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The definition of dG

Let X and G be a topological space and a subgroup of the group
Homeo(X ) of all homeomorphisms from X to X , respectively. If
ϕ1,ϕ2 are two continuous and bounded functions from X to R we can
consider the value infg∈G ‖ϕ1−ϕ2 ◦g‖∞. This value is called the
natural pseudo-distance dG (ϕ1,ϕ2) between ϕ1 and ϕ2 with respect
to the group G .

We endow both C 0(X ,R) and G with the topology of uniform
convergence, so that G becomes a topological group acting
continuously on C 0(X ,R) by composition on the right. We observe
that the action of G on C 0(X ,R) is continuous.
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The definition of dG

If G is the trivial group Id, then dG is the max-norm distance
‖ϕ1−ϕ2‖∞. Moreover, if G1 and G2 are subgroups of Homeo(X ) and
G1 ⊆ G2, then

dHomeo(X )(ϕ1,ϕ2)≤ dG2(ϕ1,ϕ2)≤ dG1(ϕ1,ϕ2)≤ ‖ϕ1−ϕ2‖∞

for every ϕ1,ϕ2 ∈ C 0(X ,R).

We usually restrict dG to Φ×Φ , where Φ is a bounded subset of
C 0(X ,R).

5 of 39



Our ground truth: the natural pseudo-distance dG

The natural pseudo-distance dG is our ground truth: it describes
the differences that the observer can perceive between the
measurements in Φ with respect to the equivalence expressed by the
group G .

A possible objection: “The use of the concept of homeomorphism
makes the natural pseudo-distance dG difficult to apply. For example,
in shape comparison two similar objects can be non-homeomorphic,
hence this pseudo-metric cannot be applied to real problems.”
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A possible objection

Answer: the homeomorphisms do not concern the “objects”
but the space X where the measurements are made.

• For example, if we are interested in grey level images, the domain
of our measurements can be modelled as the real plane and each
image can be represented as a function from R2 to R. Therefore,
the space X is not given by the (possibly non-homeomorphic)
objects displayed in the pictures, but by the topological space R2.

• If we make two CAT scans, the topological space X is always given
by an helix turning many times around a body, and no requirement
is made about the topology of such a body.

In other words, it is usually legitimate to assume that the topological
space X is determined only by the measuring instrument we are using
to get our measurements.
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dG and critical values: manifolds

When the filtering functions are defined on a regular closed manifold,
some results restrict the range of values that can be taken by the
natural pseudo-distance dG .

Theorem

Assume that M is a closed manifold of class C 1 and that
ϕ1,ϕ2 : M → R are two functions of class C 1. Set
d := dHomeo(M )(ϕ1,ϕ2). Then a positive integer k exists for which one
of the following properties holds:

(i) k is odd and kd is the distance between a critical value of ϕ1 and a
critical value of ϕ2;

(ii) k is even and kd is either the distance between two critical values
of ϕ1 or the distance between two critical values of ϕ2.
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dG and critical values: surfaces

Theorem

Assume that S is a closed surface of class C 1 and that
ϕ1,ϕ2 : S → R are two functions of class C 1. Set
d := dHomeo(S )(ϕ1,ϕ2). Then a positive integer k exists for which at
least one of the following properties holds:

(i) d is the distance between a critical value of ϕ1 and a critical value
of ϕ2;

(ii) d is half the distance between two critical values of ϕ1.

(iii) d is half the distance between two critical values of ϕ2.

(iv) d is one third of the distance between a critical value of ϕ1 and a
critical value of ϕ2.
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dG and critical values: curves

Theorem

Assume that C is a closed curve of class C 1 and that ϕ1,ϕ2 : C → R
are two functions of class C 1. Set d := dHomeo(C )(ϕ1,ϕ2). Then a
positive integer k exists for which at least one of the following
properties holds:

a) d is the distance between a critical value of ϕ1 and a critical value
of ϕ2;

b) d is half the distance between two critical values of ϕ1.

c) d is half the distance between two critical values of ϕ2.

The last theorem is sharp, as shown by the following examples.
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dG and critical values: curves

Let us consider the two embeddings of S1 in R2 represented in the
following figure. The ordinate y defines two filtering functions ϕ1,ϕ2

on S1. In this case dHomeo(S1)(ϕ1,ϕ2) = |ϕ1(A)−ϕ(B)| is the distance
between a critical value of ϕ1 and a critical value of ϕ2.
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dG and critical values: curves

Let us consider the two embeddings of S1 in R2 represented in the
following figure. The ordinate y defines two filtering functions ϕ1,ϕ2

on S1. In this case dHomeo(S1)(ϕ1,ϕ2) = 1
2 |ϕ1(A)−ϕ(B)| is half the

distance between two critical values of ϕ1.
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A result concerning dS1(ϕ1,ϕ2)

The research concerning the case that G is a proper subgroup of
Homeo(M ) is still at its very beginning. As an example of the results
concerning this line of research we cite the following theorem,
concerning the Lie group S1.

Theorem

Let ϕ1,ϕ2 be Morse functions from the Lie group S1 to R and set
d = dS1(ϕ1,ϕ2). At least one of the following statements holds:

1) There exist a critical point θ1 for ϕ1 and a critical point
θ2 for ϕ2 such that d = |ϕ1(θ1)−ϕ2(θ2)|;

(−→...)
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A result concerning dS1(ϕ1,ϕ2)

Theorem (continued)

2) There exist θ1, θ2, θ̃1 and θ̃2 such that
d = |ϕ1(θ1)−ϕ2(θ2)|= |ϕ1(θ̃1)−ϕ2(θ̃2)| with

dϕ1

dθ
(θ1) = dϕ2

dθ
(θ2) and dϕ1

dθ
(θ̃1) = dϕ2

dθ
(θ̃2)

θ1−θ2 = θ̃1− θ̃2
dϕ1

dθ
(θ1)dϕ1

dθ
(θ̃1) < 0

if (ϕ1(θ1)−ϕ2(θ2)) · (ϕ1(θ̃1)−ϕ2(θ̃2)) > 0,
or

(−→...)
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A result concerning dS1(ϕ1,ϕ2)

Theorem (continued)


dϕ1

dθ
(θ1) = dϕ2

dθ
(θ2) and dϕ1

dθ
(θ̃1) = dϕ2

dθ
(θ̃2)

θ1−θ2 = θ̃1− θ̃2
dϕ1

dθ
(θ1)dϕ1

dθ
(θ̃1) > 0

if (ϕ1(θ1)−ϕ2(θ2)) · (ϕ1(θ̃1)−ϕ2(θ̃2)) < 0.
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Optimal homeomorphisms

Assume that X is a compact topological space and ϕ1,ϕ2 : X →R are
continuous functions. Let G be a subgroup of Homeo(X ). We say
that a homeomorphism g ∈ G is optimal in G for (ϕ1,ϕ2) if
‖ϕ1−ϕ2 ◦g‖∞ = dG (ϕ1,ϕ2). The following results hold for optimal
homeomorphisms.

Theorem

Assume that M is a C 1 closed manifold and that ϕ1,ϕ2 : M → R are
of class C 1. If an optimal homeomorphism g ∈ Homeo(M ) for
(ϕ1,ϕ2) exists, then dHomeo(M )(ϕ1,ϕ2) is the distance between a
critical value of ϕ1 and a critical value of ϕ2.
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Optimal homeomorphisms

Theorem

If ϕ1,ϕ2 : S1→R are Morse functions and dHomeo(S1)(ϕ1,ϕ2) vanishes,

then an optimal C 2-diffeomorphism exists in Homeo(S1) for (ϕ1,ϕ2).

Theorem

The number of optimal homeomorphisms in the Lie group S1 for a
pair (ϕ1,ϕ2) of Morse functions from S1 to R is finite.
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What is persistent homology?

If ϕ : X → R is a continuous function, we can consider the sublevel
sets Xt := {x ∈ X : ϕ(x)≤ t}. When t varies we see the birth and
death of k-dimensional holes.
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What is persistent homology?

In plain words, the persistence diagram in degree k of ϕ is the
collection of the pairs (bi ,di ) where bi and di are the times of birth
and death of the i-th hole of dimension k .

The points of the persistence diagram are endowed with multiplicity.
Each point of the diagonal u = v is assumed to be a point of the
persistence diagram, endowed with infinite multiplicity.
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What are persistent Betti numbers functions?

Persistence diagrams are not quite suitable for statistical purposes,
because no good definition of average of persistence diagrams exists.

Persistent Betti numbers functions are more suitable for statistics.

Definition

The k-th persistent Betti numbers function βk(u,v) is the number of
holes of dimension k whose time of birth is smaller than u and whose
time of death is greater than v .
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What are persistent Betti numbers functions?

Formally:

Definition

Let ϕ : X → R be a continuous function. If u,v ∈ R and u < v , we
can consider the inclusion i of Xu into Xv . Such an inclusion induces
a homomorphism i∗ : Hk (Xu)→ Hk (Xv ) between the homology
groups of Xu and Xv in degree k . The group
PH

ϕ

k (u,v) := i∗ (Hk (Xu)) is called the k-th persistent homology
group with respect to the function ϕ : X → R, computed at the point
(u,v). The rank rk(ϕ)(u,v) of this group is said the k-th persistent
Betti numbers function with respect to the function ϕ : X → R,
computed at the point (u,v).

The average of persistent Betti numbers functions can be trivially
defined as the usual average of real-valued functions.
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What are persistent Betti numbers functions?

The use of averages of persistent Betti numbers functions in degree 0
firstly appeared in the papers

• Pietro Donatini, Patrizio Frosini, Alberto Lovato, Size functions for
signature recognition, Proceedings of SPIE, Vision Geometry VII,
vol. 3454 (1998), 178183.

• Massimo Ferri, Patrizio Frosini, Alberto Lovato, Chiara Zambelli,
Point selection: A new comparison scheme for size functions (With
an application to monogram recognition), Proceedings Third Asian
Conference on Computer Vision, Lecture Notes in Computer
Science 1351, vol. I, R. Chin, T. Pong (editors) Springer-Verlag,
Berlin Heidelberg (1998), 329337.

In these papers each point of the considered persistence diagram is
replaced with a suitable function (usually a Gaussian function
centered at that point).
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What are persistent Betti numbers functions?

If we use Čech homology, persistence diagrams are equivalent to
persistent Betti numbers functions.
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Comparison of persistent Betti numbers functions

Persistence diagrams (and hence persistent Betti numbers functions)
can be compared by means of the bottleneck distance. The bottleneck
distance between two persistence diagrams D1, D2 is the minimum
cost of changing the points of D1 into the points of D2, where the
cost of moving each point is given by the max-norm distance in R2.
Moving a point to the diagonal is equivalent to delete it.
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Comparison of persistent Betti numbers functions

An important property of the metric dmatch is its stability, as stated in
the following result.

Theorem

If k is a natural number and ϕ1,ϕ2 ∈ C 0(X ,R), then

dmatch(rk(ϕ1), rk(ϕ2))≤ dHomeo(X )(ϕ1,ϕ2)≤ ‖ϕ1−ϕ2‖∞
.
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Group Equivariant Non-Expansive Operators

Let X and G be a topological space and a subgroup of the group
Homeo(X ) of all homeomorphisms from X to X , respectively. Let
Φ ⊆ C 0(X ,R). We now consider the set F (Φ,G ) of all maps from Φ

to Φ that verify the following two properties:

1. F (ϕ ◦g) = F (ϕ)◦g for every ϕ ∈ Φ and every g ∈ G (i.e. F is
equivariant with respect to G );

2. ‖F (ϕ1)−F (ϕ2)‖∞ ≤ ‖ϕ1−ϕ2‖∞ for every ϕ1,ϕ2 ∈ Φ (i.e. F is
non-expansive).

Obviously, F (Φ,G ) is not empty, since it contains at least the
identity map. The maps in F (Φ,G ) will be called Group Equivariant
Non-Expansive Operators (GENEOs).
In my next talk I will give an extension of this concept to operators
from Φ to Ψ 6= Φ .
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Lower bounds for dG via persistent homology

For every fixed k, we can consider the following pseudo-metric DF ,k
match

on Φ :

DF ,k
match(ϕ1,ϕ2) := sup

F∈F
dmatch(rk(F (ϕ1)), rk(F (ϕ2)))

for every ϕ1,ϕ2 ∈ Φ, where rk(ϕ) denotes the k-th persistent Betti
numbers function with respect to the function ϕ : X → R. We will
usually omit the index k, when its value is clear from the context or
not influential.

We observe that
DF

match(ϕ1,ϕ2 ◦g) = DF
match(ϕ1 ◦g ,ϕ2) = DF

match(ϕ1,ϕ2) for every
ϕ1,ϕ2 ∈Φ and every g ∈ Homeo(X ).
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Lower bounds for dG via persistent homology

The importance of DF
match lies in the following two results, showing

that it can be used to get information about the natural
pseudo-distance dG .

Theorem

If /0 6= F̄ ⊆F (Φ,G ), then DF̄
match ≤ dG .

Theorem

D
F (Φ,G)
match = dG .

As a consequence, the topological and geometrical study of F (Φ,G )
is important in the research concerning the natural pseudo-distance.
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Two relevant properties of F (Φ,G )

Two relevant properties of F (Φ,G ) are expressed by the following
result.

Theorem

If Φ is compact, then F (Φ,G ) is compact.
If Φ is convex, then F (Φ,G ) is convex.

The compactness and convexity of F (Φ,G ) are important from the
computational point of view.
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An open problem

Let us consider a closed C 1 surface M and two C 1 filtering functions
ϕ1,ϕ2 : M → R. Let Homeo(M ) be the group of all
self-homeomorphisms of M . It has been proved that at least one of
the following statements holds:

1. dHomeo(M )(ϕ1,ϕ2) is the distance between a critical value of ϕ1

and a critical value of ϕ2;

2. dHomeo(M )(ϕ1,ϕ2) is half the distance between two critical values
of ϕ1;

3. dHomeo(M )(ϕ1,ϕ2) is half the distance between two critical values
of ϕ2;

4. dHomeo(M )(ϕ1,ϕ2) is one third of the distance between a critical
value of ϕ1 and a critical value of ϕ2.
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An open problem

Interestingly, no example of two functions ϕ1,ϕ2 : M → R is known,
such that (4) holds but (1),(2),(3) do not hold. A natural question
arises: Can we find an example of two such functions or prove that
such an example cannot exist (so improving our result)?
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An open problem

We recall that the usual technique to compute the natural
pseudo-distance consists in

• finding a lower bound for dHomeo(M )(ϕ1,ϕ2) by computing the
matching distance dmatch (Dgmk(ϕ1),Dgmk(ϕ2)) between the
persistence diagrams in degree k of the functions ϕ1 and ϕ2;

• looking for a sequence (gi ) in Homeo(M ), such that
limi→∞ ‖ϕ1−ϕ2 ◦gi‖∞ = dmatch (Dgmk(ϕ1),Dgmk(ϕ2)).

If such a sequence (gi ) exists, then the value dHomeo(M )(ϕ1,ϕ2) is
equal to dmatch (Dgmk(ϕ1),Dgmk(ϕ2)).
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An open problem

Unfortunately, at least one of the following statements holds:

a) dmatch (Dgmk(ϕ1),Dgmk(ϕ2)) is the distance between a
critical value of ϕ1 and a critical value of ϕ2;

b) dmatch (Dgmk(ϕ1),Dgmk(ϕ2)) is half the distance
between two critical values of ϕ1;

c) dmatch (Dgmk(ϕ1),Dgmk(ϕ2)) is half the distance
between two critical values of ϕ2.

Therefore, if (1),(2),(3) do not hold for ϕ1,ϕ2 : M → R, then
dHomeo(M )(ϕ1,ϕ2) cannot be equal to dmatch (Dgmk(ϕ1),Dgmk(ϕ2)).
This means that if there exist two C 1 functions ϕ1,ϕ2 : M → R
verifying (4) but not (1),(2),(3), then we need new methods to
compute dHomeo(M )(ϕ1,ϕ2) and to recognize the pair (ϕ1,ϕ2) as the
right example. As a consequence, the answer to the question asked in
this section is still unknown.
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