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The content of this talk

In this talk we will illustrate the topological theory introduced in this
paper:

Mattia G. Bergomi, Patrizio Frosini, Daniela Giorgi, Nicola Quercioli,
Towards a topological-geometrical theory of group equivariant
non-expansive operators for data analysis and machine learning,
Nature Machine Intelligence, vol. 1, n. 9, pages 423–433 (2
September 2019).

Full-text access to a view-only version of this paper is available at the
link https://rdcu.be/bP6HV.
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The role of equivariant operators in machine learning

• As pointed out by several authors (Mallat, Poggio, Rosasco...) the
role of equivariant operators in machine learning is getting more
and more important.

• Data comparison is almost never a direct process: it is usually
mediated by the comparison of new data produced by
agents/observers, i.e. by the comparison of the action of agents on
the original data.

• Equivariant operators (and networks of equivariant operators) can
model agents acting on data.

At the very beginning, data are usually given by measurements.
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What does MEASUREMENT mean?

Before proceeding, we have to determine what measurements are in
our mathematical model.

Measurement is the assignment of a number to a characteristic of an
object or event, which can be compared with other objects or events.

WikipediA

According to this definition, measurements (and hence data) can be
seen as functions ϕ associating a real number ϕ(x) with each point x
of a set X of characteristics. (This definition admits a natural
extension to vector-valued functions but, for the sake of simplicity, we
will treat here the case of scalar-valued functions). If we wish to
develop a theory that can be applied in real situations, we need
stability with respect to noise. This naturally leads us to use a
topology on the set Φ of possible measurements on a set X .
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Assumptions in our model

We will make these assumptions:

• Data are represented as functions defined on topological spaces,
since only data that are stable w.r.t. a certain criterion (e.g., with
respect to some kind of measurement) can be considered for
applications, and stability requires a topological structure.

• Data cannot be studied in a direct and absolute way. They are
only knowable through acts of transformation made by an
agent/observer. From the point of view of data analysis, only the
pair (data, agent) matters. In general terms, agents are not
endowed with purposes or goals: they are just ways and methods
to transform data. Acts of measurement are a particular class of
acts of transformation.
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Assumptions in our model

We will make these assumptions:

• Agents are described by the way they transform data while
respecting some kind of invariance. In other words, any agent can
be seen as a group equivariant operator acting on a function space.

• Data similarity depends on the output of the considered agent.
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A topology on the space X of characteristics

A natural topology on the set Φ of possible measurements is the one
induced by the L∞ metric DΦ (ϕ1,ϕ2) := ‖ϕ1−ϕ2‖∞.

Since measurements are the central concept in our approach, the
topology on X is derived from DΦ .
We define this pseudometric DX on X by setting

DX (x1,x2) := sup
ϕ∈Φ

|ϕ(x1)−ϕ(x2)|.

In plain words: Two points x1,x2 ∈ X are close to each other if and
only if every measurement in Φ takes similar values at those points.
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Every function in Φ is continuous

In this talk we will assume that the topological space Φ is compact.

EXAMPLE 1. X := S1 = {(x ,y) ∈ R2 : x2 + y2 = 1}, Φ = set of all
1-Lipschitzian functions from S1 to [0,1].

EXAMPLE 2. X := [−1,1]× [−1,1], Φ = set of all functions from X
to [0,1] that are 1-Lipschitzian both in X1 := [−1,0]× [−1,1] and in
X2 := (0,1]× [−1,1]. Please observe that the functions in Φ can be
discontinuous at the points (x ,y) with x = 0, with respect to the
Euclidean topology on X . However, every function in Φ is continuous
with respect to the topology induced by DX .

Theorem

If Φ is compact, then the topology induced by DX coincides with the
initial topology on X , i.e. the coarsest topology on X such that each
function ϕ ∈Φ is continuous.
10 of 43



Homeomorphisms with respect to DX

The next step consists in understanding what a Φ-preserving
homeomorphism with respect to DX is (a bijection g : X → X is
called Φ-preserving if ϕ ◦g ∈Φ and ϕ ◦g−1 ∈Φ for every ϕ ∈Φ).

Theorem

The Φ-preserving homeomorphisms with respect to DX are exactly
the Φ-preserving bijections from X to X .

Let us now consider a group G of homeomorphisms from X to X ,
whose elements preserves Φ by right composition.

We will say that (Φ ,G ) is a PERCEPTION PAIR.
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A pseudo-metric on our Φ-preserving group G

If a perception pair (Φ ,G ) is given, we can define the function

DG (g1,g2) = sup
ϕ∈Φ

DΦ (ϕ ◦g1,ϕ ◦g2) (0.1)

from G ×G to R.
The function DG is a pseudo-metric on G .
Please note that also the definition of DG is inherited from the
definition of DΦ .

Theorem

G is a topological group with respect to the pseudo-metric topology
and the action of G on Φ through right composition is continuous.
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Compactness of X and G

We recall that we are assuming Φ compact.

Theorem

If X is complete then it is also compact with respect to DX .

Theorem

If G is complete then it is also compact with respect to DG .

In this talk we will assume that X and G are complete, and hence
compact.
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Our ground truth: the natural pseudo-distance dG

Definition

The pseudo-distance dG : Φ×Φ → R is defined by setting

dG (ϕ1,ϕ2) = inf
g∈G

DΦ (ϕ1,ϕ2 ◦g).

It is called the natural pseudo-distance associated with the group G .

If G = {Id : x 7→ x}, then dG equals the sup-norm distance DΦ on Φ .
If G1 and G2 are groups of Φ-preserving self-homeomorphisms of X
and G1 ⊆ G2, then the definition of dG implies that

dG2(ϕ1,ϕ2)≤ dG1(ϕ1,ϕ2)≤ DΦ (ϕ1,ϕ2)

for every ϕ1, ϕ2 ∈Φ .
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Our ground truth: the natural pseudo-distance dG

The natural pseudo-distance dG is our ground truth: it describes
the differences that the agent/observer can perceive between the
measurements in Φ with respect to the equivalence expressed by the
group G .

A possible objection: “The use of the concept of homeomorphism
makes the natural pseudo-distance dG difficult to apply. For example,
in shape comparison two similar objects can be non-homeomorphic,
hence this pseudo-metric cannot be applied to real problems.”
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A possible objection

Answer: the homeomorphisms do not concern the “objects”
but the space X where the measurements are made.

• For example, if we are interested in grey level images, the domain
of our measurements can be modelled as the real plane and each
image can be represented as a function from R2 to R. Therefore,
the space X is not given by the (possibly non-homeomorphic)
objects displayed in the pictures, but by the topological space R2.

• If we make two CAT scans, the topological space X is always given
by an helix turning many times around a body, and no requirement
is made about the topology of such a body.

In other words, it is usually legitimate to assume that the topological
space X is determined only by the measuring instrument we are using
to get our measurements.
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Group equivariant non-expansive operators

The natural pseudo-distance dG represents our ground truth.

Unfortunately, dG is difficult to compute. This is also a consequence
of the fact that we can easily find subgroups G of Homeo(X ) that
cannot be approximated with arbitrary precision by smaller finite
subgroups of G (i.e. G = group of rigid motions of X = R3).

Nevertheless, in this talk we will show that dG can be approximated
with arbitrary precision by means of a DUAL approach based on
persistent homology and group equivariant non-expansive operators
(GENEOs).
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The space of GENEOs

Definition

Assume that (Φ ,G ), (Ψ ,H) are two perception pairs and that a
homomorphism T : G → H has been fixed. A Group Equivariant
Non-Expansive Operator (GENEO) from (Φ ,G ) to (Ψ ,H) is a map
F : Φ →Ψ such that the following properties hold for every
ϕ1,ϕ2 ∈Φ :

1. F (ϕ ◦g) = F (ϕ)◦T (g) for every g ∈ G ;

2. DΨ (F (ϕ1),F (ϕ2))≤ DΦ (ϕ1,ϕ2).

We will use the symbol F all to denote the set of all GENEOs from
(Φ ,G ) to (Ψ ,H) with respect to T .
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An example of GENEO

We give an example of the use of the definition of GENEO between
two different perception pairs (Φ ,G ), (Ψ ,H).
Let us assume to be interested in the comparison of the distributions
of temperatures on a sphere, taken at two different times:

Let us also imagine that only two opposite points N,S can be
localized on the sphere.
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An example of GENEO

In this case we can set

• X = S2

• Φ = set of 1-Lischitzian functions from S2 to a fixed interval [a,b]

• G = group of rotations of S2 around the axis N−S

We can also consider the “equator” of our sphere, represented as the
space S1.

Therefore, we can also set

• Y = the equator S1 of S2

• Ψ = set of 1-Lischitzian functions from S1 to [a,b]

• H = group of rotations of S1
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An example of GENEO

In this case we can build a simple example of GENEO from (Φ ,G ) to
(Ψ ,H) by setting

• T (g) equal to the rotation h ∈ H of the equator S1 that is induced
by the rotation g of S2, for every g ∈ G .

• F (ϕ) equal to the function ψ that takes each point y belonging to
the equator S1 to the average of the temperatures along the
meridian containing y , for every ϕ ∈Φ ;

We can easily check that F verifies the properties defining the
concept of group equivariant non-expansive operator with respect to
the homomorphism T : G → H.

In his talk, Mattia will illustrate other examples of GENEOs.
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Two pseudo-metrics for the space F all

The following two pseudo-metrics can be of use:

Definition

If F1,F2 ∈F all, we set

DGENEO (F1,F2) := sup
ϕ∈Φ

DΨ (F1(ϕ),F2(ϕ))

DGENEO,H (F1,F2) := sup
ϕ∈Φ

dH (F1(ϕ),F2(ϕ)) . (0.1)

Proposition

DGENEO and DGENEO,H are pseudo-metrics on F all. Moreover,
DGENEO,H ≤ DGENEO.
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Some good news

Let F all be the set of all GENEOs from (Φ ,G ) to (Ψ ,H) with
respect to a fixed homomorphism T : G → H.

Theorem

F all is compact with respect to both DGENEO and DGENEO,H.

Corollary

F all can be ε-approximated by a finite subset for every ε > 0.

Theorem

If Ψ is convex, then F all is convex.

25 of 43



A mathematical framework for data comparison

The natural pseudo-distance dG

Group equivariant non-expansive operators

Persistent homology

The link between the natural pseudo-distance and persistent
homology via GENEOs

Building new GENEOs

26 of 43



What is persistent homology?

If ϕ : X → R is a continuous functions, we can consider the sublevel
sets Xt := {x ∈ X : ϕ(x)≤ t}. When t varies we see the birth and
death of k-dimensional holes.
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What is persistent homology?
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What is persistent homology?

In plain words, the persistence diagram in degree k of ϕ is the
collection of the pairs (bi ,di ) where bi and di are the times of birth
and death of the i-th hole of dimension k .

The points of the persistence diagram are endowed with multiplicity.
Each point of the diagonal u = v is assumed to be a point of the
persistence diagram, endowed with infinite multiplicity.
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Comparison of persistence diagrams

Persistence diagrams can be compared by means of the bottleneck
distance dmatch. The bottleneck distance between two persistence
diagrams D1, D2 is the minimum cost of changing the points of D1

into the points of D2, where the cost of moving each point is given by
the max-norm distance in R2. Moving a point to the diagonal is
equivalent to delete it.
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The link between the natural pseudo-distance and
persistent homology via GENEOs

Persistent homology enters this theoretical framework by means of an
equality allowing us to approximate the natural pseudo-distance:

Theorem

If (Φ ,G ) = (Ψ ,H), then

dG (ϕ1,ϕ2) = sup
F∈F all

dmatch (Dgm(F (ϕ1)),Dgm(F (ϕ2)))

where Dgm(F (ϕ)) is the persistence diagram of the function F (ϕ)
and dmatch is the usual bottleneck distance.

(More details in the paper [P. Frosini, G. Jab loński, Combining
persistent homology and invariance groups for shape comparison,
Discrete & Comput. Geometry, vol. 55 (2016), n. 2, pages 373-409.])
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The pseudo-metric DF
match

Let us take a finite ε-approximation F of F all. We can then define
the pseudo-metric

DF
match(ϕ1,ϕ2) := sup

F∈F
dmatch (Dgm(F (ϕ1)),Dgm(F (ϕ2))) .

The following properties hold for every ϕ1,ϕ2 ∈Φ and every g ∈ G :

• DF
match(ϕ1,ϕ2 ◦g) = DF

match(ϕ1,ϕ2);

• DF
match(ϕ1,ϕ2)≤ dG (ϕ1,ϕ2)≤ ‖ϕ1−ϕ2‖∞;

•
∣∣dG (ϕ1,ϕ2)−DF

match(ϕ1,ϕ2)
∣∣≤ 2ε.
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Another link with TDA

The computational machinery developed in persistent homology can
be used in our mathematical approach as a proxy for the fast
comparison of GENEOs, by replacing DGENEO (F1,F2) with the
pseudo-metric
∆GENEO (F1,F2) := supϕ∈Φ dmatch(Dgm(F1(ϕ)),Dgm(F2(ϕ))).

The following result immediately follows from the stability of
persistence diagrams:

Proposition

∆GENEO (F1,F2)≤ DGENEO (F1,F2).

In other words, persistent homology provides an efficient way for the
comparison of GENEOs.
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Building new GENEOs

Our approach to group equivariant Topological Data Analysis is based
on the availability of GENEOs.

How could we build new GENEOs from other GENEOs?

A simple method consists in composing GENEOs:

Proposition

If F1 is a GENEO from (Φ1,G1) to (Φ2,G2) with respect to
T1 : G1→ G2 and F2 is a GENEO from (Φ2,G2) to (Φ3,G3), then
F2 ◦F1 is a GENEO from (Φ1,G1) to (Φ3,G3) with respect to
T2 ◦T1 : G1→ G3.
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Building GENEOs via 1-Lipschitzian functions

We can also produce new GENEOs by means of a 1-Lipschitzian
function applied to other GENEOs:

Proposition

Assume that two perception pairs (Φ ,G ), (Ψ ,H) and a
homomorphism T : G → H are given. Let L be a 1-Lipschitzian map
from Rn to R, where Rn is endowed with the norm
‖(x1, . . . ,xn)‖∞ := max1≤i≤n |xi |. Assume also that F1, . . . ,Fn are
GENEOs from (Φ ,G ) to (Ψ ,H) with respect to T . Let us define
L ∗(F1, . . . ,Fn) by setting
L ∗(F1, . . . ,Fn)(ϕ)(x) := L (F1(ϕ)(x), . . . ,Fn(ϕ)(x)). If
L ∗(F1, . . . ,Fn)(Φ)⊆Ψ , then L ∗(F1, . . . ,Fn) is a GENEO from
(Φ ,G ) to (Ψ ,H) with respect to T .

From this proposition the following three results follow.
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Building new GENEOs via translations, the maximum
operator and weighted averages

Assume that two perception pairs (Φ ,G ), (Ψ ,H) and a
homomorphism T : G → H are given.

Proposition (Translation)

Let F be a GENEO from (Φ ,G ) to (Ψ ,H) with respect to T . The
operator Fb(ϕ) := ϕ−b is a GENEO from (Φ ,G ) to (Ψ ,H) with
respect to T , for every b ∈ R such that Fb(Φ)⊆Ψ .

Proposition (Maximum)

If F1, . . . ,Fn are GENEOs from (Φ ,G ) to (Ψ ,H) with respect to T ,
then the operator F (ϕ) := maxi Fi (ϕ) is a GENEO from (Φ ,G ) to
(Ψ ,H) with respect to T , provided that F (Φ)⊆Ψ .
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Building new GENEOs via translations, weighted
averages and the maximum operator

Proposition (Weighted average)

If F1, . . . ,Fn are GENEOs from (Φ ,G ) to (Ψ ,H) with respect to T
and (a1, . . . ,an) ∈ Rn with ∑

n
i=1 |ai | ≤ 1, then the operator

F (ϕ) := ∑
n
i=1 aiFi (ϕ) is a GENEO from (Φ ,G ) to (Ψ ,H) with

respect to T , provided that F (Φ)⊆Ψ .

Our results show that if we work with spaces Φ , Ψ of measurements
that are compact and convex, then the topological space of all
GENEOs from (Φ ,G ) to (Ψ ,H) with respect to T is compact and
convex.
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An interesting GENEO in kD persistent homology

Previous propositions imply the following statement.

Proposition

Assume F1, . . . ,Fn are GENEOs from (Φ ,G ) to (Ψ ,H) with respect to
T , and that (a1, . . . ,an), (b1, . . . ,bn) ∈ Rn, with a1, . . . ,an > 0,

∑
n
i=1 ai = 1 and ∑

n
i=1 bi = 0. Then the operator

F (ϕ) := max

{
minj aj

a1
· (F1(ϕ)−b1), . . . ,

minj aj
an

· (Fn(ϕ)−bn)

}
is a GENEO from (Φ ,G ) to (Ψ ,H) with respect to T , provided that

F (Φ)⊆Ψ .

This result can be easily generalized from the case Φ ⊆ C 0(X ,R) to
the case Φ ⊆ C 0(X ,Rm).
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An interesting GENEO in kD persistent homology

Let us now take G = H, T = id and n = m in the extended version of
the previous proposition. By considering the projection operators
Fi (ϕ) := ϕi for every ϕ = (ϕ1, . . . ,ϕn) ∈Φ ⊆ C 0(X ,Rn), we obtain
the operator

F (ϕ) = max

{
minj aj

a1
· (ϕ1−b1), . . . ,

minj aj
an

· (ϕn−bn)

}
.

This operator is important in kD persistent homology, as a key tool to
reduce kD persistent Betti number functions to families of 1D
persistent Betti number functions. It is interesting to observe that
such an operator is a group equivariant non-expansive operator.
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Conclusions and open questions

We have introduced a topological-geometrical model where we can
formalize and attack this problem: how can we find efficient methods
to approximate a given agent/observer by a GENEO belonging to a
compact and convex space of GENEOs?
This problem leads us to the following open questions:

• How can we build a good library of GENEOs?

• How can we find a method to choose a finite set F ∗ of GENEOs
that allows for both a good approximation of the natural
pseudo-distance dG and a fast computation?

• In which cases can the set of GENEOs be equipped with the
structure of a Riemannian manifold?

• Could we compose operators to form networks, in the same way as
computational units are connected in an artificial neural network?
(→ Mattia’s talk)
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