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Data analysis is not just about data



Data analysis is not just about data

Data interpretation depends on the observer:




Observers are often more important than data

We are usually not directly interested in data, but in data
observers. For example, a patient is usually interested not in the
data representing a computerized axial tomography of her body, but
in the diagnosis that her doctor can make from these data.

Data analysis strongly depends on the chosen observer. If data
analysis were not dependant on the chosen observer, then physicians’
diagnoses would always be identical, scientists would always see the
same causes for each phenomenon, and all people would agree in
judging who the heroes and villains in a movie or a political event are.

It is indeed well known that different agents can have different
reactions in the presence of the same data, and this suggests that
data analysis should study the pairs (data, observer) instead of
data alone.
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What are data?

Data are usually produced by measurements (or actions) made
by observers. Before proceeding, we have to determine what
measurements are in our mathematical model.

Measurement is the assignment of a number to a characteristic of an
object or event, which can be compared with other objects or events.
WIKIPEDIA

According to this definition, measurements (and hence data) can be
often seen as functions ¢ associating a real number ¢(x) with each
point x of a set X of characteristics. (This definition admits a natural
extension to vector-valued functions but, for the sake of simplicity, we
will treat here the case of scalar-valued functions).



Data are measurements made by observers

Some examples of data that can be seen as measurements (i.e.,
functions):

® An electrocardiogram (a function from R to R);
e A gray-level image (a function from R? to R);

e A computerized tomography (CT) scan (a function from a helix to
R).




Observers are often associated with invariance groups

Observers often think that some data are equivalent to each other,
according to an invariance group.

shape of |

The group G is not established once and forever: when the observer
changes, G changes too.

shape of # shape of




Data equivalence w.r.t. a group of permutations

Our data are represented by real-valued functions.

What do the expressions “data equivalence” and “data similarity”
mean in our setting?

Two functions @1, @, : X — R are equivalent with respect to a group
G of permutations on X if a g € G exists, such that ¢1 = @,0g.

Two functions @1,¢@> : X — R are similar with respect to a group G
of permutations on X if a g € G exists, such that ||@1 — @20g||w Is
small.

These observations lead us to define the concept of natural
pseudo-distance with respect to the group G.



The natural pseudo-distance dg

Let X and G be a topological space and a subgroup of the group

Homeo(X) of all homeomorphisms from X to X, respectively. Let us
assume that @1, ¢ are two continuous and bounded functions from X
to R, and consider the value |inf,cc ||@1 — @ 0g]| |.

This value is called the natural pseudo-distance dg (@1, ¢2) between
¢1 and @, with respect to the group G.

(We recall that a pseudo-distance is just a distance d without the
assumption that d(xi,x2) =0 implies x; = x2.)

We could look at dg as the ground truth in data comparison,
when data equivalence is expressed by the group G.



The natural pseudo-distance dg

If G is the trivial group Id, then dg is the max-norm distance
||@1 — @2||. Moreover, if G; and G, are subgroups of Homeo(X) and
G1 C Gy, then

dHomeo(X)((pla%) < dGQ((pla(p2) < dGl((Pl,(P2) < ||(P1 - (p2||°°

for every @1, € CO(X,R).

We usually restrict dg to @ x &, where @ is a bounded subset of
CO(X,R).



Our general assumptions about data and observers

Our mathematical model is based on these assumptions:

e The space of observers is often more important than the space of
data;

e The study of the space of observers requires the development of a
new topological-geometric model.

e This new model could be of great use in data analysis, when the
role of the observers is not negligible.

These assumptions suggest us to move from Topological Data
Analysis to the new field of Topological Observer Analysis.




Observers can be seen as equivariant operators

Observers are structures able to change data into other data, and
usually do that by respecting some data equivalences, i.e., by
commuting with some transformations.

As a first approximation, observers can be represented as group
equivariant operators (GEOs).

In this talk we will give some results on the theory of Group
Equivariant Non-Expansive Operators (GENEOs).

(Why “non-expansive?” Because observers are often assumed to
simplify the metric structure of data in order to produce meaningful
interpretations.)

We will also illustrate some interesting links between GENEOs and
TDA.
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Topological and metric basics for the theory of GENEOs



Measurements as admissible functions

Let X be a nonempty set. Let & be a topological subspace of the set
Rff of all bounded functions ¢ from X to R, endowed with the
topology induced by the metric

Do (91, 02) := |01 — ¢2].... (0.1)

We can see X as the space where we can make our measurements,
and @ as the space of all possible measurements. We will say that &
is the set of admissible functions. In other words, @ is the set of all
functions from X to R that can be produced by our measuring
instruments. For example, a gray-level image can be represented as a
function from the real plane to the interval [0,1] (in this case

X =R?).

We recall that the initial topology 7, on X with respect to @ is the
coarsest topology on X such that every function ¢ in & is continuous.
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A pseudo-metric on X

Let us define on X the pseudo-metric

Dx(x1,%2) = Z:g!¢(X1)-<P(X2)!- (0.2)

Dx induces a topology 7p, on X.

Theorem

The topology Tp, Is finer than the initial topology T, on X with
respect to ®. If @ is totally bounded, then Tp, coincides with Ti,.

The use of Dx implies that we can distinguish two points only if a
measurement exists, taking those points to different values.

Theorem

If @ is compact and X is complete, then X is compact.
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Each bijection is an isometry

Let Bij(X) be the set of all bijections from X to X, and denote by
Bij4(X) the set of all g € Bij(X) such that pog € & and

pog € d for every p € d. Let Homeo(X) be the set of all
homeomorphisms from X a X with respect to Dx, and denote by
Homeog (X) the set of all g € Homeo(X) such that pog € & and
pog ! € ® for every ¢ € @. Let Iso(X) be the set of all isometries
from X a X, and denote by Isos(X) the set of all g € Iso(X) such
that pog € @ and pog! € P for every ¢ € P.

Proposition
Bij s (X) = Homeog (X) = Isog (X).



A pseudo-metric on G

Let us now focus our attention on a subgroup G of Homeog(X).
We can define a pseudo-metric Dg on G by setting

D¢(g1,82) = squ§D¢((pOg1,(pog2). (0.3)
pe

Theorem

G is a topological group with respect to D¢ and the action of G on
@ by right composition is continuous.

Theorem

If @ is compact and G is complete then it is also compact with
respect to Dg.
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GEOs and GENEOs

Each pair (@, G) with G C Homeog(X) is called a perception pair.

Let us assume that two perception pairs (@, G), (¥, H) are given,
and fix a group homomorphism T : G — H.

Each function F : @ — ¥ such that ’ F(pog)=F(9)oT(g) ‘ for

every ¢ € @, g € G is called a Group Equivariant Operator (GEQ)
associated with the homomorphism T.

If F is also non-expansive (i.e., ’ Dy (F(¢1),F(92)) < Do (¢1,92) ‘ for
every @1, € @), then F is called a Group Equivariant
Non-Expansive Operator (GENEO) associated with the
homomorphism T.




An example of GENEO

Let us assume to be interested in the comparison of the distributions
of temperatures on a sphere, taken at two different times:

Let us also assume that only two opposite points N,S can be
localized on the sphere.




An example of GENEO

In this case we can set

e X=252

e & = set of 1-Lipschitz functions from S to a fixed interval [a, b]
e G = group of rotations of S? around the axis N — S

We can also consider the “equator” of our sphere, represented as the
space St

Therefore, we can also set

e Y = the equator S! of S?

o ¥ = set of 1-Lipschitz functions from S* to [a, b]

e H = group of rotations of S!



An example of GENEO

This is a simple example of GENEO from (@, G) to (¥, H):

e T(g) is the rotation h € H of the equator S! that is induced by
the rotation g of S2, for every g € G.

e F(@) is the function y that takes each point y belonging to the
equator S! to the average of the temperatures along the meridian
containing y, for every ¢ € &;

We can easily check that F verifies the properties defining the

concept of group equivariant non-expansive operator with respect to
the isomorphism T : G — H.



Some relevant links between GENEOs and TDA



Some relevant links between GENEOs and TDA

What are the main links
between GENEQOs and TDA?



Some relevant links between GENEOs and TDA

e The use of GENEOs allows us to restrict the invariance of TDA;

e The operator taking each regular function to a suitable
representation of its persistence diagram is a GENEO;

e GENEOs and persistent homology allow us to approximate the
natural pseudo-distance dg;

e GENEOs interact with multiparameter persistent homology;

e GENEOs can be efficiently compared by means of TDA.

In the next slides the symbol GENEO ((®, G), (¥, H)) will denote the
set of all GENEOs between the perception pairs (@, G), (¥, H) with
respect to a fixed homomorphism T : G — H.



1.The use of GENEOQOs restricts the invariance of TDA

For every subset .# C GENEO((®, G),(¥,H)), we can consider the

following pseudo-metric ;. on ®:

Drpien(@1,92) = SUP dmaicr (Dgm(F (1)), Dgm(F(¢2)))

FeF

for every @1, € ®.

We observe that 2.7 . is strongly invariant with respect to G, i.e.,

D (91, 9208) = D7 (9108, 92) = Dy (91, 92) For every
Q1,02 € @ and every g € G.

We stress that, differently from dpcn (Dgm(¢;),Dgm(¢2)),
97k (¢1,¢2) is not invariant with respect to every g € Homeo(X).

match

@r‘i’tlgh restricts to G the invariance of the classical bottleneck distance.
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2.Persistence diagrams can be seen as a GENEO

Let us assume that:

e @ is the set of all Morse functions from a closed regular manifold
M to [0,1].

G is the group of all self-diffeomorphisms of M.

V is the set of all linear combinations Y; f(||x — pi|l«), where {p;};
is a finite subset of the extended plane and f is a tent function.

H is the trivial group containing only the identity of R?.
e T:G — H is the trivial homomorphism.

Then the operator taking each function ¢ € @ to the linear com-

bination associated with its persistence diagram is a GENEO from
(@, G) to (W, H) with respect to T.

(Equivariance follows from the invariance of persistence diagrams
under the action of self-homeomorphisms of M. Non-expansivity is a
consequence of the stability of persistence diagrams.)
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3.Computing dg via GENEOs and persistent homology

If the perception pairs (@, G), (¥, H) coincide, the distance 27,

match
has the following two properties, showing that it can be also used to

get information about the natural pseudo-distance dg.

Theorem
If 0 # .7 C GENEO((®,G),(®, G)), then 27, < de.
Theorem
GENEO((®,G),(®,G
GUENEO(2.6)1(2.6)) _ g

GENEQOs allow us to approximate the natural pseudo-distance dg.




4. GENEOs and 2-parameter persistent homology (1/4)

If we have a bifiltration given by a function @ = (@1, @) : X — R?, we
can consider a unit vector (w.r.t. ||-||1) w=(a,1— a) with a positive
slope, and a point P = (b,—b). Every choice of P and w defines a
filtration {X;} of X, where X; is the set of points of X whose image
by ¢ is both under and on the left of the point P+ tw.

As a consequence, each choice of P and w defines a persistence
diagram.

(o—id/y

X




4.GENEOs and 2-parameter persistent homology (2/4)

If we set (x,y) =P+ tw = (at+b,(1—a)t—b) and define the

function ¢, ) (p) == max{w, %):b}, we can write

Xe={pe X :01(p) <x,p2(p) <y} as the set
{Pe X @up(p) <t}

As a consequence, the filtration {X:} of X leads us to consider the
persistence diagram Dgm(@(, p)) of the function @, p).

In order to get a stability theorem we have to normalize ¢, ;) by
setting

*

(P(avb)(P) :=min{a,1—a} @, (p)



4.GENEOs and 2-parameter persistent homology (3/4)

We can define a 2D matching distance Dpach (@, W) by setting
Dinaten (@, W) = SUP(a,b)€]0,1[x R Imatch (ng((P?a,b));ng(‘lffa_b)))-
The following theorem is well known:

Theorem (Stability Theorem)
Dmatch ((Pa IV) < H(P _ lV||°°

This result can be easily extended to n-parameter persistent
homology.

S. Biasotti, A. Cerri, P. Frosini, D. Giorgi, C. Landi, Multidimensional size functions for shape comparison, Journal of

Mathematical Imaging and Vision, vol. 32 (2008), n. 2, 161-179.

A. Cerri, B. Di Fabio, M. Ferri, P. Frosini, C. Landi, Betti numbers in multidimensional persistent homology are stable

functions, Mathematical Methods in the Applied Sciences, vol. 36 (2013), 1543-1557.
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4.GENEOs and 2-parameter persistent homology (4/4)

In summary, the definition of the matching distance between two
bifiltrations @,y : X — R" of a topological space X can be seen as the
supremum of the classical bottleneck distance between the persistence
diagrams associated with the filtrations F, (@), Fap(¥) : X = R,
where the operator F,j, is defined by setting

Fut(9) = oy = max 2L (g ) ML g

’Key fact: the operator F,} is a GENEO for any value of a and b. ‘

Therefore, the concept of rank invariant for a bifiltration can be
introduced by the GENEOs F, .
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5.TDA gives a distance to compare GENEOs

We have just given four different examples showing how GENEOs can
be of help for the development of TDA. We can now give an example
showing how TDA can be of help in the development of a theory of
GENEOs.

Persistent homology can indeed be used to define a computable and
stable pseudo-metric Ageneo between GENEOs by setting

Ageneo(F1, F2) i= ;:g dmatch (Dgm(F1(@)), Dgm(F2(¢@)))

for every Fi,F, € GENEO((®, G), (¥, H)).

TDA makes available an efficient pseudo-metric to compare GENEOs. ‘

Remark. Persistent homology also gives a shortcut to compare
elements of each equivariance group G, by the pseudo-distance

Ag(g1,82) = sugdmatch (Dgm(¢ogi),Dgm(@og)).
o<
b



Compactness and convexity of the space of GENEOs



Two key results

Let us assume that a homomorphism T : G — H has been fixed.
Let us define a metric Dgengo on GENEO ((@, G), (¥, H)) by setting

Dgeneo (F1, F2) == SU(I;7 Dy (F1(9), F2(9)).
pe

Theorem

If @ and W are compact, then GENEO ((®, G), (¥, H)) is compact
with respect to DGeNgo-

Theorem
If W is convex, then GENEO ((®, G), (¥, H)) is convex.



A consequence of the compactness theorem

Proposition

Let F be a nonempty subset of GENEO ((®,G),(¥,H)). For every
€ >0, a finite subset F7* of ¥ exists, such that

D (91, 92) — Dot (91, 92)| < €

per ogni @1, € P.



Methods to build GENEOs



Elementary methods to build GENEOs

Proposition (Composition)

If F; € GENEO((®,G),(¥,H)) w.r.t. T1: G — H and
F» € GENEO((V, H), (%, K)) w.rt. To:H — K then
F2o F1 € GENEO((®,G),(x,K)) w.rt. TooT;:G — K.

Proposition (Image by a 1-Lipschitz function)

If Fi,...,F, € GENEO((®,G),(WY,H)) wrt. T:G—H, Lisa
1-Lipschitz map from R" to R, and L*(Fy,...,F,)(®) C & (where L*
is the map induced by L), then

L*(F,...,F,) € GENEO((®,G),(¥,H)) w.rt. T.

The next three statements follow from the last proposition.
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Elementary methods to build GENEOs

Proposition (Maximization)

If Fi,...,Fn€ GENEO((®,G),(¥,H)) w.rt. T:G—H e
max(Fi,...,F,)(®) C @, allora
max(Fi,...,Fn,) € GENEO((®,G),(¥,H)) w.rt. T.

Proposition (Translation)

Se F € GENEO((®,G),(¥,H)) w.r.t. T:G — H, and Fp(®) C & for
Fo(@) := F(@) — b, then Fp € GENEO ((®,G),(¥,H)) w.r.t. T.

Proposition (Convex combination)

If F1,...,F, € GENEO((®,G),(¥,H)) w.r.t. T: G—H,

(a1,...,an) €R" con Y7 ;]aj| <1 and Fs(®) C & for

F):((p) = Z?:l a,-F,-((p), then Fy € GENEO(((D, G),("P, H)) w.rt. T.
b



Permutant measures

Let us consider the set @ = RX = R" of all functions from a finite set
X ={x1,...,xn} to R, and a subgroup G of the group Bij(X) of all
permutations of X.

Definition
A finite (signed) measure u on Bij(X) is called a permutant measure
with respect to G if every subset H of Bij(X) is measurable and u is

invariant under the conjugacy action of G (i.e., u(H) = u(gHg ') for
every g € G).

Proposition

If u is a permutant measure with respect to G, then the map
Fu : RX — RX defined by setting F,(¢) = ¥ heBij(X) oh t u(h)isa
linear GEO.
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An example of permutant measure

Let us consider the set X of the vertices of a cube in R3, and the
group G of the orientation-preserving isometries of R3 that take X to
X. Let my,m, w3 be the three planes that contain the center of mass
of X and are parallel to a face of the cube. Let h; : X — X be the
orthogonal symmetry with respect to 7;, for i € {1,2,3}.

We can now define a permutant measure p on the group Bij(X) by
setting t(h1) = w(h2) = u(hs) = ¢, where c is a positive real number,
and p(h) =0 for any h € Bij(X) with h ¢ {h1, ho, h3}.




Building GENEQOs by permutant measures

The following representation theorem holds.

Theorem

Let us assume that G C Bij(X) transitively acts on the finite set X
and that F is a map from RX to RX. The map F is a linear GENEO
from (RX,G) to (RX,G) (with respect to the identical
homomorphism id¢ : g — g) if and only if a permutant measure
with respect to G exists, such that F(¢) = Y pcpij(x) oh™t u(h) for

every @ € RX, and ¥ p,cpij(x) [1L(h)| < 1.

Further details can be found in this preprint:
S. Botteghi, M. Brasini, P. Frosini and N. Quercioli, On the finite representation of group equivariant operators via

permutant measures https://arxiv.org/pdf/2008.06340.pdf
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GENEO s in the probabilistic setting



GENEOs in the probabilistic setting

When the space of data @ is endowed with a probability measure, we
can replace the pseudo-metrics Dx, D¢ with the following two
pseudo-metrics Ax, Ag, after choosing a G-invariant probability
density f and a G-invariant probability measure A on &:

Dx(x1,%) = [p 0(x1) — 9()|F(@)dA, Vx1,x € X

Bclere) = [ |ver— 0elf(9)dh, Verg < 6.

We will assume that @ is compact.



GENEOs in the probabilistic setting

The following statements hold:
Proposition

Every function ¢ € @ is continuous with respect to Ax.

Proposition

X is totally bounded with respect to Ax.
Hence

Corollary

If X is complete, then X is compact.



GENEOs in the probabilistic setting

Proposition

G is a topological group and the action of G on @ by right
composition is continuous.

Proposition

G is totally bounded with respect to Ag.

Hence

Corollary

If G is complete, then it is also compact.



GENEOs in the probabilistic setting

The concepts of GEO and GENEO can be adapted to the probabilistic
setting and the following results can be proved:

Theorem

If the spaces of data are compact, then the space of all GENEOs is
1
compact with respect to the norm ||F|| 2 :== ([ F(@)|?f(¢) dA)>.

Proposition

If the spaces of data are convex, then also the set of all GENEO:s is
convex.



A Riemannian structure for manifolds of GENEQOs

Important remark. [?(®, V) is endowed with the inner product
(F1,F2) == [5(F1(9), F2(9))f(@) dA. Therefore, any C*-submanifold
of GENEOs in L?(®, V) naturally inherits a Riemannian structure
from L?(@, V) (I am skipping some technical details here).

As a consequence, we can use the gradient flow of cost functions to
look for optimal GENEOs in manifolds of GENEOs.
Further details can be found in this preprint:

P. Cascarano, P. Frosini, N. Quercioli and A. Saki, On the geometric
and Riemannian structure of the spaces of group equivariant
non-expansive operators, https://arxiv.org/pdf/2103.02543.pdf


https://arxiv.org/pdf/2103.02543.pdf

Conclusions (1/2)

There are many links between TDA and the theory of GENEOs:

The theory of GENEOs could be a starting point for moving from
TDA to Topological Observer Analysis.

The computation of (suitable representations of) persistence
diagrams can be seen as a GENEO.

The use of GENEOs allows us to restrict the invariance of TDA;

GENEOs and persistent homology allow us to approximate the
natural pseudo-distance dg;

GENEOs interact with multiparameter persistent homology;
GENEOs can be efficiently compared by means of TDA.



Conclusions (2/2)

In perspective, we would like to obtain a good compositional theory
for building efficient and transparent networks of GENEOs.

Some preliminary experiments suggest that replacing neurons with
GENEOs could make deep learning more transparent and
interpretable and speed up the learning process.

Output

NEURAL NETWORK NETWORK OF GENEOS




Open questions

e How can we approximate a real observer (let us say, e.g., a
physician) by GENEOs, in order to emulate her behaviour with
respect to data?

e Can we devise constructive procedures, allowing us to build any
possible GENEO with respect to a given equivariance group?

e What is the right way of comparing GENEOs in a
topological-statistical setting?

e How should we select representative sets in a probability space of
GENEOs?

e How can we compute the basic statistics for GENEQOs?

e How can we predict the behaviour of networks of GENEOs and
control their actions?

e How can we evaluate advantages and limits of an approach to data
analysis based on the interaction of GENEOs and TDA?
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