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Let us recall some concepts in persistent homology

The importance of lines with slope 1 in 2D persistent homology
The need for coherent matchings
The phenomenon of monodromy

The coherent 2-dimensional matching distance
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Let us recall some concepts in persistent homology




Let us recall what a persistence diagram is

A persistence diagram is a collection of points associated with a
continuous filtering function ¢ : X — R. An example for ¢ = x:

X
L

‘5

_ x=bh
birth of a component at x =b birth of a component at x =b  death of a component atx=d
1(b,) The presence of a point (b,d)
td) : : . _
. in the persistence diagram of @: X — R

means that a class of a cycle exists

whose birth and death happen

at @ =b and @ =d, respectively.

Persistence diagram of the function x
Persistence diagrams can be compared by a matching distance d,a¢ch.
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Persistence diagram associated with the pair (P, W)\/\1

What can we do in the case ¢ : X — R??

/(a 1-a)
(b.-b)

If we have a bifiltration given by a function @ = (@1, ¢2) : X — R2, we
can consider a unit vector (w.r.t. ||.||«) w=(a,1—a) W|th a positive
slope, and a point = (b.—b). Every choice of P and w defines a
filtration {X;} of X, where X; is the set of points of X that are both
under and on the left of the point P+ tw. As a consequence, each

choice of P and w defines a persistence diagram Z,(a,b).
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The 2-dimensional matching distance \/\1

Y Y

By multiplying the coordinates of each point in Zy(a, b) by

N

min{a,1 — a} we obtain the normalized persistence diagram Z(a, b).




The 2-dimensional matching distance D,,a¢ch( @, l//)\M

Now, we can define the 2D matching distance Dpatch(@, W) between
¢ and y by setting

Dmatch((Pa llj) = SUP(a,b) dmatch(@(p(av b)v 921//(3’ b))

Theorem
Dmatch((pa IV) S ||(P - V/HW

Remark. The previous theorem strongly depends on the
normalization of persistence diagrams.

The distance Dpatcn(@, W) has been introduced in the paper

[S. Biasotti, A. Cerri, P. Frosini, D. Giorgi, C. Landi, Multidimensional
size functions for shape comparison, Journal of Mathematical Imaging
and Vision, vol. 32 (2008), n. 2, 161-179]
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Computation of the 2D matching distance \M

An algorithm to compute the 2D matching distance exists:

e S. Biasotti, A. Cerri, P. Frosini, D. Giorgi,
A new algorithm for computing the 2-dimensional matching
distance between size functions,
Pattern Recognition Letters, vol. 32 (2011), n. 14, 1735-1746

e A. Cerri, P. Frosini,
A new approximation algorithm for the matching distance in
multidimensional persistence,
AMS Acta, 2971 (2011)

The results of our experiments on the computation of the 2D
matching distance have revealed a strange phenomenon that we are
going to illustrate in the next slides.
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Computation of the 2D matching distance \M

Remarks:

e In principle, 2D persistent homologies can be also compared by
using the interleaving distance ([M. Lesnick, The theory of the
interleaving distance on multidimensional persistence modules,
Foundations of Computational Mathematics, vol. 15 (2015), n. 3,
613-650]). Unfortunately, as noted in that paper, the question of if
and how the interleaving distance on multidimensional persistence
modules can be computed remains open. This fact justifies the
interest in the 2D matching distance Dpaecn(@, W), which is easily
computable.

e As for the visualization of 2D persistence modules we point out the
interesting paper [M. Lesnick, M. Wright, Interactive Visualization
of 2-D Persistence Modules, arXiv:1512.00180].
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The importance of lines with slope 1 in 2D persistent homology
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Our first experiments in 3D shape comparison \,\1

Let us have a look at some pictures illustrating the first results that
we have obtained in 3D shape comparison by means of the 2D
matching distance.

The objects that we compare are displayed on the left of each figure.

The color at (a, b) represents the value dmatch(@q,(a,b),_@w(a,b)).

The largest values are in red and brown, the lowest ones are in blue.

The values at points (a, b) with |b| large are not displayed, since they
just represent the 1-dimensional persistence of the two components of
© = (¢1,¢2) and are not relevant for our exposition.

We recall tAhat we are interested in Dpatcn(@, W), i.e. the supremum
of dmatcn(Zp(a, b), Zy(a, b)), for 0 <a<1and beR.
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Result 1

2~

a

] 0:2 04 0! 50.‘6 D.‘S 1
Please note that the largest value (i.e. the 2-dimensional matching
distance) is taken at a point (a, b) with a approximately equal to 1/2.

12 of 29




Result 2 \/\1

e

o (g i
Please note that the largest value (i.e. the 2-dimensional matching
distance) is taken at a point (a, b) with a approximately equal to 1/2.
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Result 3

b -

a

[ (5] 04 O! 5 0.6 0.8 1

Please note that the largest value (i.e. the 2-dimensional matching
distance) is taken at a point (a, b) with a approximately equal to 1/2.
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Result 4

¥ } a
o 0.2 04 0 50.6 0.8 1

Please note that the largest value (i.e. the 2-dimensional matching

distance) is taken at a point (a, b) with a approximately equal to 1/2.
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A conjecture \,\1

In our experiments, it seems that all the relevant information is given
by lines with a=1/2, i.e. lines with slope 1.

At the beginning we thought that this phenomenon was just a
coincidence. So we looked for other examples, showing global maxima
at points (a, b) with a # 1/2, but our search was unsuccessful.

After that, we started to think that some interesting principle might
be hidden in the results of our experiments.
We formulated this conjecture:

Conjecture
SUPg<a<1,beR drr]\atch(@(p(a, b), .@w(a, b)) =
SuPper dmatch(Zo (3, b), Dy (3, b))

In other words: Can we confine ourselves to assume a =1/27
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The need for coherent matchings
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Looking for a proof of our conjecture \M

We started to look for a proof of our conjecture but we realized that
we needed to change our definition of 2D matching distance in order
to proceed.

Indeed the classical definition of 2D matching distance

does not require that the matchings between the persistence diagrams
@(P(a,b), @W(a,b) are COHERENT to each other as a and b change.
This means that the classical definition does not require that the
matchings change “continuously” when a and b change continuously.

To proceed in our proof we needed this property.
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A naive (and wrong) solution to the coherence problew

Our first (and naive) idea to get coherent matchings was the
following one.

 We should fix a pair (3,b) and a matching 05 p between 9%,(5,73)
and .@W(é,l_)).

e Then we should construct a coherent family of matchings o,
between .@(p(a, b) and Qw(a, b), by "transporting o3 5, to any other
point (a,b) in the parameter space by continuity”.

e This transportation would use the stability of the normalized

persistence diagrams Z(a,b) and Py,(a, b), i.e. the fact that they
depend continuously on a and b.
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A naive solution to the coherence problem \/\1

The previously proposed approach has a problem. If along the
transportation we meet a point (a’,b) at which one of the two
normalized persistent diagrams contains a multiple point, then our
transportation is not well-defined. Indeed, during “collisions” the
identity of points is not preserved and we are not able to follow them.

The consequent natural idea is the one of following the movements of
points of @¢(a,b) and @I,,(a,b) avoiding the pairs (a, b) for which
points with multiplicity greater than one exist. We call these pairs
singular. The other pairs are called regular.
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The phenomenon of monodromy
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A key difficulty in our naive solution \/\1

Unfortunately, the previous approach still has a problem.

Indeed, the definition of transport depends on the choice of the path
¢ that we follow in the parameter space. Precisely, it depends on the
homotopy class of ¢ relative to the startpoint (3, b) and the endpoint
(a,b).

We call this fact the monodromy phenomenon in 2-dimensional
persistent homology.

For more details about the monodromy phenomenon in 2-dimensional
persistent homology we refer the interested reader to the paper

[A. Cerri, M. Ethier, P. Frosini, A study of monodromy in the
computation of multidimensional persistence, Proceedings of the 17th
IAPR International Conference on Discrete Geometry for Computer
Imagery, LNCS 7749, 2013, 192-202].
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An example of monodromy in 2D persistent homolfwll

(a,b) g

e

o O OF
O F /
O A ) #
oA




The coherent 2-dimensional matching distance
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The monodromy phenomenon as an obstruction \M

The existence of monodromy implies that each loop in the space of
regular pairs induces a permutation on .@q,(a b). In other words, we
cannot establish which point in @(p(a b) corresponds to which point
in 94(a, b), since the answer depends on the path that we follow
from (3, b) to (a,b) in the space of regular pairs. As a consequence,
different paths going from (3,b) to (a,b) can “transport matchings in
different ways".

Does monodromy prevent us from proceeding in our research and
from defining a coherent 2-dimensional matching distance?

Fortunately, the answer is no, as we will show in the next slides.

(We will skip the mathematical details. The interested reader can find
them in the paper.)
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Coherent 2D matching distance \M

The Coherent 2D matching distance CDp,atch(@, W) between ¢ and y
is defined by this procedure:

o Let us fix a pair (3,b) that is regular both for ¢ and ;

e For each matching o(; ;) between the normalized persistence
diagrams @¢(§, b) and _@W(é, b) and every regular pair (a,b), we
consider the set T(a7b)(0'(5_5)) of every possible transportation of
O(3,p) to (a,b). In order to do that, we recall that we have to
consider only one path for each homotopy class relative to the
startpoint (3, b) and the endpoint (a,b), in the set of paths not
touching singular pairs. We set COStT(a’b)(G(EJ’B)) := maximum cost
of a matching in T(a,b)(G(g‘,B))-

e We define | CDpmatch(@, ¥) = info, 5 SUP(a,b) costT(4.p)(0).
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Properties of CDatch \,\1

Proposition

The definition of CDpatch(9, ) does not depend on the choice of the
regular pair (3, b).

Proposition

CDmaten(@, W) is a pseudo-distance.

Theorem
Dimatch(@, W) < CDmateh(@, ¥) < [|¢ — Y|
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Recap \/\1

e Examples suggest that in 2-dimensional persistent homology just
filtrations defined by lines with slope 1 might be relevant.

e The attempt of proving the previous statement leads to modify the
definition of 2-dimensional matching distance by requiring that the
matchings associated with the lines are coherent to each other.

e The search for coherent families of matchings leads to discover the
phenomenon of monodromy in 2-dimensional persistent homology,
as an obstruction to construct such families.

e The transport of matchings along paths allows to overcome that
obstruction and to introduce the coherent 2D matching distance.

e We are working on the proof that just filtrations defined by lines
with slope 1 are relevant for the computation of the coherent 2D
matching distance.
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