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A mathematical framework for data comparison




A recent paper \/\1

In this talk we will illustrate the content of this paper:

M. G. Bergomi, P. Frosini, D. Giorgi, N. Quercioli,

Towards a topological-geometrical theory of group equivariant
non-expansive operators for data analysis and machine learning,
https://arxiv.org/pdf/1812.11832.pdf



https://arxiv.org/pdf/1812.11832.pdf

The role of equivariant operators in machine Iearnim

e As pointed out by several authors (Mallat, Poggio, Rosasco...) the
role of equivariant operators in machine learning is getting more
and more important.

e The comparison of DATA is always a process depending on an
agent/observer. We could say that data comparison consists in the
study of the relationship between an agent or observer and the
reality he/she can MEASURE. In our setting, data coincide with
measurements and agents/observers are represented by equivariant
operators.




What does MEASUREMENT mean? \/\1

Before proceeding, we have to determine what measurements are in
our mathematical model.

Measurement is the assignment of a number to a characteristic of an
object or event, which can be compared with other objects or events.
WIKIPEDIA

According to this definition, measurements (and hence data) can be
seen as functions ¢ associating a real number @(x) with each point x
of a set X of characteristics. (This definition admits a natural
extension to vector-valued functions but, for the sake of simplicity, we
will treat here the case of scalar-valued functions).




Assumptions in our model \/\1

e Data are represented as functions defined on topological spaces,
since only data that are stable w.r.t. a certain criterion (e.g., with
respect to some kind of measurement) can be considered for
applications, and stability requires a topological structure.

e Data cannot be studied in a direct and absolute way. They are
only knowable through acts of transformation made by an
agent/observer. From the point of view of data analysis, only the
pair (data, agent) matters. In general terms, agents are not
endowed with purposes or goals: they are just ways and methods
to transform data. Acts of measurement are a particular class of
acts of transformation.
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Assumptions in our model \/\1

e Agents are described by the way they transform data while
respecting some kind of invariance. In other words, any agent can
be seen as a group equivariant operator acting on a function space.

e Data similarity depends on the output of the considered agent.




A topology on the space X of characteristics \/\1

Since we wish to develop a theory that can be applied in real
situations, we need stability with respect to noise. This naturally
leads us to use a topology on the set @ of possible measurements on
a set X. A natural topology on the set @ of possible measurements is
the one induced by the L metric Do (@1, ¢2) == || Q1 — ¢2|-

Since measurements are the central concept in our approach, the
topology on X is derived from Dg.
We define this pseudometric Dx on X by setting

Dx (x1,x2) := sup |@(x1) — ¢(x2)|.
PP

In plain words: Two points x1,x2 € X are close to each other if and
only if every measurement in @ takes similar values at those points.
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Every function in @ is continuous \/\1

‘ In this talk we will assume that the topological space @ is compact. ‘

EXAMPLE 1. X := St = {(x,y) € R?: x>+ y? =1}, @ = set of all
1-Lipschitzian functions from S! to [0,1].

EXAMPLE 2. X :=[-1,1] x[-1,1], @ = set of all functions from X
to [0,1] that are 1-Lipschitzian both in Xj :=[—1,0] x [-1,1] and in
X :=(0,1] x [-1,1]. Please observe that the functions in & can be
discontinuous at the points (x,y) with x =0, with respect to the
Euclidean topology on X. However, every function in @ is continuous
with respect to the topology induced by Dx.

Theorem

The topology induced by Dx is the initial topology on X, i.e. the
coarsest topology on X such that each function ¢ € @ is continuous.
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Homeomorphisms with respect to Dy \M

The next step consists in understanding what a ®-preserving
homeomorphism with respect to Dx is (a bijection g: X — X is
called @-preserving if pog € @ and pog~! € P for every ¢ € D).

Theorem

The ®-preserving homeomorphisms with respect to Dx are exactly
the @-preserving bijections from X to X.

Let us now consider a group G of homeomorphisms from X to X,
whose elements preserves @ by right composition.

We will say that (®,G) is a PERCEPTION PAIR.
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A pseudo-metric on our @-preserving group G \M

If a perception pair (®,G) is given, we can define the function

Dg(g1,82) = Sugsz((POgLQDng) (0.1)
pe

from G x G to R.

The function D¢ is a pseudo-metric on G.

Please note that also the definition of Dg¢ is inherited from the
definition of Dg.

Theorem

G is a topological group with respect to the pseudo-metric topology
and the action of G on ® through right composition is continuous.
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Compactness of X and G \/\1

We recall that we are assuming & compact.

Theorem

If X is complete then it is also compact with respect to Dx.

Theorem
If G is complete then it is also compact with respect to Dg.

In this talk we will assume that X and G are complete, and hence
compact.
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The natural pseudo-distance dg
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Our ground truth: the natural pseudo-distance d¢g \/\1

Definition
The pseudo-distance dg : @ X @ — R is defined by setting

dg(@1,92) = inf De(@1,0208).
geiG

It is called the natural pseudo-distance associated with the group G.

If G={ld:x~ x}, then dg equals the sup-norm distance Dg on P.
If G1 and Gy are groups of @-preserving self-homeomorphisms of X
and G; C Gp, then the definition of dg implies that

de,(91,92) < dg, (91,92) < Da(1,92)

for every @1, @ € .
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Our ground truth: the natural pseudo-distance dg¢ \/\1

The natural pseudo-distance dg is our ground truth: it describes
the differences that the agent/observer can perceive between the
measurements in @ with respect to the equivalence expressed by the
group G.

A possible objection: “The use of the concept of homeomorphism
makes the natural pseudo-distance dg difficult to apply. For example,
in shape comparison two similar objects can be non-homeomorphic,
hence this pseudo-metric cannot be applied to real problems.”
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A possible objection \M

Answer: the homeomorphisms do not concern the “objects”
but the space X where the measurements are made.

e For example, if we are interested in grey level images, the domain
of our measurements can be modelled as the real plane and each
image can be represented as a function from R? to R. Therefore,
the space X is not given by the (possibly non-homeomorphic)
objects displayed in the pictures, but by the topological space R?.

e |f we make two CAT scans, the topological space X is always given
by an helix turning many times around a body, and no requirement
is made about the topology of such a body.

In other words, it is usually legitimate to assume that the topological
space X is determined only by the measuring instrument we are using
to get our measurements.
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Group equivariant non-expansive operators
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Group equivariant non-expansive operators \/\1

The natural pseudo-distance dg represents our ground truth.

Unfortunately, dg is difficult to compute. This is also a consequence
of the fact that we can easily find subgroups G of Homeo(X) that
cannot be approximated with arbitrary precision by smaller finite
subgroups of G (i.e. G = group of rigid motions of X = R3).

Nevertheless, in this talk we will show that dg can be approximated
with arbitrary precision by means of a DUAL approach based on

persistent homology and group equivariant non-expansive operators
(GENEO:s).
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The space of GENEOs \/\1

Definition

Assume that (@, G), (¥, H) are two perception pairs and that a
homomorphism T : G — H has been fixed. A Group Equivariant
Non-Expansive Operator (GENEO) from (®,G) to (¥, H) is a map
F : & — ¥ such that the following properties hold for every
P1, 02 € b:
1. F(pog)=F(p)o T(g) for every g € G;

<

2. Dy (F(¢1), F(92)) < Do (91, 92).

We will use the symbol .Z %! to denote the set of all GENEOs from
(@, G) to (¥, H) with respect to T.

20 of 30
I



An example of GENEO \/\1

We give an example of the use of the definition of GENEO between
two different perception pairs (®,G), (¥, H).

Let us assume to be interested in the comparison of the distributions
of temperatures on a sphere, taken at two different times:

N
_© o
T &

. ¥ . 1 S B
y R R
.

& -y

Let us also imagine that only two opposite points N, S can be

localized on the sphere.
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An example of GENEO \/\1

In this case we can set

.X:S2

o @ = set of 1-Lischitzian functions from S2 to a fixed interval [a, b]
e G = group of rotations of 52 around the axis N — S

We can also consider the “equator” of our sphere, represented as the
space St

Therefore, we can also set

e Y = the equator S! of S?

o ¥ = set of 1-Lischitzian functions from S* to [a, b]
e H = group of rotations of S!
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An example of GENEO \,\1

In this case we can build a simple example of GENEO from (@, G) to
(¥, H) by setting

e T(g) equal to the rotation h € H of the equator S! that is induced
by the rotation g of S2, for every g € G.

* F(@) equal to the function y that takes each point y belonging to
the equator S! to the average of the temperatures along the
meridian containing y, for every ¢ € &;

We can easily check that F verifies the properties defining the
concept of group equivariant non-expansive operator with respect to
the homomorphism T : G — H.
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A pseudo-metric for the space .Z#2ll \/\1

The following pseudo-metric is of use on %2
Definition
If Fi,F € ZY we set

Dgeneo (F1, F2) == (Spgqu/(Fl((P),Fz(q’))- (0.2)
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Some good news \/\1

Let .72 be the set of all GENEOs from (@, G) to (¥, H) with
respect to a fixed homomorphism T : G — H.

Theorem
71 is compact with respect to DGengo.

Corollary

F4 can be e-approximated by a finite subset for every € > 0.

Theorem

If ¥ is convex, then . Z*! is convex .
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A link with TDA -1 \,\1

Persistent homology enters this theoretical framework by means of an
equality allowing us to approximate the natural pseudo-distance:

Theorem
If (®,G)=(¥,H), then

dG((Pla(P2): sup dmatch(ng(F((pl))’ng(F(q)Q)))

Fegzal

where Dgm(F(¢)) is the persistence diagram of the function F(¢)
and dpaicn IS the usual bottleneck distance.
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A link with TDA - 2 \,\1

The computational machinery developed in persistent homology can
be used in our mathematical approach as a proxy for the fast
comparison of GENEOs, by replacing Dgengo (F1, F2) with the
pseudo-metric

Acgeneo (F1, F2) i= Sugdmatch (Dgm(F1(¢@)), Dgm(F2(9)))-
pc

The following result immediately follows from the stability of
persistence diagrams:

Proposition
Ageneo (F1, F2) < Dgeneo (F1, F2) .-
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Open questions \/\1

After defining an agent/observer as a collection of GENEOs, our
purpose consists in looking for methods to approximate the
agent/observer by a finite (and possible small) set of simple GENEOs.
This leads us to the following open questions:

e How can we build a good library of GENEOs?

e How can we find a method to choose a finite set .%* of GENEOQOs
that allows for both a good approximation of the natural
pseudo-distance dg and a fast computation?

e How can we provide a suitable statistical theory for group
equivariant non-expansive operators?

e In which cases can the set of GENEOs be equipped with the
structure of a Riemannian manifold?

e Could we compose operators to form networks, in the same way as

computational units are connected in an artificial neural network?
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Conclusions \/\1

e In our model, data comparison is based on measurements made by
an agent/observer. Each measurement can be represented as a
function defined on a topological space X.

e The agent/observer can be seen as and approximated by a
collection of GENEOs, applied to the measurements. The
operators are allowed to change both the space of measurements
and the invariance group.

e Persistent homology provides an efficient way for the comparison of
GENEDOs.

e The topological space of GENEQOs deserves further research.
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' Thanks for your attention!

|
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