
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How could we represent observers?

https://rdcu.be/bP6HV
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All begins with the space of admissible functions

Let X be a nonempty set. Let Φ be a topological subspace of the set
RX
b of all bounded functions ϕ from X to R, endowed with the

topology induced by the metric

DΦ(ϕ1,ϕ2) := ∥ϕ1−ϕ2∥∞
.

We can see X as the space where we can make our measurements,
and Φ as the space of all possible measurements. We will say that Φ
is the set of admissible functions. In other words, Φ is the set of all
functions from X to R that can be produced by our measuring
instruments (or by other observers). For example, a gray-level
image can be represented as a function from the real plane to the
interval [0,1] (in this case X = R2).
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Perception pairs

Let us consider a group G of bijections g : X → X such that
ϕ ∈ Φ =⇒ ϕ ◦g ∈ Φ for every ϕ ∈ Φ. We say that (Φ,G ) is a
perception pair.

The choice of a perception pair states which data can be considered
as legitimate measurements (the functions in Φ) and which group
represents the equivalence between data (the group G ).

To proceed, we need to introduce suitable topologies on X and G .
Before doing that, we recall that the initial topology τin on X with
respect to Φ is the coarsest topology on X such that every function ϕ

in Φ is continuous.
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A pseudo-metric on X

Let us define on X the pseudo-metric

DX (x1,x2) = sup
ϕ∈Φ

|ϕ(x1)−ϕ(x2)|.

DX induces a topology τDX
on X .

Theorem

The topology τDX
is finer than the initial topology τin on X with

respect to Φ. If Φ is totally bounded, then τDX
coincides with τin.

The use of DX implies that we can distinguish two points only if a
measurement exists, taking those points to different values.
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A pseudo-metric on X

The following properties are of use in our model.

Theorem

Every function in Φ is non-expansive, and hence continuous.

Theorem

If Φ is compact and X is complete, then X is compact.

In the following, we will usually assume that Φ is compact and X is
complete (and hence compact).
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Some magic happens: each bijection is an isometry

Let Bij(X ) be the group of all bijections from X to X , and denote by
BijΦ(X ) the subgroup of all g ∈ Bij(X ) such that ϕ ◦g ∈ Φ and
ϕ ◦g−1 ∈ Φ for every ϕ ∈ Φ. Let Homeo(X ) be the group of all
homeomorphisms from X a X with respect to DX , and denote by
HomeoΦ(X ) the subgroup of all g ∈ Homeo(X ) such that ϕ ◦g ∈ Φ
and ϕ ◦g−1 ∈ Φ for every ϕ ∈ Φ. Let Iso(X ) be the group of all
isometries from X a X , and denote by IsoΦ(X ) the subgroup of all
g ∈ Iso(X ) such that ϕ ◦g ∈ Φ and ϕ ◦g−1 ∈ Φ for every ϕ ∈ Φ.

Proposition

BijΦ(X ) = HomeoΦ(X ) = IsoΦ(X ).
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A pseudo-metric on G

Let us now focus our attention on a subgroup G of HomeoΦ(X ).
We can define a pseudo-metric DG on G by setting

DG (g1,g2) := sup
ϕ∈Φ

DΦ(ϕ ◦g1,ϕ ◦g2).

Theorem

G is a topological group with respect to DG and the action of G on Φ
by right composition is continuous.

Theorem

If Φ is compact and G is complete, then G is compact.
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GEOs and GENEOs

Each pair (Φ,G ) with G ⊆ HomeoΦ(X ) is called a perception pair.

Let us assume that two perception pairs (Φ,G ), (Ψ ,H) are given, and
fix a group homomorphism T : G → H.

Each function F : Φ→Ψ such that F (ϕ ◦g) = F (ϕ)◦T (g) for

every ϕ ∈ Φ,g ∈ G is called a Group Equivariant Operator (GEO)
associated with the homomorphism T .

If F is also non-expansive (i.e., DΨ (F (ϕ1),F (ϕ2))≤ DΦ (ϕ1,ϕ2) for

every ϕ1,ϕ2 ∈Φ), then F is called a Group Equivariant Non-Expansive
Operator (GENEO) associated with the homomorphism T .
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An example of GENEO

Let us assume to be interested in the comparison of the distributions
of temperatures on a sphere, taken at two different times:

Let us also assume that only two opposite points N,S can be
localized on the sphere.
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An example of GENEO

Let us introduce two perception pairs (Φ,G ),(Ψ ,H) by setting

• X = S2

• Φ = set of 1-Lipschitz functions from S2 to a fixed interval [a,b]

• G = group of rotations of S2 around the axis N−S

and

• Y = the equator S1 of S2

• Ψ = set of 1-Lipschitz functions from S1 to [a,b]

• H = group of rotations of S1
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An example of GENEO

This is a simple example of GENEO from (Φ,G ) to (Ψ ,H):

• T (g) is the rotation h ∈ H of the equator S1 that is induced by
the rotation g of S2, for every g ∈ G .

• F (ϕ) is the function ψ that takes each point y belonging to the
equator S1 to the average of the temperatures along the meridian
containing y , for every ϕ ∈ Φ;

We can easily check that F verifies the properties defining the
concept of group equivariant non-expansive operator with respect to
the isomorphism T : G → H.

In plain words, our GENEO simplifies the data by transforming
“temperature distributions on the earth” into “temperature
distributions on the equator”.
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Two key results (and two good news for applications)

Let us assume that a homomorphism T : G → H has been fixed.
Let us define a metric DGENEO on GENEO((Φ,G ),(Ψ ,H)) by setting

DGENEO (F1,F2) := sup
ϕ∈Φ

DΨ (F1(ϕ),F2(ϕ)) .

Theorem

If Φ and Ψ are compact, then GENEO((Φ,G ),(Ψ ,H)) is compact
with respect to DGENEO.

Theorem

If Ψ is convex, then GENEO((Φ,G ),(Ψ ,H)) is convex.
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Two key observations (1)

• While the space of data is often non-convex (and hence averaging
data does not make sense), the assumption of convexity of Ψ
implies the convexity of the space of observers and allows us to
consider the “average of observers”.
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Two key observations (2)

• Our main goal is to develop a good geometric and compositional
theory to approximate an ideal observer. In our model,
”approximate an observer” means to look for a GENEO F that
minimizes a suitable ”cost function” c(F ). The cost function
quantifies the error that is committed by taking the GENEO F
instead of the ideal observer. Since the space of GENEOs is
compact and convex (under the assumption that the data spaces
are compact and convex), if the cost function c(F ) is strictly
convex we have that there is one and only one GENEO that best
approximates the ideal observer.
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How can we build linear and nonlinear GENEOs?

https://www.frontiersin.org/articles/10.3389/frai.2022.786091/full
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Elementary methods to build GENEOs

Proposition (Composition)

If F1 ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T1 : G → H and
F2 ∈ GENEO((Ψ,H),(χ,K )) w.r.t. T2 : H → K then
F2 ◦F1 ∈ GENEO((Φ,G ),(χ,K )) w.r.t. T2 ◦T1 : G → K .

Proposition (Image by a 1-Lipschitz function)

If F1, . . . ,Fn ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T : G → H, L is a
1-Lipschitz map from Rn to R, and L∗(F1, . . . ,Fn)(Φ)⊆Ψ (where L∗

is the map induced by L), then
L∗(F1, . . . ,Fn) ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T .

The next three statements follow from the last proposition.
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Elementary methods to build GENEOs

Proposition (LATTICE OF GENEOS)

If F1, . . . ,Fn ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T : G → H and
max(F1, . . . ,Fn)(Φ),min(F1, . . . ,Fn)(Φ)⊆Ψ, then
max(F1, . . . ,Fn),min(F1, . . . ,Fn) ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T .

Proposition (Translation)

If F ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T : G → H, and Fb(Φ)⊆Ψ for
Fb(ϕ) := F (ϕ)−b, then Fb ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T .

Proposition (Convex combination)

If F1, . . . ,Fn ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T : G → H,
(a1, . . . ,an) ∈ Rn con ∑

n
i=1 |ai | ≤ 1 and FΣ(Φ)⊆Ψ for

FΣ(ϕ) := ∑
n
i=1 aiFi (ϕ), then FΣ ∈ GENEO((Φ,G ),(Ψ ,H)) w.r.t. T .

29 of 61



Permutant measures

Let us consider the set Φ = RX ∼= Rn of all functions from a finite set
X = {x1, . . . ,xn} to R, and a subgroup G of the group Bij(X ) of all
permutations of X .

Definition

A finite (signed) measure µ on Bij(X ) is called a permutant measure
with respect to G if every subset H of Bij(X ) is measurable and µ is
invariant under the conjugation action of G (i.e., µ(H) = µ(gHg−1)
for every g ∈ G ).

Proposition

If µ is a permutant measure with respect to G , then the map
Fµ : RX → RX defined by setting Fµ(ϕ) := ∑h∈Bij(X ) ϕh−1 µ(h) is a
linear GEO. If ∑h∈Bij(X ) |µ(h)| ≤ 1, then Fµ(ϕ) is a GENEO.
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An example of permutant measure

Let us consider the set X of the vertices of a cube in R3, and the
group G of the orientation-preserving isometries of R3 that take X to
X . Let π1,π2,π3 be the three planes that contain the center of mass
of X and are parallel to a face of the cube. Let hi : X → X be the
orthogonal symmetry with respect to πi , for i ∈ {1,2,3}.
We can now define a permutant measure µ on the group Bij(X ) by
setting µ(h1) = µ(h2) = µ(h3) = c , where c is a positive real number,
and µ(h) = 0 for any h ∈ Bij(X ) with h /∈ {h1,h2,h3}.
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Building GENEOs by permutant measures

It is interesting to observe that the set PM(G ) of permutant measures
with respect to G is a lattice. Indeed, if µ1,µ2 ∈ PM(G ), then the
measures µ ′,µ ′′ on Bij(X ), respectively defined by setting
µ ′(h) := min{µ1(h),µ2(h)} and µ ′′(h) := max{µ1(h),µ2(h)}, still
belong to PM(G ). Moreover, if µ ∈ PM(G ) then |µ| ∈ PM(G ).
Furthermore, PM(G ) is closed under linear combination. Therefore,
PM(G ) has a natural structure of real vector space.

We stress that when the group G becomes larger and larger the
lattice PM(G ) becomes smaller and smaller.
In other words, the theory of permutant measures becomes more and
more useful as the groups get bigger and bigger.
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Building GENEOs by permutant measures

The previous method for building GENEOs can be generalized by
replacing the arithmetic mean with another symmetric function. We
can indeed show that when a symmetric function and a permutant for
the equivariance group G are available, we can easily build a
(non-linear) GENEO with respect to G .
First of all, let us recall the concept of permutant, which is related to
the one of permutant measure.

Definition

We say that a subset H ⊆ Bij(X ) is a permutant for G if either H = /0
or gHg−1 = H for every g ∈ G .

Note that a subset H of Bij(X ) is a permutant for G if and only if H
is a union of orbits for the conjugation action of G on Bij(X ).
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Building GENEOs by permutant measures

Definition

Let C be a symmetric subset of Rn, i.e., a subset C such that
π(C ) = C for every permutation π of the coordinates. A function
f : C → R is said to be symmetric on C if its value is the same no
matter the order of its arguments. That is,

f (a1, . . . ,an) = f (aπ(1), . . . ,aπ(n))

for every (a1, . . . ,an) ∈ C and every permutation π of the set
{1, . . . ,n}.
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Building GENEOs by permutant measures

Proposition

Let f be a continuous real-valued symmetric function defined on a
compact symmetric subset K of Rn. Then f is the restriction of a
continuous real-valued symmetric function f̄ defined on Rn.

In other words, the concept of continuous real-valued symmetric
function defined on a compact symmetric subset K of Rn coincides
with the concept of restriction to K of a continuous real-valued
symmetric function defined on Rn.
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Building GENEOs by permutant measures

Let S : Rn → R be a symmetric function. If H = {hi}ni=1 is a
non-empty permutant for G ⊆ BijΦ(X ), then we can define an
operator SH : Φ→ RX

b by setting, for any ϕ ∈ Φ,

SH(ϕ) := S (ϕ ◦h1, . . . ,ϕ ◦hn),

where S (ϕ ◦h1, . . . ,ϕ ◦hn)(x) := S ((ϕ ◦h1)(x), . . . ,(ϕ ◦hn)(x)) for
every x ∈ X .

Proposition

If S : Rn → R is a symmetric function, G ⊆ BijΦ(X ), and H is a
non-empty permutant for G , then SH is a GEO from (Φ,G ) to
(RX

b ,G ) with respect to the identity homomorphism idG : G → G . If
the restriction of S to Im(Φ)n is non-expansive, then SH is a
GENEO from (Φ,G ) to (RX

b ,G ) with respect to idG .
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Building GENEOs by permutant measures

Let us now recall some basic facts about the approximation of
symmetric functions by symmetric polynomials. In the sequel, we will
denote the symmetric group over the set {1, . . . ,n} as Sn. Let K be a
compact metric space, and C (K ) be the vector space of continuous
real-valued functions on K . With a slight abuse of notation, in the
following we will confuse each polynomial with the function it
represents, restricted to the domain we are considering. Furthermore,
if I is a finite subset of Nn, we will say that a polynomial

∑(k1,...,kn)∈I ck1,...,kny
k1
1 · . . . ·yknn is a symmetric polynomial if π(I ) = I ,

and ck1,...,kn = cπ(k1),...,π(kn) for every multi-index (k1, . . . ,kn) ∈ I and
every permutation π ∈ Sn.

In the next two slides we will show that any symmetric function can
be approximated with arbitrary precision by a symmetric polynomial.
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Building GENEOs by permutant measures

Definition

A subset A of C (K ) is an algebra if it is a vector subspace of C (K )
that is closed under multiplication (i.e., if f ,g ∈ A then f ·g ∈ A).
Given a set S of functions on K , we say that S separates points if for
each pair of points s, t ∈ K there is a function f ∈ S such that
f (s) ̸= f (t). Given a set S of functions on K , we say that S vanishes
at s ∈ K if f (s) = 0 for all f ∈ S .

Theorem (Stone - Weierstrass Theorem)

An algebra A of continuous real-valued functions on a compact metric
space K that separates points and does not vanish at any point is
dense in C (K ) w.r.t. the max-norm referred to the domain K .
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Building GENEOs by permutant measures

Corollary

Let K be a compact subset of Rn. The algebra of all polynomials
p(y1, . . . ,yn) in n variables is dense in C (K ) with respect to the
max-norm referred to the domain K .

Proposition

Let K be a compact and symmetric subset of Rn. If S|K : K → R is
the restriction to K of a continuous symmetric function S : Rn → R
and ∥ · ∥∞ is the max-norm referred to the domain K , then for every
ε > 0 there exists a symmetric polynomial q in n variables such that∥∥S|K −q|K

∥∥
∞
≤ ε.

Therefore, we can restrict our attention to symmetric polynomials.

39 of 61



Building GENEOs by permutant measures

Definition

The elementary symmetric polynomials in the n variables a1, . . . ,an,
also called elementary symmetric functions, are defined as:

σ1 := a1+ . . .+an

σ2 := a1 ·a2+a1 ·a3+ . . .+an−1 ·an = ∑
1≤i<j≤n

ai ·aj

...

σr := ∑
1≤i1<i2<···<ir≤n

ai1 ·ai2 · . . . ·air = ∑
1≤i1<i2<···<ir≤n

ir

∏
j=i1

aj

...

σn := a1 ·a2 · . . . ·an.
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Building GENEOs by permutant measures

We recall an important result in the theory of symmetric polynomials:

Theorem (Fundamental Theorem on Symmetric Polynomials)

Any symmetric polynomial in n variables a1, . . . ,an is representable in
a unique way as a polynomial in the elementary symmetric
polynomials σ1, . . . ,σn.

41 of 61



Building GENEOs by permutant measures

In conclusion, if an equivariance group G is chosen and the GEO
F = SH is built, we can approximate F in the following way, provided
that X and Φ are compact. First of all, we can approximate the
continuous symmetric function S by a polynomial p : Rn → R, with
an arbitrarily small error ε on the symmetric set Im(Φ)n, which is
guaranteed to be compact. Then, we can consider the symmetric
polynomial q(a1, . . . ,an) :=

1
n! ∑π∈Sn p(aπ(1), . . . ,aπ(n)). Finally, we can

consider the GEO F ′ defined by setting F ′(ϕ) := q(ϕ ◦h1, . . . ,ϕ ◦hn)
for every ϕ ∈ Φ. Since H ⊆ BijΦ(X ), ∥F (ϕ)−F ′(ϕ)∥∞ =
maxx∈X |S (ϕ(h1(x)), . . . ,ϕ(hn(x)))−q(ϕ(h1(x)), . . . ,ϕ(hn(x)))| ≤
∥S|Im(Φ)n −q|Im(Φ)n∥∞ = ε for any ϕ ∈ Φ, and hence the operator F ′

can be chosen arbitrarily close to F .
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Building GENEOs by permutant measures

The Fundamental Theorem on Symmetric Polynomials guarantees
that the restriction to Im(Φ)n of any continuous symmetric functions
can be approximated arbitrarily well by the restriction to Im(Φ)n of a
polynomial in the elementary symmetric functions, defined as

S̃ (a1, . . . ,an) =
m1

∑
k1=0

· · ·
mn

∑
kn=0

ck1,...,kn

n

∏
i=1

σ
ki
i (a1, . . . ,an) ,

where mi ∈ N for every i ∈ {1, . . . ,n}, ck1,...,kn ∈ R for every
k1 ∈ {0, . . . ,m1}, . . . ,kn ∈ {0, . . . ,mn} and σi is the i-th elementary
symmetric polynomial for every i ∈ {1, . . . ,n}. We already know that
the associated operator is a GEO, but we can indeed obtain a GENEO
by considering a suitable multiple of S̃ .
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Building GENEOs by permutant measures

In the sequel, we will need the following constants:

MIm(Φ)n := max
α∈Im(Φ)n

∥α∥
∞
=max

ϕ∈Φ
∥ϕ∥

∞
(0.1)

M1 := max
1≤i≤n

{
ki

(
n

i

)ki

iM iki−1
Im(Φ)n

}
(0.2)

M2 := max
1≤i≤n

{(
n

i

)ki

M iki
Im(Φ)n

}n−1

(0.3)

C = n
m1

∑
k1=0

· · ·
mn

∑
kn=0

∣∣ck1,...,kn ∣∣M1M2 (0.4)
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Building GENEOs by permutant measures

Let us consider a non-empty permutant H = {hi}ni=1 for a subgroup

G ⊆ BijΦ(X ). We can define an operator ŜH : Φ→ RX
b by setting

ŜH(ϕ) :=
1

C
S̃ (ϕ ◦h1, . . . ,ϕ ◦hn)

for any ϕ ∈ Φ, where
S̃ (ϕ ◦h1, . . . ,ϕ ◦hn)(x) := S̃ ((ϕ ◦h1)(x), . . . ,(ϕ ◦hn)(x)) for every
x ∈ X and C is the constant defined in (0.4).
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Building GENEOs by permutant measures

Lemma

For every α,β ∈ Im(Φ)n with n > 0, and every (k1, . . . ,kn) ∈ Nn∣∣∣∣∣ n

∏
i=1

σ
ki
i (α)−

n

∏
i=1

σ
ki
i (β )

∣∣∣∣∣≤ n∥α −β∥
∞
M1M2.

From the previous lemma the next result follows.

Theorem

Let us assume that G ⊆ BijΦ(X ) and H is a non-empty permutant for
G . If S̃ is a polynomial in the n elementary symmetric functions,
then ŜH is a GENEO from (Φ,G ) to (RX

b ,G ) with respect to the
identity homomorphism idG : G → G .
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How can we represent linear GENEOs?

https://rdcu.be/c5Obw
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Representation Theorem for linear GENEOs

The following theorem strengthens our previous result about building
linear GENEOs via permutant measures.

Theorem (Representation Theorem for linear GENEOs)

Let us assume that G ⊆ Bij(X ) transitively acts on the finite set X
and that F is a map from RX to RX . The map F is a linear GENEO
from RX to RX with respect to the identical homomorphism
idG : g 7→ g if and only if a permutant measure µ with respect to G
exists, such that F (ϕ) = ∑h∈Bij(X ) ϕh−1 µ(h) for every ϕ ∈ RX , and

∑h∈Bij(X ) |µ(h)| ≤ 1.
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Sketch of the proof

Let F be a linear GENEO from RX to RX with respect to the
identical homomorphism idG : g 7→ g .

The proof of the Representation Theorem for linear GENEOs is based
on the matrix B = (bij) associated with F with respect to the basis
{1x1 , . . . ,1xn} of the vector space RX .

We consider the linear maps F⊕,F⊖ : RX → RX defined by setting
F⊕(1xj ) := ∑

n
i=1max{bij ,0}1xi and F⊖(1xj ) := ∑

n
i=1max{−bij ,0}1xi

for every index j ∈ {1, . . . ,n}. The matrices associated with F⊕ and
F⊖ with respect to the basis {1x1 , . . . ,1xn} of RX are

B⊕ =
(
b⊕ij

)
= (max{bij ,0}) and B⊖ =

(
b⊖ij

)
= (max{−bij ,0}),

respectively (in particular, B⊕,B⊖ are non-negative matrices);
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Sketch of the proof

Since the action of G on X is transitive, we can prove that an n-tuple
of real numbers α = (α1, . . . ,αn) exists such that each row and each
column of B⊕ can be obtained by permuting α. The same holds for
B⊖. To proceed, we need the following well known Lemma.

Lemma (Birkhoff – von Neumann decomposition)

Let M be a n×n real matrix with non-negative entries, such that
both the sum of the elements of each row and the sum of the
elements of each column is equal to c̄ . Then for every h ∈ Bij(X ) a
non-negative real number c(h) exists such that ∑h∈Bij(X ) c(h) = c̄ and
M = ∑h∈Bij(X ) c(h)P(h), where P(h) is the permutation matrix
associated with h.
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Sketch of the proof

This result follows:

Proposition

For every h ∈ Bij(X ) two non-negative real numbers c⊕(h),c⊖(h)
exist, such that F⊕(ϕ) = ∑h∈Bij(X ) c

⊕(h)ϕh−1 and

F⊖(ϕ) = ∑h∈Bij(X ) c
⊖(h)ϕh−1 for every ϕ ∈ RX . Moreover, if g ∈ G

then B⊕P(g) = P(g)B⊕ and B⊖P(g) = P(g)B⊖.
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Sketch of the proof

Now, for each h ∈ Bij(X ), let us consider the orbit O(h) of h under
the conjugation action of G on Bij(X ), and set

µ
⊕(h) := ∑

f ∈O(h)

c⊕(f )

|O(f )|
= ∑

f ∈O(h)

c⊕(f )

|O(h)|

µ
⊖(h) := ∑

f ∈O(h)

c⊖(f )

|O(f )|
= ∑

f ∈O(h)

c⊖(f )

|O(h)|
.

In other words, we define the measures µ⊕(h),µ⊖(h) of each
permutation h as the averages of the functions c⊕,c⊖ along the orbit
of h under the conjugation action of G .
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Sketch of the proof

The function µ := µ⊕−µ⊖ is the permutant measure that we need
to prove the statement of the Representation Theorem for linear
GENEOs.

The equality F (ϕ) = ∑f ∈Bij(X ) ϕf −1 µ(f ) holds, since F = F⊕−F⊖.

Furthermore, we can prove that

∑
h∈Bij(X )

|µ(h)|= max
ϕ∈RX \{0}

∥F (ϕ)∥∞

∥ϕ∥∞

≤ 1.
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The key role of observers in data analysis

Topological and metric basics for the theory of GENEOs

Building linear and nonlinear GENEOs

How can we use GENEOs in applications?
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What happens when we apply GENEOs to our data?

An example of use: comparison between real dice and fake dice.

(Experiment and computations by Giovanni Bocchi)
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What happens to data when we apply GENEOs?

We produced 10000 dice (a training set of size 7000 and a test set of
size 3000), then we applied PCA to the test set and to the test set
transformed by a suitable GENEO, optimized on the training set:

For each die the first two principal components are plotted. Blue
points are associated with real dice, while orange ones with fake
dice. The GENEO we use was built by a convex combination of 3
GENEOs defined by permutant measures.
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A real application: finding pockets in proteins

https://arxiv.org/ftp/arxiv/papers/2202/2202.00451.pdf
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A real application: finding pockets in proteins

The search for the pockets was carried out by identifying an optimal
GENEO in the convex hull of 8 GENEOs (each focused on a
particular property of the pockets).
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A real application: finding pockets in proteins

Here are the results of our experiments:

Please note that GENEOnet uses 17 parameters, while a CNN such as
DeepPocket requires 665122 parameters.
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The main point in our approach

In perspective, we are looking for a good compositional theory for
building efficient and transparent networks of GENEOs.
Some preliminary experiments suggest that replacing neurons with
GENEOs could make deep learning more transparent and
interpretable and speed up the learning process.
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