NOME:				
MATRICOLA:	⇒ a=	, b =	, c =	

Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola (es.: numero 330257; a = 2, b = 5, c = 7). Rispondere UNICAMENTE su questo foglio, scrivendo SOLO le risposte richieste. Non consegnare alcun altro foglio. N.B.: Quando presenti nel testo, i simboli n ed m denotano sempre numeri naturali non nulli.

Stabilire la verità (V) o falsità (F) di ciascuna delle seguenti affermazioni, marcando con una crocetta il simbolo corrispondente. Ogni risposta corretta vale 1 punto, ogni risposta errata -1 punto. La mancata risposta comporta punteggio nullo.

- (**X**) (**F**) Se $A \in M_n(\mathbb{R})$ e $A^4 = I$ (*I* matrice identica) allora $A^{40} = I$.
- (**X**) (**F**) Se $A \in M_n(\mathbb{R})$ allora $\det(A+A) = 2^n \cdot \det A$.
- (**X**) (**F**) L'insieme delle funzioni continue da \mathbb{R} in \mathbb{R} è uno spazio vettoriale (rispetto alle usuali operazioni) di dimensione infinita.
- (V) (K) Esistono spazi vettoriali di dimensione finita privi di sistemi di generatori.
- (V) (K) Un sistema lineare di 9 equazioni ammette soluzione se e solo se è in 9 incognite.
- (**X**) (F) Se s è la somma delle dimensioni degli autospazi di un endomorfismo di \mathbb{R}^n , allora $s \leq n$.
- (**X**) (**F**) Se **u** è un vettore dello spazio vettoriale euclideo orientato \mathbb{R}^3 , allora $\mathbf{u} \wedge (\mathbf{u} + \mathbf{u}) = \mathbf{0}$.
- (V) (K) Una matrice quadrata reale con tutti i coefficienti non negativi è sempre diagonalizzabile.
- (V) (**K**) Se $A \in M_n(\mathbb{R})$, allora il polinomio caratteristico di A^2 è il quadrato del polinomio caratteristico di A.
- (**X**) (**F**) L'equazione $4x^2 y^2 = 1$ rappresenta una iperbole del piano euclideo standard.

ESERCIZIO 1 (5 punti) Si ponga $\alpha = a+1$, $\beta = b+1$, $\gamma = c+1$. Al variare del parametro reale k, calcolare gli autovalori (2 punti) e stabilire la diagonalizzabilità (3 punti) della matrice

$$A_k = \begin{pmatrix} \alpha + \gamma - k & -(k+2\beta) & 0 \\ 0 & \alpha + \beta + \gamma & 0 \\ 2k - \alpha - \gamma & -(k+2\beta) & k \end{pmatrix}.$$

AUTOVALORI: $\alpha + \gamma - k$, $\alpha + \beta + \gamma$, k.

DIAGONALIZZABILITÀ: A_k è diagonalizzabile se e soltanto se $k \neq -\beta, \alpha + \beta + \gamma$.

ESERCIZIO 2 (5 punti) Si ponga $\alpha=a+1,\ \beta=b+1,\ \gamma=c+1.$ Nello spazio euclideo standard, determinare una rappresentazione cartesiana per il piano π passante per il punto $P(0,0,\alpha)$, parallelo alla retta $r: \left\{ \begin{array}{c} x=\gamma \\ \alpha y+\beta z=0 \end{array} \right.$ ed ortogonale al piano $\pi': x+\beta y+z-\gamma=0.$

EQUAZIONE DEL PIANO: Una possibile rappresentazione cartesiana del piano cercato è data da $\pi: (\alpha+1)\beta x - \alpha y - \beta z + \alpha \beta = 0$.

ESERCIZIO 3 (5 punti) Si ponga $\alpha = 10 - a$, $\beta = 10 - b$, $\gamma = 10 - c$. Determinare una base del sottospazio di \mathbb{R}^4 contenente tutti e soli i vettori ortogonali a $(\alpha, 0, \beta, 0)$ e $(0, \gamma, 0, \gamma^2)$.

BASE: Una possibile base del sottospazio considerato è $\{(-\beta, 0, \alpha, 0), (0, -\gamma, 0, 1)\}$.

ESERCIZIO 4 (5 punti) Si ponga $\alpha = 10 - a$, $\beta = 10 - b$, $\gamma = 10 - c$. Data la matrice

$$A_{k} = \begin{pmatrix} -\beta & 2 & \alpha & \gamma \\ -4 & k - \alpha & -(2k + 2\beta) & 0 \\ k - \alpha + \beta & -2 & -\alpha & -\gamma \\ 2 & 0 & k + \beta & 0 \end{pmatrix},$$

e considerata la trasformazione lineare $T_k : \mathbb{R}^4 \to \mathbb{R}^4$ di equazione matriciale $(y) = A_k(x)$ rispetto alle basi canoniche, calcolare dim ker T_k e dim Im T_k al variare del parametro reale k.

RISPOSTA: Se $k \neq \alpha, -\beta$ vale rank $A_k = 4 = \dim \operatorname{Im} T_k$ e dunque $\dim \ker T_k = 0$. Se $k = \alpha$ allora rank $A_k = 2 = \dim \operatorname{Im} T_k$ e dunque $\dim \ker T_k = 2$. Se $k = -\beta$ allora rank $A_k = 3 = \dim \operatorname{Im} T_k$ e dunque $\dim \ker T_k = 1$.

NOME:				
MATRICOLA:	⇒ a=	, b =	, c =	

Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola (es.: numero 330257; a = 2, b = 5, c = 7). Rispondere UNICAMENTE su questo foglio, scrivendo SOLO le risposte richieste. Non consegnare alcun altro foglio. N.B.: Quando presenti nel testo, i simboli n ed m denotano sempre numeri naturali non nulli.

Stabilire la verità (V) o falsità (F) di ciascuna delle seguenti affermazioni, marcando con una crocetta il simbolo corrispondente. Ogni risposta corretta vale 1 punto, ogni risposta errata -1 punto. La mancata risposta comporta punteggio nullo.

- (V) (**K**) Se $A \in M_n(\mathbb{R})$ e $A^4 = I$ (I matrice identica) allora $A^2 = I$.
- (**X**) (**F**) L'inversa dell'inversa di una matrice reale $A \in M_n(\mathbb{R})$ invertibile è A.
- (**X**) (**F**) Un qualunque sistema di 4 generatori dello spazio vettoriale $M_2(\mathbb{R})$ (dotato delle usuali operazioni) è una base dello stesso spazio vettoriale.
- (**X**) (**F**) Il sottospazio vettoriale di \mathbb{R}^5 (dotato delle usuali operazioni) costituito dalle quintuple (x, y, z, t, u) tali che x = y = z = t = u ha dimensione 1.
- (X) (F) Se due matrici quadrate reali sono simili hanno anche lo stesso determinante.
- (V) (\mathbb{K}) L'insieme delle soluzioni di un sistema lineare omogeneo di 5 equazioni in 7 incognite è sempre un sottospazio vettoriale di dimensione 2 di \mathbb{R}^7 .
- (V) (\mathbb{K}) Ogni endomorfismo di \mathbb{R}^2 che sia anche un isomorfismo ammette una base spettrale.
- (**X**) (**F**) Se U è un sottospazio vettoriale di \mathbb{R}^5 , allora la dimensione del complemento ortogonale di U è diversa dalla dimensione di U.
- (**X**) (**F**) Se **u** è un vettore dello spazio vettoriale euclideo orientato \mathbb{R}^3 , allora si ha che (**u** \wedge **u**) \wedge **u** = **0**.
- (V) (K) L'equazione $x^4 + y^4 = 1$ rappresenta una ellisse del piano euclideo standard.

ESERCIZIO 1 (5 punti) Si ponga $\alpha = a+1$, $\beta = b+1$, $\gamma = c+1$. Al variare del parametro reale k, calcolare gli autovalori (2 punti) e stabilire la diagonalizzabilità (3 punti) della matrice

$$A_k = \begin{pmatrix} \alpha + \gamma - k & 0 & 0 \\ -(k+2\beta) & \alpha + \beta + \gamma & -(k+2\beta) \\ 2k - \alpha - \gamma & 0 & k \end{pmatrix}.$$

AUTOVALORI: $\alpha + \gamma - k$, $\alpha + \beta + \gamma$, k.

DIAGONALIZZABILITÀ: A_k è diagonalizzabile se e soltanto se $k \neq \alpha + \beta + \gamma$.

ESERCIZIO 2 (5 punti) Si ponga $\alpha = a+1$, $\beta = b+1$, $\gamma = c+1$. Nello spazio euclideo standard, determinare una rappresentazione cartesiana per il piano π passante per il punto $P(\gamma,0,0)$, parallelo alla retta $r: \begin{cases} z=\alpha \\ \beta x + \gamma y = 0 \end{cases}$ ed ortogonale al piano $\pi': x+\beta y+z-\alpha=0$.

EQUAZIONE DEL PIANO: Una possibile rappresentazione cartesiana del piano cercato è data da $\pi: \beta x + \gamma y - \beta(\gamma+1)z - \gamma\beta = 0$.

ESERCIZIO 3 (5 punti) Si ponga $\alpha = 10 - a$, $\beta = 10 - b$, $\gamma = 10 - c$. Determinare una base del sottospazio di \mathbb{R}^4 contenente tutti e soli i vettori ortogonali a $(0, \gamma, \beta, 0)$ e $(\alpha, 0, 0, \alpha^2)$.

BASE: Una possibile base del sottospazio considerato è $\{(0, -\beta, \gamma, 0), (-\alpha, 0, 0, 1)\}$.

ESERCIZIO 4 (5 punti) Si ponga $\alpha = 10 - a$, $\beta = 10 - b$, $\gamma = 10 - c$. Data la matrice

$$A_{k} = \begin{pmatrix} k - \alpha + \gamma & -\alpha & -\beta & -2 \\ 2 & k + \gamma & 0 & 0 \\ -\gamma & \alpha & \beta & 2 \\ -4 & -(2k + 2\gamma) & 0 & k - \alpha \end{pmatrix},$$

e considerata la trasformazione lineare $T_k : \mathbb{R}^4 \to \mathbb{R}^4$ di equazione matriciale $(y) = A_k(x)$ rispetto alle basi canoniche, calcolare dim ker T_k e dim Im T_k al variare del parametro reale k.

RISPOSTA: Se $k \neq \alpha$, $-\gamma$ vale rank $A_k = 4 = \dim \operatorname{Im} T_k$ e dunque $\dim \ker T_k = 0$. Se $k = \alpha$ allora rank $A_k = 2 = \dim \operatorname{Im} T_k$ e dunque $\dim \ker T_k = 2$. Se $k = -\gamma$ allora rank $A_k = 3 = \dim \operatorname{Im} T_k$ e dunque $\dim \ker T_k = 1$.

NOME:				
MATRICOLA:	⇒ a=	, b =	, c =	

Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola (es.: numero 330257; a = 2, b = 5, c = 7). Rispondere UNICAMENTE su questo foglio, scrivendo SOLO le risposte richieste. Non consegnare alcun altro foglio. N.B.: Quando presenti nel testo, i simboli n ed m denotano sempre numeri naturali non nulli.

Stabilire la verità (V) o falsità (F) di ciascuna delle seguenti affermazioni, marcando con una crocetta il simbolo corrispondente. Ogni risposta corretta vale 1 punto, ogni risposta errata -1 punto. La mancata risposta comporta punteggio nullo.

- (**X**) (**F**) Se $A, B \in M_n(\mathbb{R})$ e AB = I (*I* matrice identica) allora $A \in B$ sono matrici invertibili.
- (V) (**K**) Se $A \in M_n(\mathbb{R})$ e A^2 è la matrice nulla, allora anche A è la matrice nulla.
- (V) (\mathbb{K}) La matrice reale nulla 3×3 è ortogonale.
- (V) (\mathbf{K}) Le permutazioni sui primi n numeri naturali sono n.
- (V) (\mathbb{K}) La dimensione dello spazio vettoriale reale delle matrici reali 7×7 che hanno le ultime 5 righe nulle è 35 (si considerino le usuali operazioni).
- (V) (**K**) Se $A \in M_n(\mathbb{R})$ ha una riga con coefficienti tutti uguali fra loro, allora det A = 0.
- (V) (\mathbb{K}) L'insieme delle matrici reali $n \times n$ a coefficienti tutti positivi è uno spazio vettoriale sul campo dei reali rispetto alle usuali operazioni di somma e prodotto per uno scalare.
- (**X**) (F) Ogni endomorfismo dello spazio vettoriale stardard \mathbb{R}^3 ammette almeno un autovalore.
- (\mathbf{X}) (F) Se $\|\cdot\|$ è la norma euclidea standard su \mathbb{R}^3 allora $\|\mathbf{u} \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ per ogni $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$.
- (**X**) (**F**) I piani di equazioni cartesiane $x = \frac{1}{2}$ e $z = \frac{2}{3}$ sono ortogonali nello spazio euclideo standard \mathbb{R}^3 .

ESERCIZIO 1 (5 punti) Si ponga $\alpha = a+1$, $\beta = b+1$, $\gamma = c+1$. Al variare del parametro reale k, calcolare gli autovalori (2 punti) e stabilire la diagonalizzabilità (3 punti) della matrice

$$A_k = \begin{pmatrix} \alpha + \gamma - k & -(k+2\beta) & 0 \\ 0 & \alpha + \beta + \gamma & 0 \\ 2k - \alpha - \gamma & -(k+2\beta) & k \end{pmatrix}.$$

AUTOVALORI: $\alpha + \gamma - k$, $\alpha + \beta + \gamma$, k.

DIAGONALIZZABILITÀ: A_k è diagonalizzabile se e soltanto se $k \neq -\beta, \alpha + \beta + \gamma$.

ESERCIZIO 2 (5 punti) Si ponga $\alpha=a+1,\ \beta=b+1,\ \gamma=c+1.$ Nello spazio euclideo standard, determinare una rappresentazione cartesiana per il piano π passante per il punto $P(0,0,\alpha)$, parallelo alla retta $r: \left\{ \begin{array}{c} x=\gamma \\ \alpha y+\beta z=0 \end{array} \right.$ ed ortogonale al piano $\pi': x+\beta y+z-\gamma=0.$

EQUAZIONE DEL PIANO: Una possibile rappresentazione cartesiana del piano cercato è data da $\pi: (\alpha+1)\beta x - \alpha y - \beta z + \alpha \beta = 0$.

ESERCIZIO 3 (5 punti) Si ponga $\alpha = 10 - a$, $\beta = 10 - b$, $\gamma = 10 - c$. Determinare una base del sottospazio di \mathbb{R}^4 contenente tutti e soli i vettori ortogonali a $(\alpha, 0, \beta, 0)$ e $(0, \gamma, 0, \gamma^2)$.

BASE: Una possibile base del sottospazio considerato è $\{(-\beta, 0, \alpha, 0), (0, -\gamma, 0, 1)\}$.

ESERCIZIO 4 (5 punti) Si ponga $\alpha = 10 - a$, $\beta = 10 - b$, $\gamma = 10 - c$. Data la matrice

$$A_{k} = \begin{pmatrix} -\beta & 2 & \alpha & \gamma \\ -4 & k - \alpha & -(2k + 2\beta) & 0 \\ k - \alpha + \beta & -2 & -\alpha & -\gamma \\ 2 & 0 & k + \beta & 0 \end{pmatrix},$$

e considerata la trasformazione lineare $T_k : \mathbb{R}^4 \to \mathbb{R}^4$ di equazione matriciale $(y) = A_k(x)$ rispetto alle basi canoniche, calcolare dim ker T_k e dim Im T_k al variare del parametro reale k.

RISPOSTA: Se $k \neq \alpha, -\beta$ vale rank $A_k = 4 = \dim \operatorname{Im} T_k$ e dunque $\dim \ker T_k = 0$. Se $k = \alpha$ allora rank $A_k = 2 = \dim \operatorname{Im} T_k$ e dunque $\dim \ker T_k = 2$. Se $k = -\beta$ allora rank $A_k = 3 = \dim \operatorname{Im} T_k$ e dunque $\dim \ker T_k = 1$.

NOME:				
MATRICOLA:	⇒ a=	, b =	, c =	

Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola (es.: numero 330257; a = 2, b = 5, c = 7). **Rispondere UNICAMENTE su questo foglio, scrivendo SOLO** le risposte richieste. Non consegnare alcun altro foglio. N.B.: Quando presenti nel testo, i simboli n ed m denotano sempre numeri naturali non nulli.

Stabilire la verità (V) o falsità (F) di ciascuna delle seguenti affermazioni, marcando con una crocetta il simbolo corrispondente. Ogni risposta corretta vale 1 punto, ogni risposta errata -1 punto. La mancata risposta comporta punteggio nullo.

- **(X)** (F) Se $A \in M_n(\mathbb{R})$ allora $(A+A) \cdot A = A \cdot (A+A)$.
- (\mathbf{X}) (F) La somma di due matrici reali $n \times n$ a traccia nulla è una matrice a traccia nulla.
- (V) (**K**) Se $A \in M_n(\mathbb{R})$ allora $A \in A^2$ hanno lo stesso rango.
- (**X**) (**F**) Ogni sottoinsieme linearmente indipendente di \mathbb{R}^n è contenuto in almeno una base di \mathbb{R}^n .
- (V) (**K**) Se $T: V \to W$ è una trasformazione lineare allora si ha che T è suriettiva se e solo se il suo nucleo contiene unicamente il vettore nullo.
- (V) (**K**) Una matrice $A \in M_n(\mathbb{R})$ è diagonalizzabile per similitudine se e solo se il suo polinomio caratteristico non ammette radici reali.
- (**X**) (**F**) Se $A \in M_n(\mathbb{R})$ allora la matrice $A \cdot A$ è diagonalizzabile per similitudine.
- (X) (F) Tutti i sottospazi vettoriali euclidei di \mathbb{R}^3 diversi dal sottospazio vettoriale nullo ammettono più di una base ortonormale.
- (**X**) (**F**) Lo spazio vettoriale reale standard \mathbb{R}^9 è finitamente generato.
- (V) (**K**) Le rette di equazioni parametriche x=2,y=0,z=3t-1 e x=0,y=2t,z=1 sono parallele nello spazio euclideo standard \mathbb{R}^3 .

ESERCIZIO 1 (5 punti) Si ponga $\alpha = a+1$, $\beta = b+1$, $\gamma = c+1$. Al variare del parametro reale k, calcolare gli autovalori (2 punti) e stabilire la diagonalizzabilità (3 punti) della matrice

$$A_k = \begin{pmatrix} \alpha + \gamma - k & 0 & 0 \\ -(k+2\beta) & \alpha + \beta + \gamma & -(k+2\beta) \\ 2k - \alpha - \gamma & 0 & k \end{pmatrix}.$$

AUTOVALORI: $\alpha + \gamma - k$, $\alpha + \beta + \gamma$, k.

DIAGONALIZZABILITÀ: A_k è diagonalizzabile se e soltanto se $k \neq \alpha + \beta + \gamma$.

ESERCIZIO 2 (5 punti) Si ponga $\alpha = a+1$, $\beta = b+1$, $\gamma = c+1$. Nello spazio euclideo standard, determinare una rappresentazione cartesiana per il piano π passante per il punto $P(\gamma,0,0)$, parallelo alla retta $r: \begin{cases} z=\alpha \\ \beta x + \gamma y = 0 \end{cases}$ ed ortogonale al piano $\pi': x+\beta y+z-\alpha=0$.

EQUAZIONE DEL PIANO: Una possibile rappresentazione cartesiana del piano cercato è data da $\pi: \beta x + \gamma y - \beta(\gamma+1)z - \gamma\beta = 0$.

ESERCIZIO 3 (5 punti) Si ponga $\alpha = 10 - a$, $\beta = 10 - b$, $\gamma = 10 - c$. Determinare una base del sottospazio di \mathbb{R}^4 contenente tutti e soli i vettori ortogonali a $(0, \gamma, \beta, 0)$ e $(\alpha, 0, 0, \alpha^2)$.

BASE: Una possibile base del sottospazio considerato è $\{(0, -\beta, \gamma, 0), (-\alpha, 0, 0, 1)\}$.

ESERCIZIO 4 (5 punti) Si ponga $\alpha = 10 - a$, $\beta = 10 - b$, $\gamma = 10 - c$. Data la matrice

$$A_{k} = \begin{pmatrix} k - \alpha + \gamma & -\alpha & -\beta & -2 \\ 2 & k + \gamma & 0 & 0 \\ -\gamma & \alpha & \beta & 2 \\ -4 & -(2k + 2\gamma) & 0 & k - \alpha \end{pmatrix},$$

e considerata la trasformazione lineare $T_k : \mathbb{R}^4 \to \mathbb{R}^4$ di equazione matriciale $(y) = A_k(x)$ rispetto alle basi canoniche, calcolare dim ker T_k e dim Im T_k al variare del parametro reale k.

RISPOSTA: Se $k \neq \alpha$, $-\gamma$ vale rank $A_k = 4 = \dim \operatorname{Im} T_k$ e dunque $\dim \ker T_k = 0$. Se $k = \alpha$ allora rank $A_k = 2 = \dim \operatorname{Im} T_k$ e dunque $\dim \ker T_k = 2$. Se $k = -\gamma$ allora rank $A_k = 3 = \dim \operatorname{Im} T_k$ e dunque $\dim \ker T_k = 1$.