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How can we manage the case G 6= Homeo(X )?

An open problem
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What is Topological Data Analysis?

Topological data analysis (TDA) is an approach to the analysis of
datasets using techniques from topology.

WikipediA

Main idea: adapting topological techniques to get dimensionality
reduction of data and robustness to noise.

In plain words, we look for “shape” in data .

In some sense, “shape” is the part of information that is stable in the
presence of noise and perturbation, with respect to a given observer.
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What is Topological Data Analysis?

A ”trivial” question: What is shape?

SIMPLE ANSWER: Shape is what is left after removing scale and
rotation.
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What is Topological Data Analysis?

Unfortunately, this is not a good answer.
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What is Topological Data Analysis?

Shape is a complex concept:

Letters
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What is Topological Data Analysis?

Shape is a complex concept:

Buttons
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What is Topological Data Analysis?

Shape is a complex concept:

Cups
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Data as measurements

Data are usually given by measurements. Before proceeding, we have
to determine what measurements are in our mathematical model.

Measurement is the assignment of a number to a characteristic of an
object or event, which can be compared with other objects or events.

WikipediA

According to this definition, measurements (and hence data) can be
seen as functions ϕ associating a real number ϕ(x) with each point x
of a set X of characteristics. (This definition admits a natural
extension to vector-valued functions but, for the sake of simplicity, we
will treat here the case of scalar-valued functions).
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Data as measurements

Some examples of data that can be seen as measurements (i.e.,
functions):

• An electrocardiogram (a function from R to R);

• A gray-level image (a function from R2 to R);

• A computerized tomography (CT) scan (a function from a helix to
R).
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What is Topological Data Analysis?

The choice of an observer implies the choice of an invariance group G :
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What is Topological Data Analysis?

The group G is not established once and forever: when the observer
changes, G changes too:
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How can we compare the shape of data?

Our data are represented by real-valued functions.

The elements of the transformation group G are homeomorphisms.

Two functions ϕ1,ϕ2 : X → R are equivalent with respect to a
transformation group G if a transformation g ∈ G exists, such that
ϕ1 = ϕ2 ◦g .

Two functions ϕ1,ϕ2 : X → R are similar with respect to a
transformation group G if a transformation g ∈ G exists, such that
‖ϕ1−ϕ2 ◦g‖∞ is small.

These observations lead to define the concept of natural
pseudo-distance with respect to the transformation group G .
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The definition of dG

Let X and G be a topological space and a subgroup of the group
Homeo(X ) of all homeomorphisms from X to X , respectively. If
ϕ1,ϕ2 are two continuous and bounded functions from X to R we can
consider the value infg∈G ‖ϕ1−ϕ2 ◦g‖∞. This value is called the
natural pseudo-distance dG (ϕ1,ϕ2) between ϕ1 and ϕ2 with respect
to the group G .

We endow both C 0(X ,R) and G with the topology of uniform
convergence, so that G becomes a topological group acting
continuously on C 0(X ,R) by composition on the right. We observe
that the action of G on C 0(X ,R) is continuous.
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The definition of dG

If G is the trivial group Id, then dG is the max-norm distance
‖ϕ1−ϕ2‖∞. Moreover, if G1 and G2 are subgroups of Homeo(X ) and
G1 ⊆ G2, then

dHomeo(X )(ϕ1,ϕ2)≤ dG2(ϕ1,ϕ2)≤ dG1(ϕ1,ϕ2)≤ ‖ϕ1−ϕ2‖∞

for every ϕ1,ϕ2 ∈ C 0(X ,R).

We usually restrict dG to Φ×Φ , where Φ is a bounded subset of
C 0(X ,R).
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Our ground truth: the natural pseudo-distance dG

The natural pseudo-distance dG is our ground truth: it describes
the differences that the observer can perceive between the
measurements in Φ with respect to the equivalence expressed by the
group G .

A possible objection: “The use of the concept of homeomorphism
makes the natural pseudo-distance dG difficult to apply. For example,
in shape comparison two similar objects can be non-homeomorphic,
hence this pseudo-metric cannot be applied to real problems.”
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A possible objection

Answer: the homeomorphisms do not concern the “objects”
but the space X where the measurements are made.

• For example, if we are interested in gray-level images, the domain
of our measurements can be modelled as the real plane and each
image can be represented as a function from R2 to R. Therefore,
the space X is not given by the (possibly non-homeomorphic)
objects displayed in the pictures, but by the topological space R2.

• If we make two CT scans, the topological space X is always given
by a helix turning many times around a body, and no requirement
is made about the topology of such a body.

In other words, it is usually legitimate to assume that the topological
space X is determined only by the measuring instrument we are using
to get our measurements.
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Some properties of the natural pseudo-distance

Let us now have a look at some relevant properties of the natural
pseudo-distance dG .

We will examine two cases:

1. We do not assume that a homeomorphism g ∈ G exists, such that
‖ϕ1−ϕ2 ◦g‖∞ = dG (ϕ1,ϕ2) (general case).

2. We assume that a homeomorphism g ∈ G exists, such that
‖ϕ1−ϕ2 ◦g‖∞ = dG (ϕ1,ϕ2).

Let us start from case 1.
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dG and critical values: manifolds

When the filtering functions are defined on a regular closed manifold
M and G = Homeo(M ), some results restrict the range of values
that can be taken by the natural pseudo-distance dG .

Theorem

Assume that M is a closed manifold of class C 1 and that
ϕ1,ϕ2 : M → R are two functions of class C 1. Set
d := dHomeo(M )(ϕ1,ϕ2). Then a positive integer k exists for which one
of the following properties holds:

(i) k is odd and kd is the distance between a critical value of ϕ1 and a
critical value of ϕ2;

(ii) k is even and kd is either the distance between two critical values
of ϕ1 or the distance between two critical values of ϕ2.
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dG and critical values: surfaces

Theorem

Assume that S is a closed surface of class C 1 and that
ϕ1,ϕ2 : S → R are two functions of class C 1. Set
d := dHomeo(S )(ϕ1,ϕ2). Then a positive integer k exists for which at
least one of the following properties holds:

(i) d is the distance between a critical value of ϕ1 and a critical value
of ϕ2;

(ii) d is half the distance between two critical values of ϕ1.

(iii) d is half the distance between two critical values of ϕ2.

(iv) d is one third of the distance between a critical value of ϕ1 and a
critical value of ϕ2.
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dG and critical values: curves

Theorem

Assume that C is a closed curve of class C 1 and that ϕ1,ϕ2 : C → R
are two functions of class C 1. Set d := dHomeo(C )(ϕ1,ϕ2). Then a
positive integer k exists for which at least one of the following
properties holds:

a) d is the distance between a critical value of ϕ1 and a critical value
of ϕ2;

b) d is half the distance between two critical values of ϕ1.

c) d is half the distance between two critical values of ϕ2.

The last theorem is sharp, as shown by the following examples.
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dG and critical values: curves

Let us consider the two embeddings of S1 in R2 represented in the
following figure. The ordinate y defines two filtering functions ϕ1,ϕ2

on S1. In this case dHomeo(S1)(ϕ1,ϕ2) = |ϕ1(A)−ϕ(B)| is the distance
between a critical value of ϕ1 and a critical value of ϕ2.
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dG and critical values: curves

Let us consider the two embeddings of S1 in R2 represented in the
following figure. The ordinate y defines two filtering functions ϕ1,ϕ2

on S1. In this case dHomeo(S1)(ϕ1,ϕ2) = 1
2 |ϕ1(A)−ϕ(B)| is half the

distance between two critical values of ϕ1.
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Optimal homeomorphisms

Let us now consider case 2.

Assume that X is a compact topological space and ϕ1,ϕ2 : X →R are
continuous functions. Let G be a subgroup of Homeo(X ). We say
that a homeomorphism g ∈ G is optimal in G for (ϕ1,ϕ2) if
‖ϕ1−ϕ2 ◦g‖∞ = dG (ϕ1,ϕ2). The following results hold for optimal
homeomorphisms.

Theorem

Assume that M is a C 1 closed manifold and that ϕ1,ϕ2 : M → R are
of class C 1. If an optimal homeomorphism g ∈ Homeo(M ) for
(ϕ1,ϕ2) exists, then dHomeo(M )(ϕ1,ϕ2) is the distance between a
critical value of ϕ1 and a critical value of ϕ2.
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Optimal homeomorphisms

Theorem

If ϕ1,ϕ2 : S1→R are Morse functions and dHomeo(S1)(ϕ1,ϕ2) vanishes,

then an optimal C 2-diffeomorphism exists in Homeo(S1) for (ϕ1,ϕ2).

Theorem (A. De Gregorio)

The number of optimal homeomorphisms in the Lie group S1 for a
pair (ϕ1,ϕ2) of Morse functions from S1 to R is finite.
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How can we get information about the natural
pseudo-distance?

In practice, we cannot directly compute the natural pseudo-distance,
since its computation involves considering every transformation
belonging to the group G , and the group G is usually large.

Fortunately, persistent homology and the concept of group
equivariant non-expansive operator allow us to get information about
the natural pseudo-distance.
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What is homology?

Two shapes can be often distinguished by examining their holes.
Homology theory allows us to formally describe the presence of holes
in a topological space by means of suitable groups, called homology
groups. The definition of these groups is based on the concepts of
cycle and boundary.

Speaking roughly, a k-cycle is a closed k-submanifold, a k-boundary
is a k-cycle which is also the boundary of a k + 1-submanifold, and a
homology class (which represents a hole) is an equivalence class of
k-cycles modulo k-boundaries.

The set of k-holes is a group (with respect to a suitable operation),
called the k-th homology group.
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What is homology?

R2

The red cycle and the blue cycle are equivalent to each other, since
their “sum” is the boundary of the marked region. Both these cycles
describe the same 1-dimensional hole in the yellow subset of the real
plane.
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What is persistent homology?

If ϕ : X → R is a continuous function, we can consider the sublevel
sets Xt := {x ∈ X : ϕ(x)≤ t}. When t varies we see the birth and
death of k-dimensional holes.
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What is a persistence diagram?

In plain words, the persistence diagram in degree k of ϕ is the
collection of the pairs (bi ,di ) where bi and di are the times of birth
and death of the i-th hole of dimension k .

The points of the persistence diagram are endowed with multiplicity.
Each point of the diagonal u = v is assumed to be a point of the
persistence diagram, endowed with infinite multiplicity.
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What are persistent Betti numbers functions?

Persistence diagrams are not quite suitable for statistical purposes,
because no good definition of average of persistence diagrams exists.

Persistent Betti numbers functions are more suitable for statistics.

Definition

The k-th persistent Betti numbers function βk(u,v) is the number of
holes of dimension k whose time of birth is smaller than u and whose
time of death is greater than v .

38 of 62



What are persistent Betti numbers functions?

Let us give the formal definition of persistent homology group:

Definition

Let ϕ : X → R be a continuous function. If u,v ∈ R and u < v , we
can consider the inclusion i of Xu into Xv . Such an inclusion induces
a homomorphism i∗ : Hk (Xu)→ Hk (Xv ) between the homology
groups of Xu and Xv in degree k . The group
PH

ϕ

k (u,v) := i∗ (Hk (Xu)) is called the k-th persistent homology
group with respect to the function ϕ : X → R, computed at the point
(u,v). The rank rk(ϕ)(u,v) of this group is said the k-th persistent
Betti numbers function with respect to the function ϕ : X → R,
computed at the point (u,v).

The average of persistent Betti numbers functions can be trivially
defined as the usual average of real-valued functions.
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What are persistent Betti numbers functions?

If we use Čech homology, persistence diagrams are equivalent to
persistent Betti numbers functions.
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An example for ϕ : X = [0,1]→ R (k = 0)
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Another example of persistence diagram (k = 1)
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Comparison of persistent Betti numbers functions

Persistence diagrams (and hence persistent Betti numbers functions)
can be compared by means of the bottleneck distance. The bottleneck
distance between two persistence diagrams D1, D2 is the minimum
cost of changing the points of D1 into the points of D2, where the
cost of moving each point is given by the max-norm distance in R2.
Moving a point to the diagonal is equivalent to delete it.
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Comparison of persistent Betti numbers functions

An important property of the metric dmatch is its stability, as stated in
the following result.

Theorem

If k is a natural number and ϕ1,ϕ2 ∈ C 0(X ,R), then

dmatch(rk(ϕ1), rk(ϕ2))≤ dHomeo(X )(ϕ1,ϕ2)≤ ‖ϕ1−ϕ2‖∞
.

The same inequality can be also stated in terms of persistence
diagrams. The matching distance between persistence diagrams
is not difficult to compute. Therefore the previous inequality is
a powerful tool to get a lower bound for the natural
pseudo-distance dG , when G = Homeo(X ).
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How can we manage the case G 6= Homeo(X )?

Since dHomeo(X ) ≤ dG for every G ⊆ Homeo(X ), the inequality shown
in the previous slide immediately implies that

dmatch(rk(ϕ1), rk(ϕ2))≤ dG (ϕ1,ϕ2).

However, the gap between dHomeo(X )(ϕ1,ϕ2) and dG (ϕ1,ϕ2) can be
pretty large.

In order to get a better result we have to use the concept of group
equivariant non-expansive operator.
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Group Equivariant Non-Expansive Operators

Let X and G be a topological space and a subgroup of the group
Homeo(X ) of all homeomorphisms from X to X , respectively. Let
Φ ⊆ C 0(X ,R). We now consider the set F (Φ,G ) of all maps from Φ

to Φ that verify the following two properties:

1. F (ϕ ◦g) = F (ϕ)◦g for every ϕ ∈ Φ and every g ∈ G (i.e., F is
equivariant with respect to G );

2. ‖F (ϕ1)−F (ϕ2)‖∞ ≤ ‖ϕ1−ϕ2‖∞ for every ϕ1,ϕ2 ∈ Φ (i.e., F is
non-expansive).

Obviously, F (Φ,G ) is not empty, since it contains at least the
identity map. The maps in F (Φ,G ) will be called Group Equivariant
Non-Expansive Operators (GENEOs).
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An example of GENEO

F (ϕ)(x) :=
1

2πσ2

∫
R2

ϕ(y)e−
‖x−y‖2

2σ2 dy .

F is G -equivariant for G equal to the group of isometries of R2.
F is also non-expansive with respect to the sup-norm.
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Another example of GENEO

F is G -equivariant for G equal to the group of translations of R.
F is also non-expansive with respect to the sup-norm.
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Another example of GENEO

F is G -equivariant for G equal to the group of homeomorphisms of R.
F is also non-expansive with respect to the sup-norm.
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Choice of GENEOs

• The observer cannot usually choose the functions representing the
measurement data, but he/she can often choose the operators that
will be applied to those functions.

• The choice of the operators reflects the invariances that are
relevant for the observer.

• In some sense we could state that the observer can be represented
as a collection of (suitable) operators, endowed with the invariance
he/she has chosen.
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Lower bounds for dG via persistent homology

For every fixed k and every subset F ⊆F (Φ,G ), we can consider the

following pseudo-metric DF ,k
match on Φ :

DF ,k
match(ϕ1,ϕ2) := sup

F∈F
dmatch(rk(F (ϕ1)), rk(F (ϕ2)))

for every ϕ1,ϕ2 ∈ Φ, where rk(ϕ) denotes the k-th persistent Betti
numbers function with respect to the function ϕ : X → R. We will
usually omit the index k, when its value is clear from the context or
not influential.

We observe that DF
match is strongly invariant with respect to G , i.e.,

DF
match(ϕ1,ϕ2 ◦g) = DF

match(ϕ1 ◦g ,ϕ2) = DF
match(ϕ1,ϕ2) for every

ϕ1,ϕ2 ∈Φ and every g ∈ Homeo(X ).
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Lower bounds for dG via persistent homology

The importance of DF
match lies in the following two results, showing

that it can be used to get information about the natural
pseudo-distance dG .

Theorem

If /0 6= F̄ ⊆F (Φ,G ), then DF̄
match ≤ dG .

Theorem

D
F (Φ,G)
match = dG .

As a consequence, the topological and geometrical study of F (Φ,G )
is important in the research concerning the natural pseudo-distance.
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Two relevant properties of F (Φ,G )

Two relevant properties of F (Φ,G ) are expressed by the following
result.

Theorem

If Φ is compact, then F (Φ,G ) is compact.
If Φ is convex, then F (Φ,G ) is convex.

The compactness and convexity of F (Φ,G ) are important from the
computational point of view.
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Two further reasons to study GENEOs

There are two further reasons to study GENEOs:

1. The operator that allows to reduce multidimensional persistent
Betti numbers functions to families of 1-dimensional persistent
Betti numbers functions is a GENEO.

2. GENEOs appear to be of use in deep learning, since they can be
seen as multi-level components that can be joined and connected
in order to form neural networks by applying the operations of
chaining, convex combination and direct product.
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An open problem

Let us consider a closed C 1 surface M and two C 1 filtering functions
ϕ1,ϕ2 : M → R. Let Homeo(M ) be the group of all
self-homeomorphisms of M . It has been proved that at least one of
the following statements holds:

1. dHomeo(M )(ϕ1,ϕ2) is the distance between a critical value of ϕ1

and a critical value of ϕ2;

2. dHomeo(M )(ϕ1,ϕ2) is half the distance between two critical values
of ϕ1;

3. dHomeo(M )(ϕ1,ϕ2) is half the distance between two critical values
of ϕ2;

4. dHomeo(M )(ϕ1,ϕ2) is one third of the distance between a critical
value of ϕ1 and a critical value of ϕ2.
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An open problem

Interestingly, no example of two functions ϕ1,ϕ2 : M → R is known,
such that (4) holds but (1),(2),(3) do not hold.

A natural question arises: Can we find an example of two such
functions or prove that such an example cannot exist (so improving
our result)?
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An open problem

We observe that the usual technique to compute the natural
pseudo-distance consists in

• finding a lower bound for dHomeo(M )(ϕ1,ϕ2) by computing the
matching distance dmatch (Dgmk(ϕ1),Dgmk(ϕ2)) between the
persistence diagrams in degree k of the functions ϕ1 and ϕ2;

• looking for a sequence (gi ) in Homeo(M ), such that
limi→∞ ‖ϕ1−ϕ2 ◦gi‖∞ = dmatch (Dgmk(ϕ1),Dgmk(ϕ2)).

If such a sequence (gi ) exists, then the value dHomeo(M )(ϕ1,ϕ2) is
equal to dmatch (Dgmk(ϕ1),Dgmk(ϕ2)).
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An open problem

Unfortunately, at least one of the following statements holds:

a) dmatch (Dgmk(ϕ1),Dgmk(ϕ2)) is the distance between a
critical value of ϕ1 and a critical value of ϕ2;

b) dmatch (Dgmk(ϕ1),Dgmk(ϕ2)) is half the distance
between two critical values of ϕ1;

c) dmatch (Dgmk(ϕ1),Dgmk(ϕ2)) is half the distance
between two critical values of ϕ2.

Therefore, if (1),(2),(3) do not hold for ϕ1,ϕ2 : M → R, then
dHomeo(M )(ϕ1,ϕ2) cannot be equal to dmatch (Dgmk(ϕ1),Dgmk(ϕ2)).
This means that if there exist two C 1 functions ϕ1,ϕ2 : M → R
verifying (4) but not (1),(2),(3), then we need new methods to
compute dHomeo(M )(ϕ1,ϕ2) and to recognize the pair (ϕ1,ϕ2) as the
right example. As a consequence, the answer to the question asked in
this section is still unknown.
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