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Data analysis is not just about data

Data interpretation depends on the observer:
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Observers are often more important than data

We are usually not directly interested in data, but in data
observers. For example, a patient is usually interested not in the
data representing a computerized axial tomography of her body, but
in the diagnosis that her doctor can make from these data.

Data analysis strongly depends on the chosen observer. If data
analysis were not dependant on the chosen observer, then physicians’
diagnoses would always be identical, scientists would always see the
same causes for each phenomenon, and all people would agree in
judging who the heroes and villains in a movie or a political event are.

It is indeed well known that different agents can have different
reactions in the presence of the same data, and this suggests that
data analysis should study the pairs (data, observer) instead of
data alone.
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What are data?

Data are usually produced by measurements (or actions) made
by observers. Before proceeding, we have to determine what
measurements are in our mathematical model.

Measurement is the assignment of a number to a characteristic of an
object or event, which can be compared with other objects or events.

WikipediA

According to this definition, measurements (and hence data) can be
often seen as functions ϕ associating a real number ϕ(x) with each
point x of a set X of characteristics. (This definition admits a natural
extension to vector-valued functions but, for the sake of simplicity, we
will treat here the case of scalar-valued functions).
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Data are measurements made by observers

Some examples of data that can be seen as measurements (i.e.,
functions):

• An electrocardiogram (a function from R to R);

• A gray-level image (a function from R2 to R);

• A computerized tomography (CT) scan (a function from a helix to
R).
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Observers are often associated with invariance groups

Observers often think that some data are equivalent to each other,
according to an invariance group.

The group G is not established once and forever: when the observer
changes, G changes too.
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Data equivalence w.r.t. a group of permutations

Our data are represented by real-valued functions.

What do the expressions “data equivalence” and “data similarity”
mean in our setting?

Two functions ϕ1,ϕ2 : X → R are equivalent with respect to a group
G of permutations on X if a g ∈ G exists, such that ϕ1 = ϕ2 ◦g.

Two functions ϕ1,ϕ2 : X → R are similar with respect to a group G
of permutations on X if a g ∈ G exists, such that ‖ϕ1−ϕ2 ◦g‖∞ is
small.
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Our general assumptions about data and observers

Our mathematical model is based on these assumptions:

• The space of observers is often more important than the space of
data;

• The study of the space of observers requires the development of a
new topological-geometric model.

• This new model could be of great use in data analysis, when the
role of the observers is not negligible.

These assumptions suggest us to move from Topological Data
Analysis to the new field of Topological Observer Analysis.
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Observers can be seen as equivariant operators

Observers are structures able to change data into other data, and
usually do that by respecting some data equivalences, i.e., by
commuting with some transformations.

As a first approximation, observers can be represented as group
equivariant operators (GEOs).

Many researchers are presently studying the use of group
equivariant operators in deep learning (Yoshua Bengio, Tomaso
Poggio, Max Welling, Stéphane Mallat...).

In this talk we will give some results on the theory of Group
Equivariant Non-Expansive Operators (GENEOs).
(Why “non-expansive?” Because observers are often assumed to
simplify the metric structure of data in order to produce meaningful
interpretations.)
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Measurements as admissible functions

Let X be a nonempty set. Let Φ be a topological subspace of the set
RX
b of all bounded functions ϕ from X to R, endowed with the

topology induced by the metric

DΦ (ϕ1,ϕ2) := ‖ϕ1−ϕ2‖∞
. (0.1)

We can see X as the space where we can make our measurements,
and Φ as the space of all possible measurements. We will say that Φ

is the set of admissible functions. In other words, Φ is the set of all
functions from X to R that can be produced by our measuring
instruments. For example, a gray-level image can be represented as a
function from the real plane to the interval [0,1] (in this case
X = R2).

We recall that the initial topology τin on X with respect to Φ is the
coarsest topology on X such that every function ϕ in Φ is continuous.
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A pseudo-metric on X

Let us define on X the pseudo-metric

DX (x1,x2) = sup
ϕ∈Φ

|ϕ(x1)−ϕ(x2)|. (0.2)

DX induces a topology τDX
on X .

Theorem

The topology τDX
is finer than the initial topology τin on X with

respect to Φ . If Φ is totally bounded, then τDX
coincides with τin.

The use of DX implies that we can distinguish two points only if a
measurement exists, taking those points to different values.

Theorem

If Φ is compact and X is complete, then X is compact w.r.t. DX .
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Each bijection is an isometry

Let Bij(X ) be the set of all bijections from X to X , and denote by
BijΦ (X ) the set of all g ∈ Bij(X ) such that ϕ ◦g ∈Φ and
ϕ ◦g−1 ∈Φ for every ϕ ∈Φ . Let Homeo(X ) be the set of all
homeomorphisms from X a X with respect to DX , and denote by
HomeoΦ (X ) the set of all g ∈ Homeo(X ) such that ϕ ◦g ∈Φ and
ϕ ◦g−1 ∈Φ for every ϕ ∈Φ . Let Iso(X ) be the set of all isometries
from X a X , and denote by IsoΦ (X ) the set of all g ∈ Iso(X ) such
that ϕ ◦g ∈Φ and ϕ ◦g−1 ∈Φ for every ϕ ∈Φ .

Proposition

BijΦ (X ) = HomeoΦ (X ) = IsoΦ (X ).

Remark

The condition of preserving Φ is quite restrictive for permutations.
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A pseudo-metric on G

Let us now focus our attention on a subgroup G of HomeoΦ (X ).
We can define a pseudo-metric DG on G by setting

DG (g1,g2) := sup
ϕ∈Φ

DΦ (ϕ ◦g1,ϕ ◦g2). (0.3)

Theorem

G is a topological group with respect to DG and the action of G on
Φ by right composition is continuous.

Theorem

If Φ is compact and G is complete then it is also compact with
respect to DG .
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GEOs and GENEOs

Each pair (Φ ,G ) with G ⊆ HomeoΦ (X ) is called a perception pair.

Let us now assume that two perception pairs (Φ ,G ), (Ψ ,H) are
given, and fix a group homomorphism T : G → H.

Each function F : Φ →Ψ such that F (ϕ ◦g) = F (ϕ)◦T (g) for

every ϕ ∈Φ ,g ∈ G is called a Group Equivariant Operator (GEO)
associated with the homomorphism T .

If F is also non-expansive (i.e., DΨ (F (ϕ1),F (ϕ2))≤ DΦ (ϕ1,ϕ2) for

every ϕ1,ϕ2 ∈Φ), then F is called a Group Equivariant
Non-Expansive Operator (GENEO) associated with the
homomorphism T .
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An example of GENEO

Let us assume to be interested in the comparison of the distributions
of temperatures on a sphere, taken at two different times:

Let us also assume that only two opposite points N,S can be
localized on the sphere.
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An example of GENEO

In this case we can set

• X = S2

• Φ = set of 1-Lipschitz functions from S2 to a fixed interval [a,b]

• G = group of rotations of S2 around the axis N−S

We can also consider the “equator” of our sphere, represented as the
space S1, and set

• Y = the equator S1 of S2

• Ψ = set of 1-Lipschitz functions from S1 to [a,b]

• H = group of rotations of S1

In this way we have defined two perception pairs (Φ ,G ) to (Ψ ,H).

19 of 41



An example of GENEO

This is a simple example of GENEO from (Φ ,G ) to (Ψ ,H):

• T (g) is the rotation h ∈ H of the equator S1 that is induced by
the rotation g of S2, for every g ∈ G .

• F (ϕ) is the function ψ that takes each point y belonging to the
equator S1 to the average of the temperatures along the meridian
containing y , for every ϕ ∈Φ ;

We can easily check that F verifies the properties defining the
concept of group equivariant non-expansive operator with respect to
the isomorphism T : G → H.
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Our goal

In perspective, we would like to obtain a good compositional theory
for building efficient and transparent networks of GENEOs.
Some preliminary experiments suggest that replacing neurons with
GENEOs could make deep learning more transparent and
interpretable and speed up the learning process.
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More details are available here

More details are available in this paper:

The paper is available at the link https://rdcu.be/bP6HV.
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Two key results

Let us assume that a homomorphism T : G → H has been fixed.
Let us define a metric DGENEO on GENEO((Φ ,G ),(Ψ ,H)) by setting

DGENEO (F1,F2) := sup
ϕ∈Φ

DΨ (F1(ϕ),F2(ϕ)) .

Theorem

If Φ and Ψ are compact, then GENEO((Φ ,G ),(Ψ ,H)) is compact
with respect to DGENEO.

Theorem

If Ψ is convex, then GENEO((Φ ,G ),(Ψ ,H)) is convex.
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Elementary methods to build GENEOs

Proposition (Composition)

If F1 ∈ GENEO((Φ ,G ),(Ψ ,H)) w.r.t. T1 : G → H and
F2 ∈ GENEO((Ψ,H),(χ,K )) w.r.t. T2 : H → K then
F2 ◦F1 ∈ GENEO((Φ ,G ),(χ,K )) w.r.t. T2 ◦T1 : G → K.

Proposition (Image by a 1-Lipschitz function)

If F1, . . . ,Fn ∈ GENEO((Φ ,G ),(Ψ ,H)) w.r.t. T : G → H, L is a
1-Lipschitz map from Rn to R, and L∗(F1, . . . ,Fn)(Φ)⊆ Φ (where L∗

is the map induced by L), then
L∗(F1, . . . ,Fn) ∈ GENEO((Φ ,G ),(Ψ ,H)) w.r.t. T .

The next three statements follow from the last proposition.
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Elementary methods to build GENEOs

Proposition (Maximization)

If F1, . . . ,Fn ∈ GENEO((Φ ,G ),(Ψ ,H)) w.r.t. T : G → H e
max(F1, . . . ,Fn)(Φ)⊆ Φ, allora
max(F1, . . . ,Fn) ∈ GENEO((Φ ,G ),(Ψ ,H)) w.r.t. T .

Proposition (Translation)

Se F ∈ GENEO((Φ ,G ),(Ψ ,H)) w.r.t. T : G → H, and Fb(Φ)⊆ Φ for
Fb(ϕ) := F (ϕ)−b, then Fb ∈ GENEO((Φ ,G ),(Ψ ,H)) w.r.t. T .

Proposition (Convex combination)

If F1, . . . ,Fn ∈ GENEO((Φ ,G ),(Ψ ,H)) w.r.t. T : G → H,
(a1, . . . ,an) ∈ Rn con ∑

n
i=1 |ai | ≤ 1 and FΣ(Φ)⊆ Φ for

FΣ(ϕ) := ∑
n
i=1 aiFi (ϕ), then FΣ ∈ GENEO((Φ ,G ),(Ψ ,H)) w.r.t. T .
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Permutant measures

Let us consider the set Φ = RX ∼= Rn of all functions from a finite set
X = {x1, . . . ,xn} to R, and a subgroup G of the group Bij(X ) of all
permutations of X .

Definition

A finite (signed) measure µ on Bij(X ) is called a permutant measure
with respect to G if every subset H of Bij(X ) is measurable and µ is
invariant under the conjugacy action of G (i.e., µ(H) = µ(gHg−1) for
every g ∈ G ).

Proposition

If µ is a permutant measure with respect to G, then the map
Fµ : RX → RX defined by setting Fµ (ϕ) := ∑h∈Bij(X ) ϕ ◦h−1 µ(h) is a
linear GEO.
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An example of permutant measure

Let us consider the set X of the vertices of a cube in R3, and the
group G of the orientation-preserving isometries of R3 that take X to
X . Let π1,π2,π3 be the three planes that contain the center of mass
of X and are parallel to a face of the cube. Let hi : X → X be the
orthogonal symmetry with respect to πi , for i ∈ {1,2,3}.
We can now define a permutant measure µ on the group Bij(X ) by
setting µ(h1) = µ(h2) = µ(h3) = c , where c is a positive real number,
and µ(h) = 0 for any h ∈ Bij(X ) with h /∈ {h1,h2,h3}.
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Building GENEOs by permutant measures

The following representation theorem holds.

Theorem

Let us assume that G ⊆ Bij(X ) transitively acts on the finite set X
and that F is a map from RX to RX . The map F is a linear GENEO
from (RX ,G ) to (RX ,G ) (with respect to the identical
homomorphism idG : g 7→ g) if and only if a permutant measure µ

with respect to G exists, such that F (ϕ) = ∑h∈Bij(X ) ϕ ◦h−1 µ(h) for

every ϕ ∈ RX , and ∑h∈Bij(X ) |µ(h)| ≤ 1.

Further details can be found in this preprint:

S. Botteghi, M. Brasini, P. Frosini and N. Quercioli, On the finite representation of group equivariant operators via

permutant measures https://arxiv.org/pdf/2008.06340.pdf
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GENEOs in the probabilistic setting

When the space of data Φ is endowed with a probability measure, we
can replace the pseudo-metrics DX , DG with the following two
pseudo-metrics ∆X , ∆G , after choosing a G -invariant probability
density f and a G -invariant probability measure λ on Φ :

∆X (x1,x2) =
∫

Φ

|ϕ(x1)−ϕ(x2)|f (ϕ)dλ , ∀x1,x2 ∈ X ;

∆G (g1,g2) =
∫

Φ

‖ϕg1−ϕg2‖f (ϕ)dλ , ∀g1,g2 ∈ G .

We will assume that Φ is compact.
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GENEOs in the probabilistic setting

The following statements hold:

Proposition

Every function ϕ ∈Φ is continuous with respect to ∆X .

Proposition

X is totally bounded with respect to ∆X .

Hence

Corollary

If X is complete, then X is compact with respect to ∆X .
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GENEOs in the probabilistic setting

Proposition

G is a topological group and the action of G on Φ by right
composition is continuous.

Proposition

G is totally bounded with respect to ∆G .

Hence

Corollary

If G is complete, then it is also compact with respect to ∆G .
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GENEOs in the probabilistic setting

The concepts of GEO and GENEO can be adapted to the probabilistic
setting and the following results can be proved:

Theorem

If the spaces of data are compact, then the space of all GENEOs is

compact with respect to the norm ‖F‖L2 :=
(∫

Φ
‖F (ϕ)‖2f (ϕ) dλ

) 1
2 .

Proposition

If the spaces of data are convex, then also the set of all GENEOs is
convex.
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A Riemannian structure for manifolds of GENEOs

Important remark. L2(Φ ,V ) is endowed with the inner product
〈F1,F2〉 :=

∫
Φ
〈F1(ϕ),F2(ϕ)〉f (ϕ)dλ . Therefore, any C k -submanifold

of GENEOs in L2(Φ ,V ) naturally inherits a Riemannian structure
from L2(Φ ,V ) (I am skipping some technical details here).

As a consequence, we can use the gradient flow of cost
functions to look for optimal GENEOs in manifolds of GENEOs.

Further details can be found in this preprint:

P. Cascarano, P. Frosini, N. Quercioli and A. Saki, On the geometric
and Riemannian structure of the spaces of group equivariant
non-expansive operators, https://arxiv.org/pdf/2103.02543.pdf
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Conclusions

The development of a compositional theory of GENEOs could make
available a new kind of knowledge engineering for neural networks,
based on using a relative small set of families of GENEOs.

Each family should be endowed with some kind of equivariance and
focused on a particular activity on data. These GENEOs could replace
the role of neurons and reduce the number of parameters we have to
manage.

This approach would make available a method to decompose a
network into elementary agents, endowed with an interpretable
behaviour.
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Open questions

• How can we approximate a real observer (let us say, e.g., a
physician) by GENEOs, in order to emulate her behaviour with
respect to data?

• Can we devise constructive procedures, allowing us to build any
possible GENEO with respect to a given equivariance group?

• What is the right way of comparing GENEOs in a
topological-statistical setting?

• How should we select representative sets in a probability space of
GENEOs?

• How can we compute the basic statistics for GENEOs?

• How can we predict the behaviour of networks of GENEOs and
control their actions?
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Ferri, Leila De Floriani, Daniela Giorgi, Grzegorz Jab loński, Claudia
Landi, Laura Papaleo, Nicola Quercioli, Amir Saki, Michela
Spagnuolo.
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